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ABSTRACT Recently, electron microscopy measurement of single particles has enabled us to reconstruct a low-resolution 3D
density map of large biomolecular complexes. If structures of the complex subunits can be solved by x-ray crystallography at
atomic resolution, fitting these models into the 3D density map can generate an atomic resolution model of the entire large
complex. The fitting of multiple subunits, however, generally requires large computational costs; therefore, development of an
efficient algorithm is required. We developed a fast fitting program, ‘‘gmfit ’’, which employs a Gaussian mixture model (GMM) to
represent approximated shapes of the 3D density map and the atomic models. A GMM is a distribution function composed by
adding together several 3D Gaussian density functions. Because our model analytically provides an integral of a product of two
distribution functions, it enables us to quickly calculate the fitness of the density map and the atomic models. Using the integral,
two types of potential energy function are introduced: the attraction potential energy between a 3D density map and each
subunit, and the repulsion potential energy between subunits. The restraint energy for symmetry is also employed to build
symmetrical origomeric complexes. To find the optimal configuration of subunits, we randomly generated initial configurations of
subunit models, and performed a steepest-descent method using forces and torques of the three potential energies.
Comparison between an original density map and its GMM showed that the required number of Gaussian distribution functions
for a given accuracy depended on both resolution and molecular size. We then performed test fitting calculations for simulated
low-resolution density maps of atomic models of homodimer, trimer, and hexamer, using different search parameters. The
results indicated that our method was able to rebuild atomic models of a complex even for maps of 30 Å resolution if sufficient
numbers (eight or more) of Gaussian distribution functions were employed for each subunit, and the symmetric restraints were
assigned for complexes with more than three subunits. As a more realistic test, we tried to build an atomic model of the GroEL/
ES complex by fitting 21-subunit atomic models into the 3D density map obtained by cryoelectron microscopy using the C7
symmetric restraints. A model with low root mean-square deviations (14.7 Å) was obtained as the lowest-energy model,
showing that our fitting method was reasonably accurate. Inclusion of other restraints from biological and biochemical
experiments could further enhance the accuracy.

INTRODUCTION

Protein-protein interactions support a wide range of cellular

processes in all forms of life, from bacterial cell division to

mammalian immunity (1). Recently, high-throughput screen-

ing methods, such as the yeast-two-hybrid method and tandem

affinity purification, have generated large datasets of protein-

protein interactions (2,3). Although these data provide a

wealth of information about cellular processes, they do not

elucidate either how these proteins interact or how they are

spatially arranged within a complex. X-ray crystallography is

the most accurate method for solving the 3D structure of

protein-protein complexes; however, it is suitable only for

molecules that can be purified in sufficient quantity and

crystallized. The gap between high-throughput screening

method and x-ray crystallography is now being closed with

the aid of new experimental techniques such as cryoelectron

microscopy (cryo-EM; for reviews, see (4–7)). An electron

microscopy measurement of single particles can provide a

low-resolution 3D density map of a large biomolecular

complex composed of many proteins, although its resolution

is in the medium range. These 3D density map data have been

accumulated in the electron microscopy database (EMDB)

(8,9). The number of registered data of the EMDB is now

;500; their resolutions range from 3.8 to 85.0 Å, with an

average value of 18.6 Å. If atomic models of subunit struc-

tures in the complex are available from x-ray crystallography

or homology modeling studies, fitting these atomic models

into cryoelectron-microscopy maps has yielded pseudo-

atomic models of macromolecular complexes. Recently, many

macromolecular models have been proposed by this fitting

technique: viral subunits (10), ribosome and ribosome-

interacting proteins (11), clathrin lattice (12), and clamp-

loading complex (13).
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Initially, the fitting of atomic models into the low-

resolution density map was performed by manual docking, in

which expert researchers placed atomic models ‘‘by hand’’

using molecular graphic programs. The manual docking

method is considered to be reliable, but it has weaknesses; it

cannot show all the alternative solutions, and its solutions

may lack objectivity. To overcome the limitations of manual

docking, a variety of computational methods have been

proposed (see reviews by (14,15)). We can characterize

various proposed methods from two perspectives: scoring

function and search method. The most popular scoring

function is a correlation coefficient between a given density

map and an expected low-resolution density map of atomic

models. A locally normalized correlation function has also

been proposed for cases in which an atomic model represents

only a part of the density map (16). Matching with the con-

tour-enhanced density maps has been employed by several

researchers (17,18). Chacon and Wriggers showed that

contour matching with a Laplacian filter was effective for

fitting into the density map with ;30 Å resolution (17). A

search method is also important for correct modeling. The

difficulty of searching depends on the number of subunits to

be optimized; six degrees of freedom are required for each

subunit. The most primitive search method is an exhaustive

search, in which all the parameters are equally sampled using

a given step size. This method is practical if only one rigid

subunit is to be optimized (six degrees of freedom are re-

quired). Stochastic search methods, such as Monte Carlo and

simulated annealing methods were employed to enhance

sampling efficiencies (19–21). The fast Fourier transfer al-

gorithm was also applied to reduce the computational cost of

searching translation (17) and rotation (22). The vector

quantization method was unique in both scoring function and

search method (23,24). This method employed the set of 3D

points as approximations for both the atomic models and 3D

density map; all the possible matches between the two sets of

points were exhaustively examined. The difference in dis-

tances between the corresponding points was employed as a

scoring function.

Fitting subunits into a low-resolution density map presents

three major problems. The first problem is the large com-

putational cost of searching, especially for multiple-subunit

complexes. The more subunits there are to be optimized, the

harder it becomes to find the optimal position for each sub-

unit. For this reason, most existing programs fit only one

subunit into a density map. For a multiple-subunit complex,

these programs often optimize subunits one by one, se-

quentially, avoiding spaces occupied by the previous sub-

units (17,19). However, this sequential strategy may not

always find the best solutions, because the position of first

subunit is not modified by following optimizations. The

second problem is that some low-resolution 3D density maps

have insufficient information for determining one optimal

configuration of subunits. In these cases, multiple different

subunit configurations yield similar fitness scores, and ad-

ditional biochemical or biophysical information must be in-

troduced to help decide the true configuration. Recently,

Alber et al. (2007) tackled the modeling of the nuclear pore

complex, assembling 456 subunit proteins into a low-reso-

lution density map (21). Because of the large number of

subunits, they used many spatial restraints adapted from a

wide range of experimental data. Their approach demon-

strates that a fitting program should be extendable, so that

many kinds of experimental information can be included.

The third problem is that subunits can undergo confor-

mational changes upon association. To simulate realistic

conformational changes, several approaches have been pro-

posed. In some studies, the subunit is divided into domains,

which are independently fitted as separate rigid bodies (11).

Wriggers et al. employed a full-atomic molecular mechan-

ics with a constraint energy that penalizes the distance be-

tween centroids of atoms in the Voronoi cell and the

corresponding codebook vectors (25–27). Recently, nor-

mal-mode analysis based on elastic models has been applied

for flexible fitting (28,29). Even employing these methods,

however, it is still difficult to simulate realistic large con-

formational changes.

In this study, we mainly focus on the first problem, i.e.,

the large computational cost of modeling multiple-subunit

complexes. To reduce the computational costs, we propose a

new, to our knowledge, representation of molecules using a

Gaussian mixture model (GMM). The GMM is a probability

distribution function consisting of linear combinations of

several Gaussian functions. It was first proposed in the 1930s

as a means for estimating the probability distribution func-

tions from large amounts of observed data; in the 1980s, the

expectation maximization algorithm was proposed to effi-

ciently estimate the parameters of the model (30). Because of

its flexibility, the GMM has been applied to various problems

involving clustering and probabilistic modeling. In the field

of molecular biology, it has been applied to the clustering of

microarray expression data (31,32), as well as to the spatial

probability distribution of protein atoms around a binding

ligand (33). We used a Gaussian distribution function (GDF)

for approximating the geometry of complicated atomic

structures and density maps of macromolecular complexes.

As far as we know, this is the first study in which the GMM

has been applied for reducing representation of 3D macro-

molecular shapes. The model has at least four advantages.

First, the GMM has the ability to express any type of distri-

bution using a reasonably small number of parameters.

Second, a low-resolution density map often does not have a

clear boundary between molecules and empty space; there-

fore, it is suitable to represent it by a probability density

function. Third, the GMM enables us to quickly calculate the

fitness of the density map and the subunit models, because

the overlap of the product of two GDFs can be analytically

obtained. Fourth, the gradient and the torque of the overlap

can also be analytically calculated, and various gradient-

based local optimization methods can be applied. In this ar-
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ticle, we first explain the concepts of the GMM and our

method of estimating parameters; concomitantly, we intro-

duce three energy functions between the models, as well as

methods for optimization. The ability of our method to ap-

proximate a density map is evaluated on a homotrimer and

the GroEL/ES complex. As simple test cases, simulated low-

resolution density maps of atomic models of a homodimer, a

trimer, and a hexamer were generated, and their subunits

were fitted using the GMM. As a more realistic test, we tried

to build an atomic model of the GroEL/ES complex by fitting

21-subunit atomic models into the 3D density map obtained

by cryo-EM, using C7 symmetric restraints.

FITTING PROCEDURES

Overview of the fitting procedures

The aim of this study was to build atomic models of complex

structures by fitting atomic models of subunits into a low-

resolution 3D density map of their complex structure. Both

the atomic models and the 3D density map are first changed

to GMMs. Fitting of the subunit GMMs into the complex

GMMs is performed using random generation of initial

configurations and steepest-descent local searches using

gradients and torques of the energy. Finally, the atomic

model of the complex structure is obtained by transforming

the subunit atomic models, with the optimal positions and

orientations obtained by the fitting calculation driven by the

GMMs. This procedure is shown schematically in Fig. 1. We

call our fitting program ‘‘gmfit’’ (Gaussian Mixture macro-

molecule FITting). The program was mainly implemented

in C.

Gaussian mixture model

The GMM was developed to estimate a putative probabilistic

distribution function (30). We suppose that the density of a

molecule can be written in the form

f ðrjQÞ ¼ +
N

i¼1

pifðrjmi;SiÞ;

where r is the observed probabilistic variable, N is the

number of GDFs, f(rjmi,Si) is the ith GDF in 3D space, pi

is its weight, and Q indicates the set of parameters for

describing N GDFs. The sum of the weights pi should be 1:

+
N

i¼1

pi ¼ 1:

The GDF in 3D space is written as

fðrjmi;SiÞ ¼
1

ð2pÞ3=2jSij1=2
exp �1

2
ðr� miÞ

T
S
�1

i ðr� miÞ
� �

;

where mi is the mean position, Si is the covariance matrix of

the distribution, and jSij is the determinant of the matrix Si.

Parameter estimation from a set of
atom positions

The expectation maximization algorithm is widely used for

estimating probable parameters of the GMM for a given set of

observed data points (30). In this study, a set of 3D coordi-

nates of L heavy atoms (r1,r2,. . .,rL) for a subunit atomic

model is taken as the observed data points (schematically

shown in Fig. 2). To estimate the most probable density

function for generating the observed points, the following

FIGURE 1 Outline of fitting of sub-

unit atomic models into a 3D density map

of their complex, using a GMM.
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log-likelihood log Latom should be maximized by changing

the parameter set Q:

log LatomðQÞ ¼ log P
L

t¼1
f ðrtjQÞ

� �
¼ +

L

t¼1

log f ðrtjQÞ½ �

¼ +
L

t¼1

log +
N

i¼1

pifðrtjmi;SiÞ
� �

:

For maximizing the likelihood log Latom(Q), the expecta-

tion maximization algorithm iteratively updates each pa-

rameter according to the equations (30,34)

hiðrtÞ ¼
fðrtjmi;SiÞ

+
N

j¼1

fðrtjmj;SjÞ

pi ¼
1

L
+
L

t¼1

hiðrtÞ

mi ¼
+
L

t¼1

hiðrtÞrt

+
L

t¼1

hiðrtÞ

Si ¼
+
L

t¼1

hiðrtÞ3 ðrt � miÞðrt � miÞ
T

+
L

t¼1

hiðrtÞ

In this study, the initial parameters are derived using

K-means clustering method (34). The number of GDFs, N,

controls the resolution of the GMM. A larger N generates a

more detailed density functions, but requires larger compu-

tational time for the estimation of parameters, and for the

optimal configuration search. The log-likelihood log Latom

assumes that all the heavy atoms have approximately equal

atomic weights. This approximation will not be serious for

modeling protein complexes, because atomic numbers for

protein heavy atoms are relatively uniform.

Parameter estimation from a set of grid points
with densities

A GMM for the 3D density map can be obtained using a similar

expectation maximization algorithm. Let us assume that a 3D

density map is represented by L grid points (r1,r2,. . .,rL), and that

each grid point rt has its own density r(rt). To estimate a

GMM for the 3D density map, we modified the likelihood as

follows:

log LdensityðQÞ ¼ log

�
P
L

t¼1
½ f ðrtjQÞ�rðrtÞ

�

¼ +
L

t¼1

rðrtÞlog f ðrtjQÞ½ �

¼ +
L

t¼1

rðrtÞlog

�
+
N

i¼1

pifðrtjmi;SiÞ
�
:

We assume that the number of observations at a grid point r is

proportional to its density r(r). The expectation maximization

algorithm for maximizing this likelihood Ldensity(Q) is mod-

ified as follows:

hiðrtÞ ¼
fðrtjmi;SiÞ

+
N

j¼1

fðrtjmj;SjÞ

pi ¼
+
L

t¼1

rðrtÞhiðrtÞ

+
L

t¼1

rðrtÞ

mi ¼
+
L

t¼1

rðrtÞhiðrtÞrt

+
L

t¼1

rðrtÞhiðrtÞ

Si ¼
+
L

t¼1

rðrtÞhiðrtÞ3 ðrt � miÞðrt � miÞ
T

+
L

t¼1

rðrtÞhiðrtÞ
:

Overlap function between Gaussian
mixture models

An overlap function ov is introduced to define interaction

energies between GMMs. ov is the integral of the product of

two distribution functions fA and fB over all space:

FIGURE 2 Expectation maximization algorithm (EM

algorithm) estimates a GMM from observed 3D data

points.
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ovðfA; fBÞ ¼
Z N

�N

fAðrÞfBðrÞdr:

The overlap function between two GDFs fA(r) ¼
f(rjmA,SA) and fB(r)¼f(rjmB,SB) can be analytically ob-

tained as follows:

ovðfA;fBÞ ¼
Z N

�N

fðrjmA;SAÞfðrjmB;SBÞdr

¼ 1

ð2pÞ3=2jSA 1 SBj1=2

3 exp �1

2
ðmA�mBÞ

TðSA 1SBÞ�1ðmA�mBÞ
� �

:

Using this equation, the overlap function between two

Gaussian mixture functions also can be calculated analyti-

cally. Let us assume that two Gaussian mixture distributions

fA and fB are defined as

fAðrÞ ¼ +
NA

i¼1

pAifAiðrÞ ¼ +
NA

i¼1

pAifðrjmAi;SAiÞ

fBðrÞ ¼ +
NB

i¼1

pBifBiðrÞ ¼ +
NB

i¼1

pBifðrjmBi;SBiÞ:

The overlap function for the two Gaussian mixture distribu-

tions fA and fB is obtained by the sum of the overlap function

of two Gaussian distributions:

ovðfA; fBÞ ¼
Z N

�N

fAðrÞfBðrÞdr

¼ +
NA

i¼1

+
NB

j¼1

pAipBj

Z N

�N

fðrjmAi;SAiÞfðrjmBj;SBjÞdr

¼ +
NA

i¼1

+
NB

j¼1

pAipBjovðfAi;fBjÞ

¼ +
NA

i¼1

+
NB

j¼1

pAipBj

ð2pÞ3=2jSAi 1 SBjj1=2

3exp �1

2
ðmAi�mBjÞ

TðSAi 1SBjÞ�1ðmAi�mBjÞ
� �

:

Fitness energy and repulsion energy

At least two types of energies are required to generate a good

complex model: fitness energy between the complex density

map and subunits, and repulsion energy between subunits.

Because both the complex density map and the subunit

atomic models are represented by the sum of GDFs, the fit-

ness energy and repulsion energy can be described by the

sum of the overlap function ov of two GDFs. To begin with,

we describe notations of GMMs of the complex image and

the subunit atomic models. Let us assume that the distribution

function fC(r) of the complex 3D density map and the dis-

tribution function fSa(r) of the ath subunit atomic model are

represented by the sum of GDFs:

fCðrÞ ¼ +
NC

i¼1

pCifðrjmCi;SCiÞ

fSaðrÞ ¼ +
NSa

i¼1

pSa;ifðrjmSa;i;SSa;iÞ

fSðrÞ ¼ +
M

a¼1

fSaðrÞ;

where M is the number of subunits. The center of gravity gSa

of the Gaussian mixture distribution for the subunit Sa is

defined as the weighted center of each GDF:

gSa ¼ +
NSa

i¼1

pSa;imSa;i:

Using the overlap function ov, the attractive fitness energy,

Efit, between the 3D density map and the subunits, and the

repulsive energy, Erep, between subunits can be described:

Efit ¼ � +
M

a¼1

ovðfSa; fCÞ

Erep ¼ +
M

a¼1

+
M

b¼a11

ovðfSa; fSbÞ:

The energy Efit is similar to a correlation coefficient between

the 3D density map and the subunits employed by many other

previous studies, although our energy is independent of the

variance of the distribution of subunits.

Restraint energy for symmetry

Macromolecules often contain identical subunits, and most

of them are symmetrical oligomeric complexes (35). A re-

straint of symmetrical configuration will reduce the com-

putational costs for finding the optimal configuration for

complexes containing identical units. Among several pro-

posed methods for prediction of symmetrical protein com-

plexes, we chose the restraint energy for symmetry, which

is similar to the method employed by Alber et al. (36). We

assume that the types of point group symmetries (such as

C3, C4, D2) for the target complex are given, and the initial

configuration is generated to satisfy the given symmetry.

The restraint energy for symmetry Esym is introduced for

the corresponding pair of the models to keep the given

symmetry:

Esym ¼ +
ðSa:SbÞ¼ðSx:SyÞ

+
NSa

i¼1

+
NSb

j¼1

pSa;ipSb;jeharmonic

ðjmSa;i � mSb;jj; jmSx;i � mSy;jjÞ;

where (Sa:Sb) ¼ (Sx:Sy) means that the geometry of subunit

Sa relative to subunit Sb is equivalent to the geometry of the

subunit Sx relative to the subunit Sy. The examples of

corresponding geometric pairs for the typical point symmetries

are shown in Fig. 3. The function eharmonic is the harmonic

restraint function of two distances, defined as follows:
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eharmonicðD1;D2Þ ¼ ðjD1 � D2j � tÞ2 jD1 � D2j. t

0 otherwise;

�

where D1 and D2 are distances and t is the tolerance constant

for restraint. We used t ¼ 5.0 Å in this study.

Total energy Etotal can be described by the sum of Efit, Erep

and Esym with weighting constants wfit, wrep and wsym:

Etotal ¼ wfitEfit 1 wrepErep 1 wsymEsym

In this study, we employed wfit ¼ wrep ¼ 1.0 and wsym ¼
10.0. As shown in the next section, this sets of weights

yielded reasonably good fitting results, although we did not

check performances of other weights systematically.

Searching procedures

Parameters to be optimized by the fitting calculations for each

subunit Sa are the translation 3D vector ta and rotational 3D

vector wa; the pose of the distribution function for complex

density map fC(r) is fixed (shown in Fig. 4). To find the

lowest-energy configuration, many initial configurations are

randomly generated, and the steepest-descent local search is

performed for each of them. For finding the global minimum,

it will be sufficient to perform the local search only for the

best part of the initially generated configurations, since the

energy values of the initial configuration and its locally op-

timized configuration are correlated. We thus employ the

following procedure: after Ninit random initial configurations

are generated, they are sorted by their value of total energy,

and only the best Ninit_locsch initial configurations are selected

for the steepest-descent search. The ratio of Ninit_locsch and

Ninit is empirically determined, and ranges between 0.1

and 1.0.

Generating random initial configurations is an important

step in an efficient search for the optimal configuration. We

decide the center of each subunit based on randomly chosen

points from the GMM of the complex 3D density map. One

GDF is randomly chosen using a pi-weighted uniform ran-

dom number; a random 3D position from the chosen GDF is

generated with three uniform random numbers and a triangular

matrix of the covariance matrix (37). A rotation matrix for each

subunit is randomly determined using a quaternion (38).

When symmetry of subunits is known, a random initial

configuration is generated that satisfies the given symmetry:

the configuration of the first subunit is randomly generated;

those of the others are generated by rotational transforma-

tions of the first subunit. The rotational axis is chosen from

the principal axes of the GMM of the 3D density map of the

complex (39).

After generating many initial configurations, a steepest-

descent search is performed. From the initial configuration of

atomic models, the configuration of atomic models is re-

peatedly updated using the following equations:

Dta ¼ aFa

Dwa ¼ bTa;

FIGURE 3 Configurations (A–C) and corre-

sponding pair tables (D–F) of subunits for

typical point symmetric groups C3 (A and D),

C4 (B and E), and D2 (C and F). A pair with the

same letter code (a, b, or c) in the tables is a

corresponding pair. Geometry of one subunit

viewed from another subunit is equivalent to

that of its corresponding pair.

FIGURE 4 Optimization of position and orientation of subunits (GMMs S1

and S2) to fit them into the fixed 3D density map of their complex (GMM C).
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where Dta is the translational vector and Dwa is the rotational

vector, Fa is the force for subunit a, and Ta is the torque for

subunit a. The parameters a and b are determined by the

linear search (40). Using the vectors Dta and Dwa, the center

position mSa,i and covariance matrix SSa,i are updated as

follows:

mSa;i ¼ R½Dwa�ðmSa;i � gSaÞ1 gSa 1 Dta

SSa;i ¼ R½Dwa�SSa;iR
T½Dwa�;

where gSa is the center of gravity of the subunit GMM Sa, and

the matrix R[Dwa] is a rotational matrix obtained by the

rotational vector Dwa. The mathematical formulas for Fa and

Ta of the fitness energy are described in the Appendix. They

are somewhat complicated, but can be calculated at low

computational cost.

TEST CALCULATIONS

Required number of GDFs to approximate a 3D
density map

We first estimated the required number of GDFs for ap-

proximating a low-resolution 3D density map with sufficient

accuracy. A simulated low-resolution 3D density map was

generated from an atomic model of the complex by placing

the isotropic GDFs at the centers of heavy atoms of the

model, assuming all the heavy atoms have equal atomic

weights. The standard deviation of the isotropic Gaussian

function for each atom was equal to half of the resolution of

the 3D density map. Four types of low-resolution 3D density

map (10, 15, 20, and 30 Å) were generated with the following

grid widths: 2 Å for resolution values r # 8 Å, 3 Å for res-

olutions 8 , r , 12 Å, and 4 Å for r . 12 Å (17,24). For each

of the density maps, GMMs with different numbers of

Gaussian functions were generated using the expectation

maximization algorithm.

As the first example, we used a homotrimeric complex of

nitrite reductase (41) (Protein Data Bank (PDB) code: 1nic).

Fig. 5 summarizes the correlation coefficient values between

the generated low-resolution density maps and their GMMs,

plotted against the number of GDFs. The figure demonstrates

that better resolution maps required a larger number of GDFs

to achieve a given value of the correlation coefficient. For

example, to obtain a correlation coefficient .0.98, only three

GDFs were required for a density map of 30 Å resolution;

however, 6 and 11 GDFs were required for 20 and 15 Å

resolution, respectively. Fig. 6 graphically shows the density

maps of simulated low-resolution data and corresponding

GMMs having correlation coefficients .0.98.

For a 21-subunit heterocomplex, GroEL/ES (42) (PDB

code: 1aon), the same types of correlation coefficient plot are

shown in Fig. 7, and density maps are shown in Fig. 8. To

obtain correlation coefficients .0.98 for the 21-subunit

complex, 21, 45, and 95 GDFs were required for density

maps of 30, 20, and 15 Å resolution, respectively. Taken

together with the results described above, these results show

that the number of GDFs required also depends on the size of

the complex, not only its resolution. From the five oligomer

data (1afw, 1nic, 7cat, 1euz, and 1aon), we observed that the

number of GDFs required for a given correlation coefficient

was approximately proportional to the molecular size of the

complex and the inverse of the resolution of the density map

(data not shown). A correlation coefficient plot for the cryo-EM

density map of the GroEL/ES complex (43) (EMDB code:

emd_1046, resolution 23.5 Å) was also plotted in Fig. 7. It is

of interest that the plot of the cryo-EM density map of 23.5 Å

was similar to that of the simulated map of 20 Å, indicating

that our simulated density maps were generated realistically.

FIGURE 5 Correlation coefficient between the simulated

low-resolution density map for the homotrimeric complex

structure (PDB code: 1nic) and its GMM. The thick solid

line, long-dashed line, thin solid line, and short-dashed line

correspond to density maps of 10 Å, 15 Å, 20 Å, and 30 Å

resolution, respectively.
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Fitting calculation for the simulated
low-resolution 3D density map

We next performed the fitting calculation, in this case, fitting

subunit atomic models into a simulated density map gener-

ated from a known atomic model of a complex structure. The

aim of the calculation was to test the performance of our

fitting method and to find the 3D density map resolution and

the number of GDFs required for accurate remodeling of the

complex. We applied our fitting method to four symmetric

homooligomers used in previous studies (17,24). The PDB

codes for the four oligomers were 1afw (44) (homodimer, D2

symmetry), 1nic (41) (homotrimer, C3 symmetry), 7cat (45)

(homotetramer, D2 symmetry), and 2rec (46) (homohex-

amer, C6 symmetry). We performed fitting calculations using

168 different parameter sets: three resolutions of the simu-

lated 3D density map (10, 20, and 30 Å), seven different

numbers of GDFs for the complex (2, 3, 4, 6, 12, 18, and 24

GDFs), four numbers for the subunit (4, 8, 16, and 32 GDFs),

with and without the symmetric restraint. After genera-

ting Ninit ¼ 1000 random initial configurations, only the best

Ninit_locsch ¼ 100 initial configurations were selected for the

steepest-descent search.

Tables 1–4 summarize root mean-square deviations

(RMSDs) between minimum-energy atomic structures and

the original atomic structures registered in the PDB. No

translation and rotation were performed for calculating the

RMSD between two structures. Corresponding pairs of

subunits for two homooligomers were decided to obtain the

minimum RMSD value. Values of mean-square deviation

were calculated for all the possible M! correspondences (M is

FIGURE 6 Simulated low-resolution density

maps and GMMs for the homotrimeric complex

structure. (A) Atomic model of the complex

(PDB code: 1nic). (B–D) Simulated density

maps with 30 Å, 20 Å, and 15 Å resolutions,

respectively. (E) GMM using three GDFs gen-

erated from the 30-Å map (B). (F) GMM using

six GDFs generated from the 20-Å map (C). (G)

GMM using 11 GDFs generated from the 15-Å

map (D). Correlation coefficients for the corre-

sponding density pairs (B and E, C and F, and D

and G) are .0.98.

FIGURE 7 Correlation coefficient between the simulated

low-resolution density map for the 21-subunit heterocom-

plex structure (PDB code: 1aon) and its GMM. The thick

solid line, long-dashed line, thin solid line, and short-dashed

line correspond to density maps of 10 Å, 15 Å, 20 Å, and

30 Å resolution, respectively. A thin dotted line corresponds

to the correlation coefficients for the cryo-EM density map of

the complex (EMDB code: emd_1046, resolution:23.5 Å).
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the number of subunits), and the correspondence with the

minimum mean-square deviation was chosen.

In general, the difficulty of finding the correct configura-

tion depended on the number of subunits. RMSD values of

the dimer were generally smaller than those of the trimer,

tetramer, and hexamer. A reason why RMSD values of the

tetramer were higher than those of the hexamer might be that

the tetramer 7cat has a D2 symmetry, which has two rota-

tional axes, whereas C6 symmetry has only one axis. For

correct modeling, the minimum number of GDFs for a

complex was about two for the dimer, three for the trimer,

three to six for the tetramer, and four to six for the hexamer.

The number of GDFs for each subunit was also important.

For correct modeling of the trimer 1nic and hexamer 2rec, at

least eight Gaussian functions were required for one subunit.

For the D2 tetramer 7cat, at least 16 Gaussian functions were

required. The importance of a sufficient number of GDFs for

each subunit is illustrated in Fig. 9. Symmetrical restraints

were necessary for correct modeling of the D2 tetramer and

the C6 hexamer, but not really necessary for that of the dimer

and trimer. Fitted atomic models with and without C6 sym-

metric restraint are shown in Fig. 10. It was a surprise that

resolutions of the simulated density maps did not correlate

well with the RMSDs, although some failures were observed

for the tetramer and hexamer using 30 Å resolution maps

(Table 3 and 4). We can say that correct modeling is possible

for the 30 Å resolution density map if sufficient GDFs and

symmetric constraints are used, which means that our method

for creating low-resolution maps performs comparably to

those used in previous studies (17,24).

Performance comparison between gmfit
and colores

For a more explicit comparison with other approaches, we

compared the performance of our gmfit program with that of

the program colores, which is a part of the most popular

program package SITUS (27) for fitting atomic models into

density maps. The SITUS package includes two fitting pro-

grams, qdock and colores. The qdock program is based on the

vector quantization approach, and the colores employs the

fast Fourier transfer translational search and the exhaustive

rotational search, using Lapracian-filtered density maps.

Our main purpose is for modeling a complex with multiple

subunits, but the qdock program cannot model more than one

subunit. The colores program is able to superimpose a sub-

unit atomic model into a part of the density map, and to

output multiple candidate configurations for the subunit. By

assembling these multiple configurations, a homooligomeric

structure can be modeled.

To test the performance of the program colores and gmfit, we

used the simulated density map with 20 Å resolution for the

four complex atomic structures (1afw, 1nic, 7cat, and 2rec).

The colores program of SITUS (version 2.3) was executed

with the default options. For the gmfit program, of the Ninit¼
1000 random initial configurations generated, only the best

Ninit_locsch ¼ 100 initial configurations were selected for the

steepest-descent search with symmetric restraints. The number

of GDFs for the density map is 12. We tested two different num-

bers of GDFs, 8 and 16, for subunit atomic models. Both pro-

grams were executed using a single CPU (Intel Xeon, 3.00 GHz).

FIGURE 8 Simulated low-resolution density

maps and GMMs for the 21-subunits hetero-

complex structure. (A) Atomic model of the

complex (PDB code:1 aon). (B–D) Simulated

density maps with 30 Å, 20 Å, and 15 Å

resolutions, respectively. (E) GMM using 21

GDFs generated from the 30-Å map (B). (F)

GMM using 45 GDFs generated from the 20-Å

map (C). (G) GMM using 95 GDFs generated

from the 15-Å map (D). Correlation coefficients

for the corresponding density pairs (B and E, C

and F, and D and G) are .0.98.
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Table 5 summarizes the performances of the colores and

gmfit programs in view of their computational time and

prediction accuracy (RMSD). The computational times of the

colores program were ;1 or 2 min, and the RMSDs between

the correct and modeled structures were very low (;1 Å).

The computation times of gmfit using eight GDFs for each

subunit were ,1 min, much smaller than those of colores.

The gmfit RMSDs were slightly higher than those of colores,

except for the complex 7cat, which was not successfully

fitted. In the case of the fitting calculations using 16 GDFs for

each subunit, RMSDs were improved, especially for the

complex 7cat; computational times became longer, but were

still shorter than those of colores.

We can summarize the performance of colores and gmfit as

follows. The prediction accuracy of gmfit is sufficiently high,

but that of colores is higher. The colores program achieves its

high prediction accuracy without any knowledge of sym-

metry; in contrast, the gmfit program requires symmetric re-

straints for the tetramer and hexamer. The advantage of gmfit
is its fast computation, implying a potential to model a

complex composed of larger numbers of subunits.

Fitting calculation for the cryo-EM density map of
GroEL/ES complex

For a more realistic and large-scale test, we performed a fit-

ting calculation for the cryo-EM density map of the GroEL/

ES complex, registered as the ID code emd_1046 in the EMDB

(43) (shown in Fig. 11 A at 23.5 Å resolution). Because an

accuracy evaluation of fitting is feasible by comparison with

the crystal atomic structure registered in the PDB (42) (PDB

code: 1aon), other researchers have also tested their methods

using this complex (18,22). The GroEL/ES complex was

composed of three C7 symmetric rings: seven ADP-bound

GroELs (cis ring), seven ADP-free GroELs (trans ring), and

seven GroESs. For our fitting calculation, we picked up three

types of subunit from the complex atomic structure (1aon):

the cis ring form of GroEL (chain A), the trans ring form of

GroEL(chain H), and the GroES (chain O). We prepared

seven copies for each type of subunit (in total, 21 subunits),

and assigned the three C7-symmetric restraints assuming that

subunits of the same types assembled into a C7 symmetric

ring. Forty-five GDFs were used for the density map of the

complex GroEL/ES, and eight functions were used for each

subunit atomic model. We repeated the fitting run eight times.

In each run, Ninit ¼ 106 random initial configurations are

generated, and only the best Ninit_locsch ¼ 104 initial config-

urations were selected for the steepest-descent search. Each

TABLE 1 RMSD (Å) between modeled structures and the

correct structure for the homodimer (PDB code: 1afw,

C2 symmetry)

No. of GDFs per complex map§

Symmetry*

Resolution

(Å)y
No. of

GDFsz 2 3 4 6 12 18 24

False 10 4 2 1 2 2 2 2 2

20 4 2 1 1 2 1 1 1

30 4 2 3 2 1 1 2 2

10 8 1 1 1 1 2 1 2

20 8 1 1 1 1 1 1 1

30 8 2 1 1 1 1 1 1

10 16 2 1 1 1 1 1 1

20 16 1 2 1 1 1 1 1

30 16 3 2 1 1 1 1 1

10 32 2 2 2 2 1 0 0

20 32 2 1 1 1 1 1 1

30 32 2 2 2 1 2 1 1

True 10 4 2 1 2 2 2 2 2

20 4 2 1 1 2 1 1 1

30 4 2 3 1 2 1 2 2

10 8 1 1 2 1 2 1 2

20 8 1 1 1 1 1 1 1

30 8 2 1 1 1 1 1 1

10 16 1 2 1 1 1 1 1

20 16 1 1 1 2 1 1 1

30 16 1 2 1 1 1 1 2

10 32 1 2 2 2 1 1 0

20 32 1 1 2 2 2 1 1

30 32 2 2 1 2 1 2 2

*‘‘True’’ indicates that the search was performed using a random symmet-

ric initial configuration and restraint energy of symmetry. ‘‘False’’ indicates

that these were not used.
yA resolution value (Å) of a simulated 3D density map.
zNumber of GDFs for each subunit atomic model.
§Number of GDFs for a 3D density map of the complex.

TABLE 2 RMSD (Å) between modeled structures and the

correct structure for the homotrimer (PDB code: 1nic,

C3 symmetry)

No. of GDFs per complex map§

Symmetry*

Resolution

(Å)y
No. of

GDFsz 2 3 4 6 2 18 24

False 10 4 29 13 11 9 2 2 3

20 4 29 12 10 9 2 3 3

30 4 32 12 11 10 9 9 9

10 8 22 2 3 2 2 2 2

20 8 20 4 3 3 2 3 2

30 8 29 5 6 4 4 3 3

10 16 4 3 3 2 2 2 2

20 16 28 3 4 3 2 2 2

30 16 28 5 6 4 7 3 2

10 32 24 18 3 1 2 2 1

20 32 28 5 3 3 2 3 2

30 32 28 3 8 4 4 7 5

True 10 4 30 13 10 8 2 3 3

20 4 29 11 10 9 2 3 3

30 4 12 12 11 10 9 9 9

10 8 31 2 4 2 2 2 2

20 8 32 2 3 2 2 2 2

30 8 2 3 3 3 2 2 2

10 16 31 2 3 2 2 1 2

20 16 31 2 3 2 2 2 2

30 16 3 3 3 3 3 2 2

10 32 36 2 3 2 1 2 1

20 32 36 2 3 2 3 2 2

30 32 3 3 2 2 2 2

Notes are the same as for Table 1.
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run took ;20 h using the single CPU. To find the correct

standard position, the fitted complex atomic model was

generated by a Gaussian fitting calculation of the entire

complex atomic model into the 3D density map (Fig. 11 B).

The lowest-energy model is shown in Fig. 11 C; its RMSD

from the fitted complex atomic model is 14.7 Å. The posi-

tions and orientations of the cis ring and trans ring GroEL

subunits were built almost correctly, but the orientations of

GroES subunits were not correct. The failure to fit the GroES

subunits was also reported in previous studies (18,22), sug-

gesting that the cryo-EM density map may not have sufficient

information to determine the orientation of GroES correctly,

and that the prediction accuracy of our method is in fact

relatively high. For a more accurate modeling of the GroEL/

ES, additional experimental data will be necessary.

DISCUSSION

Our Gaussian mixture molecular model can represent rough

features of macromolecules by using several GDFs. The

concept of our Gaussian mixture molecular model is similar

to that of the vector quantization method (23,24). The vector

quantization method represents a macromolecule as a set

of 3D points, whereas our model represents it as a set of

3D GDFs. Our GMM is a kind of density distribution

function, and is therefore more suitable to represent a

low-resolution density of molecule whose boundaries are

not clearly determined. Figs. 5–8 show that reasonably

small numbers of GDFs are sufficient to approximate low-

resolution density maps.

In this study, we assumed that all the heavy atoms had

approximately equal atomic weights, for deriving GMMs

and simulated density maps for atomic models. This ap-

proximation will not be critical for modeling protein com-

plexes, but it may make a difference in modeling complexes

containing nucleic acids, because atomic numbers of heavy

atoms in nucleic acids are far from uniform. We now plan to

implement a modified expectation maximization algorithm to

consider different atomic weights, which is similar to the

estimation algorithm from a set of grid points with densities,

described in this article.

One of the problems of fitting multiple subunits into a

density map is the large computational cost. The GMM en-

ables us to develop a fast fitting method, because the overlap

of two GMMs can be more quickly calculated than the

overlap of a grid-represented density map and a sphere-rep-

resented subunit. Another advantage of our model is its fast

calculation of gradient and torque of overlap energy allowing

an efficient gradient-based local search to be easily im-

plemented. Tables 1–5 show that our method is fast and ac-

curate enough to model the typical homo oligomeric

structures. The comparison of the popular program colores

TABLE 3 RMSD (Å) between modeled structures and the

correct structure for the homotetramer (PDB code: 7cat,

D2 symmetry)

No. of GDFs per complex map§

Symmetry*

Resolution

(Å)y
No. of

GDFsz 2 3 4 6 2 18 24

False 10 4 39 42 32 39 44 38 29

20 4 44 43 42 34 38 33 30

30 4 43 39 42 37 43 43 37

10 8 44 41 43 46 41 45 39

20 8 40 46 38 44 40 38 41

30 8 41 41 41 42 40 46 39

10 16 41 42 42 43 44 45 40

20 16 46 43 43 41 38 41 38

30 16 41 42 38 41 39 29 38

10 32 40 42 35 37 44 40 41

20 32 46 45 43 42 45 41 43

30 32 42 48 42 40 42 45 44

True 10 4 37 44 47 42 9 11 11

20 4 42 46 41 42 42 11 11

30 4 39 39 42 39 39 39 39

10 8 42 46 42 45 43 45 3

20 8 42 42 42 45 42 45 42

30 8 42 47 42 39 42 42 42

10 16 42 42 42 41 3 1 2

20 16 40 42 42 41 2 4 2

30 16 42 42 42 42 38 42 4

10 32 40 42 42 3 3 1 1

20 32 41 2 42 1 2 4 1

30 32 42 3 42 41 3 3 2

Notes are the same as for Table 1.

TABLE 4 RMSD (Å) between modeled structures and the

correct structure for the homohexamer (PDB code: 2rec,

C6 symmetry)

No. of GDFs per complex map§

Symmetry*

Resolution

(Å)y
No. of

GDFsz 2 3 4 6 2 18 24

False 10 4 28 30 28 29 20 19 18

20 4 27 28 30 27 22 24 24

30 4 32 24 23 23 10 20 14

10 8 30 24 27 16 29 14 16

20 8 27 24 26 20 23 19 11

30 8 28 22 26 19 18 24 25

10 16 28 27 15 9 18 14 20

20 16 25 30 23 17 23 20 22

30 16 31 28 20 28 27 19 19

10 32 30 24 15 24 15 14 24

20 32 30 30 24 18 23 21 21

30 32 35 29 27 22 17 22 24

True 10 4 5 4 5 29 29 1 2

20 4 27 7 8 29 29 2 2

30 4 28 33 33 29 29 29 28

10 8 22 5 6 5 3 2 2

20 8 22 9 4 4 3 2 2

30 8 21 9 5 15 3 3 3

10 16 21 4 3 4 4 2 3

20 16 28 7 6 4 2 2 2

30 16 26 9 5 4 2 2 2

10 32 20 4 3 4 2 1 2

20 32 26 7 4 4 3 2 2

30 32 26 12 5 5 5 3 4

Notes are the same as for Table 1.
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(shown in Table 5) showed that the colores program provided

more accurate predictions, but the gmfit program was faster

than the colores. Considering the fast computation and

flexibility to include the various restraints, the program gmfit
has a potential to model a complex composed of large

number of subunits.

Because we employed the general formalism of energy

optimization, we can easily include additional information

from a variety of biological or biochemical resources by

adding additional restraint energies. In this study, the sym-

metric energy was implemented as harmonic restraints on

distances between equivalent subunit pairs. As shown in

Tables 1–4 and in Fig. 10, the symmetric restraint was really

necessary for building complexes with larger numbers of

subunits. Other types of restraints, such as proximities of

subunits, can be implemented as upper and lower limits on

the distance between subunits (36).

The problem of conformational change cannot be solved

by our proposed method. Our Gaussian mixture molecular

model was a rigid body; the relative geometry between each

GDF was strictly fixed. Small conformational changes (such

as side-chain rotations) upon binding are not of critical im-

FIGURE 9 Fitting models and 3D density

maps for the homotrimer (PDB code: 1nic)

showing the effect of the number of GDFs

representing each subunit. (A) GMM using

three GDFs generated from the 20-Å simulated

low-resolution density map of the complex. (B)

Energy-minimum GMMs using four GDFs for

each subunit. (C) Energy-minimum GMMs

using eight GDFs for each subunit. (D) Crystal

structure for the homotrimer (PDB code: 1nic).

(E) Atomic model of the complex structure

corresponding to the model using four GDFs

for each subunit (B). Its RMSD from the crystal

structure (D) was 11.6 Å. (F) Atomic model of

the complex structure corresponding to the

model using eight GDFs for each subunit (C).

Its RMSD from the crystal structure (D) was

3.5 Å. Both energy minimum structures were

generated without the symmetric restraint.

FIGURE 10 Fitting models and 3D density

maps for the homohexamer (PDB code: (2rec)

showing the effect of the symmetric restraint.

(A) GMM using six GDFs generated from the

20-Å simulated low-resolution density map of

the complex. (B) Energy-minimum GMMs

without using the symmetric restraint. (C) En-

ergy-minimum GMMs using the symmetric

restraint. (D) Crystal structure for the homohex-

amer (PDB code: 2rec). (E) Atomic model of

the complex structure corresponding to the model

without the symmetric restraint (B). Its RMSD

from the crystal structure (D) was 19.7 Å. (F)

Atomic model of the complex structure corre-

sponding to the model using the symmetric

restraint (C). Its RMSD from the crystal struc-

ture (D) was 4.2 Å. Both energy-minimum

structures were generated using eight GDFs

for each subunit.
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portance for our method, because our GMM has a soft

boundary. To incorporate domain-level conformational

changes, combinations with other programs might be useful.

Our method can provide good initial configurations to the

program dealing with conformational changes, such as nor-

mal-mode flexible fitting.

Our method of representing a molecule by the GMM can

be applied to other fields, such as docking and molecular

shape comparison. Grant et al. proposed the shape compar-

ison of small molecules using the sum of isotropic GDFs

(47). Our GMM has a higher capacity than their isotopic

functions to approximate molecular shapes. We now plan to

develop shape comparisons of macromolecules using our

Gaussian mixture molecular model.

CONCLUSION

In this study, we proposed a molecular representation using

GMMs, and a fitting method using random search and suc-

cessive gradient-based local search. Because our fitting

method is computationally fast, and its prediction accuracy is

reasonably high, it can serve as a practical tool for electron

microscopy researchers. Our Gaussian mixture molecular

model has the potential to be applied to a wide range of re-

search in macromolecular structural biology. We now plan to

release our source codes as academic freeware, and we en-

courage readers who wish to use our program to contact us

via email.

APPENDIX

Force and torque by attractive interaction energy
between two distribution functions

To perform the steepest-descent search method, we must know the force and

torque vector of the energy for each subunit. To simplify the problem, we

focus on the attractive overlap energy between two distribution functions, fA
and fB, illustrated in Fig. 12. We define the attractive fitness energy E(r) at a

point r as follow:

EðrÞ ¼ �fAðrÞfBðrÞ:

The total fitness energy, E, is obtained by the integral of E(r) for the entire

space as follow:

E ¼
Z N

�N

EðrÞdr ¼ �
Z N

�N

fAðrÞfBðrÞdr ¼ �ovðfA; fBÞ:

A local force FA(r) for the distribution fA at point r is defined as the

derivative of energy E(r) by the center position gA of distribution fA:

FAðrÞ ¼ �
@EðrÞ
@gA

¼ @

@gA

fAðrÞfBðrÞ½ �:

A total force FA for the distribution fA at the center point gA is obtained by the

integral of FA(r) for the entire space:

FA ¼ �
@E

@gA

¼ @

@gA

ovðfA; fBÞ½ �

¼ @

@gA

Z N

�N

fAðrÞfBðrÞdr

� �

¼
Z N

�N

@

@gA

fAðrÞfBðrÞ½ �dr ¼
Z N

�N

FAðrÞdr:

A torque around the point gA is described as the integral of the outer product

between the positional vector r and the local force FA(r):

TA ¼
Z N

�N

ðr� gAÞ3 FAðrÞdr

¼
Z N

�N

r 3 FAðrÞdr�
Z N

�N

gA 3 FAðrÞdr

¼
Z N

�N

r 3 FAðrÞdr� gA 3 FA ¼ TO

A � gA 3 FA;

where

TO

A ¼
Z N

�N

r 3 FAðrÞdr:

Force and torque of fitness energy for two
Gaussian mixture models

Let us assume that distributions fA and fB are described as the GMMs:

TABLE 5 Comparison of the programs colores and gmfit in terms of computation time and RMSD (Å)

colores gmfit* gmfity

PDB code Time (s)z RMSD (Å) Times for each step (s)§ Time (s)z RMSD (Å) Times for each step (s)§ Time (s)z RMSD (Å)

1afw 107.8 0.65 1.0, 2.7, 1.4 5.1 1.16 5.4, 2.7, 7.1 15.2 1.03

1nic 94.6 1.85 1.2, 5.9, 4.9 12.0 1.89 5.6, 5.9, 16.0 27.5 1.77

7cat 77.0 0.61 4.6, 12.9, 10.6 28.0 41.83 6.0, 12.9, 46.0 64.9 2.27

2rec 142.8 0.33 0.1, 3.8, 37.7 41.6 2.91 0.1, 3.8, 110.9 114.8 2.29

*Performance of the gmfit program using 8 GDFs for each subunit and 12 GDFs for a density map.
yPerformance of the gmfit program using 16 GDFs for each subunit and 12 GDFs for a density map.
zTotal computation time.
§Computation times for the three steps of gmfit: estimating the GMM from a subunit atomic model; estimating the GMM from a density map of the complex;

and searching for the optimal configuration.
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fAðrÞ ¼ +
NA

i¼1

pAifðrjmAi;SAiÞ

fBðrÞ ¼ +
NB

i¼1

pBifðrjmBi;SBiÞ:

The centers of gravity, gA and gB, are defined as follows:

gA ¼ +
NA

i¼1

pAimAi

gB ¼ +
NB

i¼1

pBimBi:

Then, the force FA for distribution fA is analytically obtained as follows:

FA ¼ �
@E

@gA

¼ @

@gA

ovðfA; fBÞ½ �

¼ @

@gA

+
NA

i¼1

+
NB

j¼1

pAipBjovðfAi;fBjÞ
" #

¼ +
NA

i¼1

+
NB

j¼1

pAipBj

@

@mAi

ovðfAi;fBjÞ
� �

¼ �+
NA

i¼1

+
NB

j¼1

pAipBjovðfAi;fBjÞðSAi 1 SBjÞ�1ðmAi � mBjÞ:

The partial differential by the center of gravity, gA, is equivalent to the

differential by the center of each Gaussian distribution, mAi, because we

assume that each GMM is a rigid body.

Next, the torque TO
A has to be obtained to calculate the torque, TA, for

distribution fA.

TO

A ¼
Z N

�N

r 3 FAðrÞdr ¼ �
Z N

�N

r 3
@

@gA

fAðrÞfBðrÞ½ �dr

¼ �
Z N

�N

r 3
@fAðrÞ
@gA

fBðrÞdr

¼ �
Z N

�N

r 3
@

@gA

+
NA

i¼1

pAifAiðrÞ
� �

fBðrÞdr

¼ �
Z N

�N

r 3 +
NA

i¼1

pAi

@fAiðrÞ
@mAi

� �
fBðrÞdr

¼
Z N

�N

"
r 3 +

NA

i¼1

pAifAiðrÞS
�1

Ai ðr� mAiÞ
#

+
NB

j¼1

pBjfBjðrÞ
" #

dr

¼ +
NA

i¼1

+
NB

j¼1

pAipBj

Z N

�N

r 3 S
�1

Ai ðr� mAiÞfAiðrÞfBjðrÞdr

¼ +
NA

i¼1

+
NB

j¼1

pAipBj

Z N

�N

r 3 ðS�1

Ai rÞfAiðrÞfBjðrÞdr

�

�
Z N

�N

r 3 ðS�1

Ai mAiÞfAiðrÞfBjðrÞdr

�

¼ +
NA

i¼1

+
NB

j¼1

pAipBj TO

r ðAi;BjÞ � TO

m
ðAi;BjÞ

h i
;

where

TO

r ðAi;BjÞ ¼
Z N

�N

r 3 ðS�1

Ai rÞfAiðrÞfBjðrÞdr;

TO

m
ðAi;BjÞ ¼

Z N

�N

r 3 ðS�1

Ai mAiÞfAiðrÞfBjðrÞdr

¼
Z N

�N

rfAiðrÞfBjðrÞdr

� �
3 ðS�1

Ai mAiÞ:

Then, the torque for distribution fA can be described as the sum of the three

terms TO
r ; TO

m ; and gA 3 FA:

TA ¼ TO

A � gA 3 FA

¼ +
NA

i¼1

+
NB

j¼1

pAipBj TO

r ðAi;BjÞ � TO

m
ðAi;BjÞ

h i
� gA 3 FA:

To calculate TO
m (Ai,Bj), we need the integral

FIGURE 12 Local force FA(r) and a total force FA for a distribution fA, by

the attractive overlap energy, E, of two GMMs, fA and fB.

FIGURE 11 (A) 3D density map of the com-

plex (ID code: emd_1046). (B) Atomic model of

the complex (PDB code: 1aon) fitted into the 3D

density map. (C) Energy-minimum model ob-

tained by the Gaussian mixture fitting method.

Its RMSD from the atomic complex model (B)

was 14.7 Å.
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Z N

�N

rfAiðrÞfBjðrÞdr ¼ 1

ð2pÞ3jSAij1=2jSBjj1=2

3 exp �1

2
ðmAi � mBjÞ

T

�

3 ðSAi 1 SBjÞ�1ðmAi � mBjÞ
�

Z N

�N

r exp �1

2
ðr� mAiBjÞ

TðS�1

Ai 1 S
�1

Bj Þðr� mAiBjÞ
� �

dr

¼ 1

ð2pÞ3jSAij1=2jSBjj1=2
exp �1

2
ðmAi � mBjÞ

T

�

3 ðSAi1SBjÞ�1ðmAi � mBjÞ
�
ð2pÞ3=2

��S�1

Ai 1S
�1

Bj

��1=2
mAiBj

¼ ovðfAi;fBjÞmAiBj;

where

mAiBj ¼ ðS
�1

Ai 1 S
�1

Bj Þ
�1ðS�1

Ai mAi � S
�1

Bj mBjÞ:
Then, the torque Tm

O(Ai,Bj) is described as

TO

m
ðAi;BjÞ ¼ ovðfAi;fBjÞmAiBj 3 ðS

�1

Ai mAiÞ:
Calculation of the term TO

r is more complicated. First, we obtain the second-

moment matrix Q for the product of fAi(r) and fBj(r):

Q ¼
Z N

�N

rrT
fAiðrÞfBjðrÞdr ¼ 1

ð2pÞ3jSAij1=2jSBjj1=2

3 exp �1

2
ðmAi � mBjÞ

TðSAi 1 SBjÞ�1ðmAi � mBjÞ
� �

Z N

�N

rrT
exp �1

2
ðr� mAiBjÞ

TðS�1

Ai 1 S
�1

Bj Þðr�mAiBjÞ
� �

dr

¼ 1

ð2pÞ3jSAij1=2jSBjj1=2
exp �1

2
ðmAi�mBjÞ

TðSAi 1SBjÞ�1

�

ðmAi�mBjÞ
�
ð2pÞ3=2jS�1

Ai 1 S
�1

Bj j
1=2

3 ðS�1

Ai 1 S
�1

Bj Þ
�1

1 mAiBjm
T

AiBj

h i
¼ ovðfAi;fBjÞ ðS

�1

Ai 1 S
�1

Bj Þ
�1

1 mAiBjm
T

AiBj

h i
:

Using matrix Q, the term TO
r is described as

TO

r ðAi;BjÞ ¼
Z N

�N

r 3 ðS�1

Ai rÞfAiðrÞfBjðrÞdr

¼
Z N

�N

ðr 3 SrÞfAiðrÞfBjðrÞdr

¼
Z N

�N

0 �rz ry

rz 0 �rx

�ry rx 0

0
B@

1
CA

Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz

0
B@

1
CA

rx

ry

rz

0
B@

1
CA

3 fAiðrÞfBjðrÞdr

¼
Z N

�N

ðSzz � SyyÞryrz 1 Syzðryry � rzrzÞ1 Sxzrxry � Sxyrxrz

ðSxx � SzzÞrxrz 1 Sxzðrzrz � rxrxÞ1 Sxyryrz � Syzrxry

ðSyy � SxxÞrxry 1 Sxyðrxrx � ryryÞ1 Syzrxrz � Sxzryrz

0
B@

1
CA

3 fAiðrÞfBjðrÞdr

¼
ðSzz � SyyÞQyz 1 SyzðQyy � QzzÞ1 SxzQxy � SxyQxz

ðSxx � SzzÞQxz 1 SxzðQzz � QxxÞ1 SxyQyz � SyzQxy

ðSyy � SxxÞQxy 1 SxyðQxx � QyyÞ1 SyzQxz � SxzQyz

0
B@

1
CA:

For a simpler notation here, we replace the covariance matrix S
�1
Ai with

the matrix S.
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