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ABSTRACT The proper accumulation and maintenance of stem cells is critical for organ development and
homeostasis. The Notch signaling pathway maintains stem cells in diverse organisms and organ systems. In
Caenorhabditis elegans, GLP-1/Notch activity prevents germline stem cell (GSC) differentiation. Other signaling
mechanisms also influence the maintenance of GSCs, including the highly-conserved TOR substrate ribosomal
protein S6 kinase (S6K). Although C. elegans bearing either a null mutation in rsks-1/S6K or a reduction-of-
function (rf) mutation in glp-1/Notch produce half the normal number of adult germline progenitors, virtually all
these single mutant animals are fertile. However, glp-1(rf) rsks-1(null) double mutant animals are all sterile, and
in about half of their gonads, all GSCs differentiate, a distinctive phenotype associated with a significant
reduction or loss of GLP-1 signaling. How rsks-1/S6K promotes GSC fate is unknown. Here, we determine that
rsks-1/S6K acts germline-autonomously to maintain GSCs, and that it does not act through Cyclin-E or MAP
kinase in this role. We found that interfering with translation also enhances glp-1(rf), but that regulation through
rsks-1 cannot fully account for this effect. In a genome-scale RNAi screen for genes that act similarly to rsks-1/
S6K, we identified 56 RNAi enhancers of glp-1(rf) sterility, many of which were previously not known to interact
functionally with Notch. Further investigation revealed at least six candidates that, by genetic criteria, act
linearly with rsks-1/S6K. These include genes encoding translation-related proteins, cacn-1/Cactin, an RNA
exosome component, and a Hedgehog-related ligand. We found that additional Hedgehog-related ligands
may share functional relationships with glp-1/Notch and rsks-1/S6K in maintaining germline progenitors.
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Stem cells maintain tissue homeostasis throughout life. The appropriate
balance between stem cell maintenance and differentiation is critical
since, while too few stem cells can cause tissue degeneration, alterations
in stemcell number and fate contribute to cancer.Notch is oneof several

evolutionarily conserved pathways that play a crucial role in regulating
stemcells across different species and different organ systems, including
the C. elegans germ line. In mammals, Notch signaling is implicated in
the accumulation and/or maintenance of stem cells in diverse lineages
including intestinal, muscle, and neuronal stem cells (Aster 2013;
Sancho et al. 2015; Siebel and Lendahl 2017). Mutations that alter
Notch activity are associated with many diseases, including multiple
cancers (Siebel and Lendahl 2017).

p70 ribosomal protein S6 kinase (S6K) is another highly conserved
signalingmolecule that is best known for promoting cell growth and cell
cycle progression in response to phosphorylation by Target of Rapa-
mycin (TOR) complex 1 (TORC1). Recently, S6K has been associated
with self-renewal in the context of hematopoietic stem cells (Ghosh
et al. 2016) and neuronal regeneration (Yang et al. 2014) in mammals,
as well as follicle stem cells in Drosophila (Hartman et al. 2013).
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S6K is named for its best-studied substrate ribosomal protein S6
(RPS6) (Magnuson et al. 2012; Meyuhas 2015). However, S6K phos-
phorylates many proteins, and it likely has many cellular functions
including translation, proliferation, cell death, splicing, and cytoskel-
etal rearrangements (Fenton and Gout 2011; Magnuson et al. 2012). It
also confers negative feedback on insulin-mediated signaling through
phosphorylation of the insulin target IRS-1 (Fenton and Gout 2011;
Magnuson et al. 2012). In mammals, S6K is encoded by two genes,
S6K1 and S6K2, and regulatory interplay occurs between the two
paralogs (Shima et al. 1998). The S6K12/2 S6K22/2 double mutant
displays perinatal lethality, small size, and evidence of hyperemia,
hemorrhage, as well as heart chamber dilation, but no gross anatom-
ical defects – a surprisingly mild phenotype given the prediction that
many cell-essential functions should be disrupted (Pende et al. 2004). In
C. elegans, S6K is encoded by one gene, rsks-1, which has been implicated
in growth, metabolism, lifespan regulation, germ cell development, axon
regeneration, nano material toxicity, and associative learning (Long et al.
2002; Hansen et al. 2007; Pan et al. 2007; Sheaffer et al. 2008; Selman et al.
2009; Korta et al. 2012; Chen et al. 2013; Shi et al. 2013; Hubert
et al. 2014; Zhuang et al. 2016; Sakai et al. 2017).

Previously, our lab found an unexpected functional relationship
between S6K and Notch in the context of C. elegans germline stem cells
(GSCs) (Korta et al. 2012). The C. elegans hermaphrodite germ line
provides an excellent system to study stem cell accumulation andmain-
tenance. A single somatic niche cell, the distal tip cell (DTC), expresses
DSL-family ligands that activate GLP-1/Notch signaling in nearby
germ cells. GLP-1/Notch activity maintains a pool of germline progen-
itors (that includes both GSCs and their proliferative progeny) in an
undifferentiated, proliferation-competent state. As progenitors are dis-
placed away from the distal end and escape DTC signals, they enter the
meiotic pathway and eventually differentiate first into sperm and then
oocytes (Hansen and Schedl 2013; Kershner et al. 2013). Loss of glp-1
(or any of the core Notch signaling components) causes differentiation
of all GSCs, whereas gain-of-function mutations in glp-1 prevent dif-
ferentiation and cause the formation of a germline tumor (Austin and
Kimble 1987; Berry et al. 1997; Pepper et al. 2003). In contrast, the
vast majority of animals bearing temperature-sensitive reduction-of-
function (rf) glp-1mutations that are reared at a semi-permissive tem-
perature are fertile, but they accumulate and maintain a smaller pool of
GSCs. This remaining GSC pool in glp-1(rf) is lost completely either
upon shift to the restrictive temperature (Austin and Kimble 1987) or
when combined with mutations in other genes that compromise GSC
maintenance (Qiao et al. 1995; Lee et al. 2007; She et al. 2009; Fox et al.
2011; Bukhari et al. 2012; Korta et al. 2012). Furthermore, average rate
of cell cycle progression is unchanged (that is, it is not slower) among
the germline progenitors that remain in these glp-1(rf) mutants at the
semi-permissive temperature (Michaelson et al. 2010; Roy et al. 2016).
Therefore, at the semi-permissive temperature, certain glp-1(rf) alleles
provide a convenient sensitized genetic background to uncover extra-
genic regulators of GSC homeostasis.

In the context of the germ line, mutants lacking rsks-1/S6K act
similarly to glp-1(rf) in the sense that they accumulate about half the
number of germline progenitors and remain fertile (Korta et al. 2012).
The reduced number of progenitors in the rsks-1(null)mutant is due to
a combination of slower cell cycle progression and disruption of GSC
maintenance that was revealed by genetic interaction with glp-1/Notch.
Loss of rsks-1/S6K dramatically enhances the phenotype of a mutant
with reduced glp-1/Notch activity: while rsks-1(null) and glp-1(rf) mu-
tants are 100% and�90% fertile, respectively, all animals bearing both
mutations are sterile and in roughly half of the gonads, all GSCs are lost
to differentiation prior to adulthood. Here, we refer to this latter

phenotype as a “loss of GSCs”. Loss of rsks-1/S6K also partially sup-
presses the penetrance of germline tumor formation in mutants with
elevated glp-1/Notch (though in the animals where tumors do form, the
tumors are smaller since cell cycle progression is slower) and can re-
store fertility, suggesting that rsks-1 promotes the undifferentiated ‘GSC
fate’ of the germ cells (Korta et al. 2012).

To further a general understanding of the functional interaction
betweenNotch and S6K, we took advantage of experimentally tractable
germline phenotypes in C. elegans. Our experiments revealed that
rsks-1/S6K acts in a germline-autonomous manner, and that neither
Cyclin-E nor components of MAP Kinase pathway act in a strictly
linear fashion with rsks-1 to promote GSCmaintenance.We also found
that while interfering with the eIF4G translation factor in glp-1(rf)
background caused GSC maintenance defects, this effect was not ex-
clusively dependent on rsks-1/S6K. We then turned to an unbiased
genome-scale RNAi screening strategy to identify genes required for
fertility in animals with compromised glp-1/Notch signaling. Our strat-
egy targeted genes acting post-embryonically and primarily in the germ
line. We found 133 genes that, when depleted by RNAi, reproducibly
elevated the penetrance of sterility when combined with glp-1(rf); 56 of
which did not cause highly penetrant sterility in glp-1(+). The majority
of these 56 genes have not been previously associated with Notch
signaling. We further found that 22 of these genes play a role in
C. elegans GSC maintenance. Ultimately, using genetic criteria, we
found at least 6 genes among the 22 act in a manner consistent with a
genetically linear relationship with rsks-1/S6K to promote GSC mainte-
nance. In addition to translation, a functional class anticipated from
previous studies, our results implicate a multifunctional protein cacn-1/
Cactin, exosome-mediated RNA processing/degradation andHedgehog-
related signaling in GSC maintenance, in concert with rsks-1/S6K.

METHODS

Worm Maintenance and Strain Construction
C. elegans strains were derived from the Bristol N2 and maintained using
standard procedures (Brenner 1974). Lab conditions included ad libidum
feeding of OP50 E. coli bacteria on Nematode Growth Medium (NGM)
agar plates at 20�, unless noted otherwise (Stiernagle 2006). Strains
generated for this study: GC1288 glp-1(e2141) rsks-1(sv31) III; naIs44
[pGC520 (pie-1p::rsks-1cDNA::GFP::pie-1 39 UTR unc-119(+))], GC1289
rrf-1(pk1417) I; glp-1(e2141) ife-1(bn127) III, GC1326 rrf-1(pk1417) I ;
glp-1(e2141) rsks-1(sv31) III, GC1329 glp-1(e2141) rsks-1(sv31) III; naIs48
[pGC609 (pie-1p::rsks-1 cDNA(T404A)::GFP::pie-1 39UTR unc-119(+))],
GC1341 glp-1(e2141); rsks-1(sv31) III; svIs64 [rsks-1::GFP], GC1373 rrf-1
(pk1417) I ; glp-1(e2141) III; hjSi20 [myo-2p::mCherry::unc-54 39UTR] IV ;
zuIs70 [end-1p::gfp::caax; unc-119(+)] V, GC1374 rrf-1(pk1417) I; hjSi20
[myo-2p::mCherry::unc-54 39UTR] IV; zuIs70 [end-1p::gfp::caax; unc-119
(+)] V, GC1413 rrf-1(pk1417) I; naSi2(mex-5p::H2B::mCherry::nos-2
39UTR) II; teIs113(pie-1p::GFP::H2B::zif-1 39UTR) V, GC1414 rrf-1
(pk1417) I; naSi2(mex-5p::H2B::mCherry::nos-2 39UTR) II; glp-1 (e2141)
III; teIs113(pie-1p::GFP::H2B::zif-1 39UTR) V. Allele (naSi2, germline
mCherry::H2B) and plasmids (pGC550 used to generate naSi2, and
pGC734 used to target rpl-24.2 separately from C03D6.1) were also con-
structed for this study. For full information on these strains, alleles and
plasmids, see Table S1.

Solid media RNAi and analysis of germline
progenitor zone
For experiments where RNAi feeding was conducted on solid plates
(Figures 1C, 1D, 2, 5B, 6, S1B, and S1C), RNAi was carried out as
described (Timmons et al. 2001), using the empty vector L4440 in
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HT115 bacteria as the negative control and cye-1 RNAi as the positive
control. Animals were maintained at 15� on OP50 bacteria, and em-
bryos collected by hypochlorite treatment (see below), and were shifted
to 20� at the L1 stage when RNAi feeding commenced. Animals were
scored for GSC defects at the adult molt after fixation and DAPI stain-
ing as described previously (Michaelson et al. 2010). Designation of the
progenitor zone (Figures 1, 2, 5 and 6) and nuclei counts within the
progenitor zone (Figure S1) were performed as described previously
(Korta et al. 2012). For Figures 1, 2, 5 and 6, individual gonad armswere
binned into the appropriate classes based on visual inspection. Statis-
tical analyses: penetrance of the GSCs/progenitors present vs. absent
was analyzed using a 2-tailed Fisher’s Exact test, and progenitor zone
nuclei counts were analyzed using Welch’s t-test.

Primary RNAi Screen
Theprimaryscreenwasperformedina liquid-basedhigh-throughputsemi-
automated manner in 96-well format (Figure S2) similar to that used by
Lehner et al. (Lehner et al. 2006). We assayed 15,744 Ahringer library
(Kamath et al. 2003) RNAi clones (�1000 bacterial clones from the
original 16,757 clones in the librarywere not recovered from frozen stocks),
representing �81% of the genome. Most of the liquid handling was
performed using the Matrix WellMate (ThermoScientific Cat. No. 201-
20001) equipped with the Microplate Stacker (ThermoScientific Cat. No.
501-30006), and calibrated for both small and large bore 8-channel tubing.

Day 1: RNAi clones from theAhringer library (Kamath et al. 2003) that
were maintained at -80� were replica-plated (using a 96-pin microplate
replicator: Boekel Scientific Cat. No. 140500) onto LB agar plates
supplemented with Ampicillin (50mg/ml) and Tetracycline (50ug/ml)
in 96-well format and grown overnight at 37�.

Day 2: Bacteria andwormswereprepared simultaneously.Gravidworms
were incubated inbufferedhypochloritesolution(12mlM9buffer [3gKH2

PO4, 6gNa2HPO4, 5gNaCl, 1mL 1MMgSO4, H20 to 1 liter]; 2ml Bleach;
1ml 5N NaOH) for 5-7min, with intermittent vortexing, to release em-
bryos. Embryos were washed 3x in M9 buffer and collected by centrifu-
gation at �3k rpm for 2min. The embryos were allowed to hatch
overnight in M9 at�500 eggs/mL concentration. Allowing the embryos
to hatch in the absence of food results in arrest at the first larval stage (L1)
and thus generating a collection of synchronized L1 animals on Day 3. In
parallel, on Day 2, bacteria were inoculated from the agar plates to LB
liquid medium supplemented with Ampicillin (50mg/ml) in 96-deepwell
plates (Fisher AB-0787) using the replicator pin. These plates were then
sealed with AirPore Tape sheets (Qiagen Cat. No. 19571) to allow for
exchange of air and incubated overnight (up to 16hrs) in a 37� air shaker.
Positive and negative controls were manually added to empty wells on
individual plates on a plate-by-plate basis. L4440 and cye-1 were prior-
itized as negative and positive controls of enhancement of sterility, re-
spectively. RNAi clones for mek-2 and mpk-1 were added as additional
positive controls; however we found that theywere variable. Additionally,
we included: dpy-5 RNAi to control for impaired somatic RNAi in
rrf-1(0), lag-1 RNAi as a positive control for sterility in both glp-1(rf)
and glp-1(+), and gfp RNAi as a positive control for RNAi reagents and
technique (e.g., IPTG induction). Images fromwells containing these last
3 controls: dpy-5, lag-1, and gfp, exhibited non-Dpy worms, sterility, and
fertile GFP-negative animals, respectively.

Day 3: Expression of dsRNA was induced by adding 50ml of 20mM
Isopropyl b-D-1-thiogalactopyranoside (IPTG) to the 400ml overnight
liquid culture (final concentration 2.2mM IPTG) and incubating for
2hrs at 37� while shaking. Following IPTG induction, bacteria cultures

were centrifuged and re-suspended in S-Media (10mM Potassium Cit-
rate; 10mM Trace metals (5mM disodium EDTA, 2.5mM FeSO4

•7 H2O, 1mM MnCl2•4 H2O, 1mM ZnSO4 •7 H2O, 0.1mM CuSO4

•5 H2O); 3mM MgSO4; 3mM CaCl2; 100mg/ml Ampicillin; 1mM
IPTG; 5mg/ml Cholesterol; in S-Basal (100mM NaCl, 25mM KH2

PO4, 25mMK2HPO4) using Eppendorf MixMate. L1 animals collected
from the overnight hatch were re-suspended in S-Media supplemented
with 0.02% Tween-20 (to minimize L1 animals adhering to the plastic)
and were adjusted to a concentration of 10-15 L1/10ml by counting the
number of L1 animals in 20ul of collected worms. Using an automatic
Eppendorf Xplorer 12-channel repeat pipette, L1 animals in 20-30ml
were combined with 40ml of bacteria culture in black-walled, clear
bottom 96-well microplates (Corning Cat. No. 3904) labeled with
machine-readable barcodes. Worms were incubated for 72hrs in a
humidified chamber on a platform shaker at 20�.

Day 6: 40ml of 2mM levamisole in S-Basal was added to each well to
immobilize the worms, and plates were sealed with aluminum sealing
tape (Corning Cat. No. 6570). Images were acquired using Thermo
Scientific ArrayScan VTI and stored as 8-bit tiff files. One 16mm2 field
(2.5x magnification, 2x2 binning) consisting of two channels (GFP and
mCherry) was acquired from the center of the well and digital images
were archived for subsequent analysis. Images were exported from the
HCS Studio software as jpg files to manually count the number of total
and sterile worms per well based on the mCherry and GFP signals.
Worms that were not visible in their entirety in the image (e.g., on the
edge of the well) were excluded. Total worm and sterile worm counts
were uploaded to ActivityBase (IDBS) and used to calculate Z-score
based on the plate, assuming that majority of the wells exhibit low/no
sterility. Screening metrics were visualized using Vortex (v2014.11.
Dotmatics Limited). See S3A Figure for Z-score distribution and Table
S2 for raw data from the primary screen.

We alsomonitored worm growth since failure to reach reproductive
maturity could have been scored as sterility in our assay. In cases where
bacteria did not grow at all, wells contained L1 larvae after 3 days due to
L1 arrest (Baugh and Sternberg 2006). In cases where worms appeared
small (size of worm and proportional size of pharynx taken into con-
sideration), suggesting that the bacteria were not sufficiently dense or
other effects prevented worms from reaching adulthood in the allotted
time, we noted this but did not further pursue these wells unless some of
the small animals in the well also bore GFP-expressing embryos (in-
dicating that the small size did not prevent reproductive maturity).

Because the801 clones identified in the1st passwere candidatepositives,
we could no longer use Z-score as selection criteria for further analysis
(see Results and Discussion). Therefore, we used a different analysis strat-
egy for the 2nd pass of the primary screen that retained a within-plate
comparison to mitigate potential problems caused by plate-to-plate vari-
ability. The penetrance of sterility for each well was plotted per plate per
replicate, and the point of inflection was determined as the intersection
point of the two best-fit slope lines (see Figure S3B’ for an example). We
selected those clones that caused a penetrance of sterility above the in-
flectionpoint in at least 2 of the 3 biological replicates (366 of the 801 clones
met the sterility criterion in at least 1 out of 3 replicates, and 168 met the
sterility selection criterion in at least 2 out of 3 replicates) (Figure S3C).

Bioinformatics and Statistical Analyses
Manual ‘Functional Class’ curation was performed based on Worm-
Base (WormBase web site, http://www.wormbase.org, releases WS261-
264) gene descriptions and homology information. Orthologs and
disease association for specific genes were determined using the Alli-
ance of Genome Resources web site (https://www.alliancegenome.org/),
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data retrieved in February 2018. Wherever possible, C. elegans cellular
functions were prioritized over those of related genes in other species.
Related candidate genes were grouped in the following categories: (1)
Other: proteins with multiple functions or proteins with domain anno-
tations and less clear cellular functions; (2) Translation: tRNA synthe-
tases, ribosomal proteins and ribosome biogenesis factors, rRNA
processing factors; (3) Signaling: components of known pathways, ki-
nases and phosphatases; (4) Transport: ion channels, nuclear transport
and vesicle functions; and (5)Unknown: geneswith no obvious orthologs
outside Caenorhabditis or no Pfam domain hits. Also see Table S3.

Statistical Overrepresentation analysis for Gene Ontology (GO) terms
was performed using PANTHER v13.1. Worm Base IDs (WBGe-
ne000XXX) were entered for input and the Fisher’s Exact with FDR mul-
tiple test correction with the default settings was used to determine the
highly significant and enriched GO terms. (Mi et al. 2013; Mi et al. 2017).

Data availability statement
Strains and other reagents are available from theCaenorhabditis Genetics
Center or upon request. The authors affirm that all data necessary for
confirming the conclusions of the article are present within the article,
figures, and table, together with supplementary Tables and Figures that
have beenuploaded tofigshare. Figure S1 containsprogenitor zone counts
relevant to Figures 1 and 2. Figure S2 is a workflow diagram for the
primary RNAi screen. Figure S3 shows the distribution of predicted
positive wells from the screen across linkage groups, selection criteria
for the 2nd pass of the primary screen (including examples), and a Venn
diagram of the clones selected from the 1st pass. Figure S4 presents the
genomic scenario and analysis for two genes (rpl-24.2 and C03D6.1) that
were targeted by a single clone from the Ahringer RNAi Library. Table S1
provides details on strains, alleles and plasmids used. Table S2 contains
raw data from the primary screen. Table S3 lists the set of 133 genes, their
mammalian ortholog(s) and disease associations, their distribution into
the sets of 77 and 56 genes, and information on the status of the
progenitor pool when each was depleted by RNAi. Table S4 lists the
set of 77 genes and whether or not they were found in 7 other C. elegans
screens. Table S5 displays in 3 tabs, the PANTHER representation
analysis of the sets of 133 and 56 genes by biological process, cellular
compartment, and molecular function. Table S6 shows all p- and
n-values for Figures 1A, 1C, 1D, 2, 6, S1, and S4. Supplemental material
available at Figshare: https://doi.org/10.25387/g3.6869828.

RESULTS AND DISCUSSION

S6K acts in a germline-autonomous manner to regulate
GSC fate
It was previously shown that rsks-1/S6K both promotes cell cycle pro-
gression (i.e., promotes “proliferation”) and prevents differentiation
(i.e., promotes “GSC fate”), and that the combined effect of these two
activities on the accumulation of germline progenitor cells is germline-
autonomous (Korta et al. 2012). Here, we used the enhancement of the
“loss of GSCs” phenotype of the reduction-of-function (rf) allele glp-1
(e2141)(Priess et al. 1987; Dalfo et al. 2010) as a proxy for the effect of
rsks-1/S6K on GSCmaintenance alone, separate from cell cycle rate. At
the semi-permissive temperature of 20�, �90% of glp-1(rf) animals
are fertile and maintain approximately half the number of germline
progenitors seen in wild type animals (the remaining �10% display a
severe early “loss of GSCs” phenotype). However, in the double mutant
with the rsks-1/S6K null (“(0)”), the penetrance of the “loss of GSCs”
phenotype is�40–60% (Figure 1A; (Korta et al. 2012)) and all animals
are sterile, likely due to the paucity of progenitors remaining in the
gonad arms that retain some progenitors (Figure S1).

To determine whether rsks-1/S6K is required in the germ line to
promote GSC maintenance, we re-introduced our previously charac-
terized germline- and somatic-restricted rsks-1(+) transgenes (Korta
et al. 2012) into the glp-1(rf) rsks-1(0) double mutant (see Methods)
and assessed the percentage of gonad arms exhibiting the “loss of
GSCs” phenotype. We found that germline-restricted expression of
rsks-1(+) partially rescued the phenotype (67% retained GSCs), while
somatic expression of rsks-1(+) did not rescue (Figure 1A). These re-
sults narrowed our focus to germline-autonomous activity of rsks-1/
S6K for GSC maintenance.

Neither Cyclin-E nor MAPK functionally interacts with
S6K in a genetically linear manner
Similar to loss of rsks-1/S6K, a reduction in the activity of either Cyclin-E/
CDK2 or MAP Kinase (MAPK) pathway components (mek-2/MAPKK,
mpk-1/MAPK, let-60/Ras) enhances glp-1(rf) (Lee et al. 2007; Fox et al.
2011).We therefore considered the possibility that one of these might act
in a linear pathway with S6K to influence GSC maintenance. We tested
this idea by individually depleting cye-1/Cyclin-E, mek-2/MAPKK,
mpk-1/MAPK, or let-60/Ras in the rrf-1(0) and rrf-1(0); glp-1(rf)mutant
backgrounds. Loss of rrf-1 interferes with RNAi in most somatic tissues
but retains full efficacy in the germ line (Sijen et al. 2001; Kumsta and
Hansen 2012), thus reducing activity of germline-expressed genes and
preventing many pleiotropic somatic phenotypes.

We reasoned that if cye-1/Cyclin-E were acting in a linear pathway
with rsks-1/S6K to maintain GSCs, cye-1 RNAi in the rrf-1; glp-1(rf)
rsks-1(0) background should not further enhance the Glp-1-like “loss of
GSCs” phenotype seen in rrf-1; glp-1(rf) rsks-1(0). First, we confirmed
the effects of cye-1RNAi feeding in the glp-1(e2141) rf allele (Priess et al.
1987; Dalfo et al. 2010) versus the bn18 allele used by Fox et al., and we
further examined these phenotypes in live animals using a reporter
for germline progenitors (Figure 1B,1C; Methods). Similar to what
was previously reported (Fox et al. 2011), we observed that�45% of
gonads displayed the “loss of GSCs” phenotype after cye-1 RNAi in
rrf-1; glp-1(rf). We also confirmed that, as previously reported
(Korta et al. 2012), �55% displayed the phenotype in rrf-1; glp-1
(rf) rsks-1(0) with control RNAi. However, cye-1 RNAi in rrf-1; glp-1
(rf) rsks-1(0) enhanced the phenotype to 90% (Figure 1C). This
additive effect on the penetrance of the “loss of GSCs” phenotype
is inconsistent with a linear relationship between cye-1/Cyclin-E
and rsks-1/S6K.

Results with MAPK pathway genes were also inconsistent with a
solely linear role with rsks-1. Using the glp-1(e2141) allele, similar to a
previous report (Lee et al. 2007), we observed that RNAi targeting of
mek-2, mpk-1, or let-60 in glp-1(rf) enhanced the “loss of GSCs” phe-
notype (29%, 40%, and 24%, respectively; Figure 1B,D). Similar to our
observations with cye-1 RNAi, in parallel experiments, the penetrance
of the “loss of GSCs” phenotype in glp-1(rf) rsks-1(0) was enhanced
from �40% with control RNAi to 53%, 56%, and 65%, when mek-2,
mpk-1, or let-60 were depleted, respectively (Figure 1D). That the en-
hancement is not strictly additive may indicate a minor role for an
S6K-MAPK connection in GSC maintenance. However due to the
variable efficacy of RNAi, it is difficult to compare. We conclude
that neither Cyclin-E nor the MAPK pathway acts genetically with
rsks-1/S6K in a solely linear manner to maintain GSCs, though
the activity of the MAPK pathway may contribute to the effect of
rsks-1/S6K.

Reduced translation can interfere with GSCmaintenance
TORC1 activity is associated with optimal translation via several
mechanisms. In parallel with S6K, another well-characterized substrate
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of TOR is the eukaryotic Initiation Factor-4E-binding protein (4E-BP).
TOR phosphorylation of 4E-BP relieves inhibition of eIF4E, thereby
promoting cap-dependent translation (Gingras et al. 1999). Although a
4E-BP ortholog has not yet been identified by sequence analysis in C.
elegans, our previous results support the idea that ife-1/eIF4E and S6K
play genetically independent roles in the germ line: while mutation in
either prevents normal accumulation of the germline progenitor pool,
the double mutant is additive (Korta et al. 2012). ife-1 encodes one of
5 C. elegans eIF4Es, and is the one with the strongest germline pro-
genitor expression and function (Keiper et al. 2000; Henderson et al.
2009; Korta et al. 2012). Our previous experiments did not distinguish
whether the roles of ife-1/eIF4E and rsks-1/S6K are similar with respect
to GSC fate. Therefore, we tested whether loss of ife-1 would behave
similarly to rsks-1 with respect to enhancement of glp-1/Notch, and we
found that it did not (Figure 2). Despite interfering with accumulation
of progenitors to a similar extent as loss of rsks-1 (Figure S1C), loss of
ife-1 did not significantly enhance the glp-1/Notch “loss of GSCs”

phenotype (Figure 2B). Moreover, unlike glp-1(rf) rsks-1(0) double mu-
tant animals, the glp-1(rf) ife-1(0) double mutants were fertile, albeit
with a reduced brood size. Curiously, while the rsks-1/S6K function in
GSCmaintenance depends on the conserved TOR phosphorylation site
T404 (Figure 1A), as tested with the previously characterized T404A
substituted transgene (Korta et al. 2012), reduction of let-363/TOR
acted similarly to ife-1 in this regard (Figures 2B, S1C) and did not
enhance the “loss of GSCs” phenotype in glp-1(rf). One possible expla-
nation is that let-363/TOR RNAi does not fully deplete activity. Our
results indicate that let-363/TOR RNAi was effective since the number
of progenitors is significantly lower (both in glp-1(+) and glp-1(rf)
backgrounds; Figure S1C). Moreover, the number of progenitors is
similarly low in the let-363/TOR RNAi and rsks-1(0) alone. Therefore,
if the mechanism by which the progenitor pool limitation were iden-
tical for let-363/TOR RNAi and rsks-1(0), wemight expect let-363/TOR
RNAi to have a similarly potent effect on GSC maintenance. This
expectation, based on phenotypic severity, would hold regardless of

Figure 1 RSKS-1/S6K acts germline-autonomously and not in a simple linear pathway with Cyclin-E and MAPK to maintain GSCs when GLP-1/
Notch activity is compromised. (A, C, D) Percentage of gonad arms displaying the “loss of GSCs” phenotype in which all progenitors have entered
meiosis (black bars). The remainder of gonad arms maintained progenitors (gray bars). See also Figure S1 for progenitor counts. (B) Images of live
animals in which mCherry labels the chromatin of germ nuclei (red; transgene insertion naSi2), while progenitor nuclei (yellow) are doubly marked
with GFP under the control of the pie-1 promoter and the zif-1 39UTR (transgene insertion teIs113); see Methods for details. White arrows point to
sperm. In all panels genotypes and/or genes depleted by RNAi are denoted on the X-axis; in all cases, rrf-1 is rrf-1(pk1417), rsks-1(0) is rsks-1(sv31)
and glp-1(rf) is glp-1(e2141). Statistics: 2-tailed Fisher’s exact tests, �P # 0.05, ��P # 0.01, ����P # 0.0001, see also Table S6.
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whether the let-363/TOR RNAi fully depletes let-363 activity. It is also
formally possible that the threshold of TOR activity required for cell
cycle progression may differ from that of promoting progenitor fate
and that the RNAi knock-down did not reach the level required for the
latter. Full resolution of this paradox awaits further analysis.

To assess the possibility that general translation may influence
GSC maintenance, we manipulated ifg-1/eIF4G, a component of the
eIF4F translation initiation complex (Long et al. 2002; Rhoads et al.
2006). ifg-1 provided the opportunity to partially separate the
roles of cap-dependent and potential cap-independent translation
in GSC maintenance. Due to alternative splicing, ifg-1 encodes a
short (p130) and a long (p170) isoform, and only the longer isoform
contains the cap-binding sequence (Contreras et al. 2008; Contreras
et al. 2011). Therefore, when p170 is reduced relative to p130, only
cap-dependent (and not cap-independent) translation is affected.
Using previously characterized RNAi reagents (Contreras et al.
2008) that target p170 alone (affecting cap-dependent translation)
or both p170 and p130 (affecting all translation) in the rrf-1(0)
background, we found that reduction of ifg-1 enhances the “loss
of GSCs” phenotype in glp-1(rf) (Figure 2A). This enhancement
was observed when either p170 alone or p170 and p130 were depleted,
suggesting that overall translational efficiency is important for GSC
maintenance. Following the reasoning presented above for cye-1, we
further asked whether the enhancement of the “loss of GSCs” phenotype
in glp-1(rf) rsks-1(0) was exacerbated upon ifg-1 RNAi relative to
the control. We found a modest degree of further enhancement in the
glp-1(rf) rsks-1(0) double mutant by ifg-1 RNAi that targeted p170 alone
(clone #1 but not #2, Figure 2A), or that targeted both p170 and p130
(clone #3, Figure 2A). We were unable to maintain a triple mutant strain

bearing ifg-1(0), glp-1(rf), and rsks-1(0), and therefore could not assess
these effects with mutant analysis. Nevertheless, our results suggest
enhancement of glp-1(rf) caused by reduced ifg-1 activity is partially,
not completely, dependent on rsks-1/S6K.

Our observation that ifg-1 depletion enhances the GSC loss pheno-
type of glp-1(rf) appears to contradict our observation that loss of ife-1
does not. While this paradox deserves further investigation, one possi-
ble explanation is that other ife genes, such as ife-3, that have a minor
role in the germ line, may direct translation of specific targets key for
GSC maintenance in the absence of ife-1.

A genome-scale RNAi screen identifies genes required
for fertility when glp-1/Notch is reduced
In addition to its roles in translation, S6K influences multiple cellular
processes including mRNA processing, splicing, protein folding, cell
motility, and cytoskeletal rearrangements (Fenton and Gout 2011;
Magnuson et al. 2012). To evaluate how S6K influences a Notch-
mediated stem cell fate decision in vivo, we conducted an unbiased
RNAi genetic screen and sought RNAi effects that would mimic loss
of S6K. The screen used the Ahringer C. elegans RNAi collection that
contains individual RNAi-inducing bacteria targeting �80% of the
genes in the C. elegans genome (Kamath et al. 2003). The screen was
performed in several stages (Figures 3, S2, S3 and Methods) to identify
genes that when depleted, like rsks-1(0), cause sterility in glp-1(rf) (at the
semi-permissive temperature of 20�), but do not cause highly penetrant
sterility in the wild type. We further screened candidates to identify
those that interfere with GSCmaintenance, and then identified a subset
of these that did not exacerbate the penetrance of “loss of GSCs” of glp-1
(rf) rsks-1(0) double mutants.

Figure 2 Cap-dependent translation promotes GSC maintenance. (A, B) Penetrance of GSC/progenitor defects. Panel A represents two classes of
gonad arms that either show presence or absence of GSCs/progenitors. Panel B shows distribution of gonad arms across 3 categories of
progenitor phenotypes: no GSCs/progenitors, a progenitor pool with a reduced number of nuclei, or a qualitatively normal progenitor pool
(pattern and number of progenitors). Gonad arms were scored ‘Other’ if they displayed phenotypic abnormalities that interfered with assessment
of the progenitor pool. Genotypes and genes targeted by RNAi are indicated; rrf-1 is rrf-1(pk1471), rsks-1 is rsks-1(sv31), ife-1 is ife-1(bn127), and
glp-1(rf) is glp-1(e2141). let-363 is C. elegans TOR. Clones ifg-1(#1), ifg-1(#2), and ifg-1(#3) correspond to published clones ifg-1(C2), ifg-1(C3) and
ifg-1(N2), respectively, where the first two deplete both p170 and p130 isoforms of ifg-1 and the third depletes only the p170 isoform. Statistics:
2-tailed Fisher’s exact tests for “loss of GSCs” phenotype, �P # 0.05, ��P # 0.01, ���P # 0.001, ����P # 0.0001, see also Table S5.
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Five aspects of our screening and scoring strategies are notable. First,
since we had determined that enhancement of glp-1(rf) was due to
germline-autonomous activity of rsks-1 (Figure 1A), we performed
the screen in animals lacking rrf-1, an RNA-directed RNA polymerase
that is required particularly in somatic tissues for efficient RNAi (Sijen
et al. 2001; Kumsta and Hansen 2012). We used this strategy to focus
on germline-acting genes and to avoid pleiotropic or severe somatic
phenotypes. Second, we performed the RNAi feeding screen in 96-well
liquid format, exposing animals to dsRNA-producing bacteria at the
first larval stage (L1) to bypass embryonic lethality. We allowed these
same animals to develop and scored them �72 hr later in the adult
stage. Images captured from each well were archived and subsequently
scored. Third, we adopted a very strict criterion for sterility that
allowed us to assess the penetrance of sterility in a population. That
is, rather than defining sterility as overall progeny production per well,
we scored individual “fertile” vs. “sterile” animals based on the presence
or absence of embryos in the uterus of each animal. We employed an
end-1p::GFP marker (zuIs70; (Wehman et al. 2011)) to label the em-
bryos and a myo-2p::mCherry pharynx marker (hjSi20;(Vargas et al.
2017)) to facilitate counting of the individual worms. Our data were
recorded as “penetrance of sterility” per well. Fourth, our analysis
strategy for the primary screen largely mitigated plate-to-plate and
experiment-to-experiment variation. We included multiple positive
and negative RNAi control clones on each plate and generated
Z-scores for the individual wells on a plate-by-plate basis. We used
an empirically defined Z-score cut-off of $1 as inclusion criteria for
candidates moving forward (see Methods for further details and Figure
S3). Fifth, we prioritized reproducibility using the multi-pass screening
strategy outlined below.

We performed several rounds of screening. The primary screen was
conducted in technical replicates (1st pass) scoring for percent of ani-
mals exhibiting sterility (“penetrance of sterility”) in the rrf-1(0); glp-1
(rf) mutant with the markers described above, followed by a 2nd pass
where the positive candidates were re-screened for reproducibility
(Figure 3). Table S2 contains raw data from the primary screen and
Figure S3A shows the distribution of the Z-score values for the primary
screen, 1st pass results, separated by chromosome. Based on a cutoff
Z-score of$1, (Figure S3A) we selected 801 clones from the 1st pass to
carry forward to the 2nd pass (Figure 3).

In the 2nd pass of the primary screen, we retested each of the
801 bacterial clones in biological triplicate in both glp-1(rf) (GC1373)
and glp-1(+) (GC1374) backgrounds in parallel, and identified
168 clones that caused elevated sterility in glp-1(rf) in 2 of 3 replicates
(Figures 3, S3C). We sequenced the inserts of the plasmids carried by
bacteria in these 168 wells and identified 133 unique genes (Table S3).
Using WormBase (WS257) SimpleMine and the Alliance of Genome
Resources database (see Methods), we found that among the 133 genes,
112 have easily-identified mammalian orthologs, and 17 of these have
clear disease associations (Table S3). Among the 133, 77 were more
generally required for fertility since they displayed reproducible and
penetrant (.20%) sterility in glp-1(+), while the remaining 56 did not
(Figure 4B). We further analyzed these two sets separately.

Analysis of 77 genes required for penetrant fertility
in glp-1(+)

Sinceour screening strategy exposedworms toRNAionly afterhatching
and largely limited RNAi to the germ line, we reasoned that we could
potentially identify genes regulating fertility that may not have been

Figure 3 Overall RNAi screen strategy. (A) Summary of selection criteria and salient features of the screen. The starting strain for the screen was
GC1373 and GC1374 was also used in the second pass (see Methods for full genotypes). (B) Representative images for scoring of sterility (top) and
GSC maintenance defects (bottom). (C) Flowchart of Primary and Secondary screen strategies and results. (�) indicates exclusion of C03D6.1 from
analysis (see Figure S4). (��) indicates exclusion of rps-8 due to developmental arrest caused by RNAi (see Results).
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found in screens that used maternal feeding and/or were conducted in
an rrf-1(+) background.We therefore compared our set of 77 genes that
caused marked sterility in glp-1(+) to those reported as “sterile (Ste)” in
previous large-scale RNAi screens in C. elegans (Maeda et al. 2001;
Kamath et al. 2003; Simmer et al. 2003; Rual et al. 2004; Fernandez
et al. 2005; Sönnichsen et al. 2005). We found that 45 of our 77 genes
were among the previously reported 693 unique genes (Tables S4).
Using manual curation facilitated by WormBase gene descriptions
and homology information (WS261), we classified these 45 common
genes into 11 categories where Translation (16), Transport (6), and
Proteostasis (6) were themost abundant, followed byOther, Mitochon-
drial, Transcription, Replication, and RNA processing categories. The
Metabolism, Signaling and Structural classes were least represented
(Tables S3, S4).

The remaining 32 genes represent newly-defined fertility-associated
genes for which RNAi feeding in rrf-1mutant L1 larvae causes sterility.
These geneswere spread across 12 functional categories: 4 genes each in
Transcription and Translation; 3 genes each inMetabolism, Mitochon-
drial, Other, Signaling, Structural and those with Unknown functions;
2 genes each in Replication and RNA processing; and 1 gene each in
Cell Division and Transport classes (Tables S3, S4). We speculate that
these were not found in previous screens due to their effects on the
soma, the maternal germ line (in cases where RNAi feeding began
maternally), or embryonic development.

Analysis of the 56 genes required for optimal fertility
in glp-1(rf)

The remaining 56 genes caused a reproducibly elevated penetrance of
sterility (ranging from 20–100% penetrance) when knocked down in rrf-1

(0); glp-1(rf), but less than 20% sterility in rrf-1(0); glp-1(+). These 56 genes
may therefore have amore specific interaction with glp-1/Notch. Of these,
5 have known disease associations and 42 have evident human orthologs
(Table S3). We speculate that the human orthologs of these genes may
contribute to Notch-related pathologies (Siebel and Lendahl 2017).

We wondered how functional categories may differ between these
56 genes vs. the 77 that also caused penetrant sterility in glp-1(+) (Figure
4). We found that the overall categories were similarly represented, but
that the distributions were not identical. For the whole set of 133 genes,
we identified 14 major functional classes for which Translation was the
most-abundant with 29 genes (Figure 4). A greater proportion of the
56 genes fell into Cell Division, Transport, and “Unknown”, while a
greater proportion of the 77 genes fell into Translation, Transcription,
and Proteostasis.

To determine the extent to which functional classes are overrepre-
sented relative to the genome, we conducted a ‘Statistical overrepresen-
tation test’ of Gene Ontology (GO) terms using PANTHER v13.1 (Mi
et al. 2013; Mi et al. 2017)(seeMethods). PANTHER recognized 131 of
the 133 genes and using regulators of Biological Process (BP), expres-
sion in a specific Cellular Component (CC), and Molecular Function
(MF) as the macro-classes, it classified them into 25 BP, 17 CC, and
12MF categories. The following had the highest fold enrichment com-
pared to the C. elegans reference genome: rRNA metabolic process
(GO:0016072), Ribosome (GO:0005840), and Structural constituent
of ribosome (GO:0003735) in the BP, CC, and MF classes, respectively
(Table S5). By comparison to the set of 133, for the 56 more specific
enhancers of glp-1(rf), fewer categories emerged (8 BP, 12 CC, and
6 MF). Within these categories Cell proliferation (GO:0008283) and
RNA localization (GO:0006403) were the most overrepresented GO

Figure 4 Functional classification of 133 genes identified in the Primary screen. Pie-charts summarizing the distribution of functional classes of the
(A) 133 genes identified from the Primary screen. (B) The proportion of genes that reproducibly enhance sterility in glp-1(rf) but cause low or no
sterility in glp-1(+) vs. those that also cause penetrant sterility in glp-1(+). (C, D) The distributions of functional classes represented by the sets of
56 (C) and 77 genes (D).
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terms within the BP category, while the CC and MF GO terms were
similar between the sets of 133 and 56 genes.

We further compared our set of 56 genes with previously identified
modifiers of Notch. We note that we did not expect to find rsks-1 itself
since a clone targeting rsks-1 is not present in the Ahringer library. Our
screen did not identify core components of the Notch signaling pathway,
nor did we identify any of the 5 characterized suppressors of hyper-
morphic mutant of lin-12, the other Notch receptor homolog in C.
elegans (Greenwald and Kovall 2013). However, a known enhancer of
glp-1(rf), cye-1 (Fox et al. 2011), survived our filtering scheme. Although
screening criteria were not identical, among the 22 previously character-
ized enhancers of glp-1(rf) (Qiao et al. 1995; Lamont et al. 2004; Tian et al.
2004; Lee et al. 2007; She et al. 2009; Fox et al. 2011; Bukhari et al. 2012;
Dalfo et al. 2012; Gupta et al. 2015; Ames et al. 2017) 6 are not repre-
sented in the Ahringer library (ego-1, ego-2, ego-3, ego-5, fbf-1, fbf-2), and
3 (daf-1, alg-1, alg-2) act outside the germ line and therefore would not
likely confer strongRNAi phenotypes in the rrf-1mutant . The remaining
13 (ego-4/atx-2, csr-1, drh-3, ekl-1, epn-1, bec-1, atg-7, mrg-1, mpk-1,
mek-2, let-60, cdk-2, lag-1) did not meet our filtering criteria. We also
compared our list with the 617 genes that have predicted or demon-
strated interactions with glp-1 as listed in WormBase (WS263), and
7 of our 56 genes overlapped (cacn-1, cgh-1, cye-1, gsk-3, lin-39, prp-4,
and teg-4). Thus, our study adds 49 genes that functionally interact
with glp-1/Notch.

Comparison of our set of 56 genes with screens in
other organisms
High-throughput RNAi screens have identified Notch modifiers in
Drosophila, in cell culture or in vivo (Mummery-Widmer et al. 2009;
Saj et al. 2010; Neumüller et al. 2011). Interestingly, we found orthologs
of 11 of these genes in our screen (cacn-1, chc-1, cks-1, eif-6, emb-27,
rpl-2, rps-11, rps-8, teg-4, uaf-2, ubq-2; Table 1). The majority of the
common genes are either associated with translation or cell division.

We also wondered whether any of the genes in our set of 56 were in
commonwith genes previously associatedwithTOR-S6K signaling.We
compared our set to those found by Lindquist et al. (Lindquist et al.
2011) who screened for regulators of canonical TOR signaling in a
Drosophila cell line that expressed human S6, and used phospho-
RPS6 as readout, and to those found by Chauvin et al. (Chauvin
et al. 2014) who compared total RNA and polysome profiles of mouse
livers fromwild-type vs. S6K12/2 ;S6K22/2mutants.We found 6 genes
from our screen (cye-1, emb-27, rps-11, rps-23, rps-8, Y82E9BR.3)
among orthologs to the 240 genes shown by Lindquist et al. (2011)
to modulate TOR signaling, and 2 among 456 mRNAs identified by
Chauvin et al. (2014) (F53F4.11 and teg-4). These similarities suggest
that some of the other genes we foundmay be relevant to Notch and/or
to TOR-S6K signaling in other organisms.

Identification of genes that promote GSC maintenance
in C. elegans

While the best-characterized role of glp-1/Notch in theC. elegans germ line
is to maintain GSCs (Austin and Kimble 1987; Berry et al. 1997; Pepper
et al. 2003), it also influences cytoplasmic streaming in the germ line, and
oocyte growth and cellularization (Nadarajan et al. 2009). GLP-1 may
regulate additional aspects of germline development that are experimen-
tally inaccessible due to the severe consequences of loss of glp-1 in the
distal germ line. Indeed, our results suggest that sterility can be enhanced
in glp-1(rf) as a result of defects other than GSC maintenance. Since our
goal was to identify enhancers of glp-1(rf) sterility that, like rsks-1, act on
GSCs, we further analyzed 48 of the 56 candidate genes for GSC defects
(the remaining 8 were randomly excluded; see Table 1 “nd”).

For this set of 48genes,we scored for thepresence or absenceofGSCs
as determined by DAPI staining (see Methods; Figure 3). We catego-
rized the germline phenotypes into 4 classes: No GSCs/progenitors,
Reduced progenitor pool, Normal progenitor pool (both cell number
and differentiation pattern), and Other (Figure 5). We found that 40 of
the 48 genes compromised GSC maintenance when depleted by RNAi,
albeit at differing penetrance. Only one (cye-1) (Fox et al. 2011) was
among the 22 genes previously reported to enhance of GSC defects of
glp-1(rf) (Greenwald and Kovall 2013). In sum, our screen identified
39 genes previously unknown to functionally interact with glp-1/Notch
in GSC maintenance.

We further analyzed 24 of the 40 genes: 23 that displayed more
strongly elevated penetrance of the “loss of GSCs” phenotype (Figure 5,
Table 1), plus eif-6 that was previously found to cause a progenitor zone
defect (Voutev et al. 2006).

We compared these 24 genes to orthologs identified in large-scale
RNAi screens in Drosophila for genes regulating GSCs in the fly ovary
(Yan et al. 2014; Sanchez et al. 2016) and testis (Yu et al. 2016), and in
follicle stem cells (FSCs) (Jia et al. 2015; Lee et al. 2017b). We found
orthologs of 6 genes (cye-1, eif-6, gsk-3, mcm-7, nxt-1, rps-8, teg-4) in
common (none of our genes were identified in the screens for FSC
regulation). gsk-3 was the only common gene between our set and
the Drosophila ovary and testis GSC screens. Further, orthologs of
2 of these 6 genes (cye-1 and rps-8) were also identified in a screen
for TORC1 signaling by Lindquist et al. (Lindquist et al. 2011) and one
(teg-4) was found among genes that are transcriptionally responsive to
S6K (Chauvin et al. 2014).

Within this set of 24 genes, cacn-1 and teg-4, two genes implicated in
splicing, caught our attention since, counter-intuitively, these genes
were previously identified as enhancers of glp-1(gain-of-function(gf))
(Mantina et al. 2009; Kerins et al. 2010). We speculate that the combi-
nation of enhancement of both glp-1(rf) and glp-1(gf) are associated
with genes that are required for optimal expansion of the progenitor
zone during larval stages. Sub-optimal progenitor zone expansion
can reveal the activity of a “latent niche” originating in the proximal
somatic gonad, which can cause enhancement of glp-1(gf) (Killian and
Hubbard 2005; McGovern et al. 2009).

We also found that within this set, two genes that were initially
analyzed independently in fact mapped to the same RNAi reagent.
rpl-24.2 resides inside a large intron of another gene C03D6.1, a
Argonaute/PIWI family member. To distinguish whether one or
both of these genes was responsible for the phenotype, we performed
additional RNAi analysis with new and existing reagents to target these
genes individually. We found that rpl-24.2 RNAi caused enhanced
penetrance of “loss of GSCs” in glp-1(rf), but C03D6.1 RNAi did
not (Figure S4). Thus, although the small RNA pathway has been
implicated in germ cell fate regulation (She et al. 2009; Bukhari et al.
2012), our data indicate that C03D6.1 is not involved, and it was
therefore excluded from further analysis.

Thus23geneswent forward to thenext step tobeanalyzed for genetic
interaction with rsks-1(0).

Six candidate genes act with S6K to promote
GSC maintenance
We rescreened the 23 enhancers of GSC loss in glp-1(rf) for their genetic
interaction with rsks-1/S6K (see Methods). Employing the same logic
described above for our analysis of cye-1 and MAPK, we assessed the
“loss of GSCs” phenotype in glp-1(rf) rsks-1(0) double mutant with and
without gene-xRNAi. One candidate, rps-8 could not be evaluated since
RNAi caused developmental arrest in the glp-1(rf) rsks-1(0) double
mutant. We found that 16 of the remaining 22 displayed a penetrance
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n Table 1 The set of 56 genes

Gene
Penetrant

GSC defects
Functional interaction

with rsks-1/ S6K
Mammalian
ortholog(s)

Drosophila ortholog
functional interaction

with Notch

Drosophila or mammal
ortholog involved
in TORC1-S6K

Drosophila
ortholog

regulates GSCs

atp-4 n ATP5J (1)
B0280.9 n UTP18
B0546.5 y
bcas-2 nd BCAS2
bcat-1 n BCAT1
C03D6.1a y y Argonaute

PIWI family
C27C12.3 n
cacn-1 y y CACTIN (2) (3)
cgh-1 n DDX6 (4)
chc-1 nd CLTC (2)
cks-1 n CKS1B (2)
cyb-3 n CCNB3
cye-1 y CCNE (5) (1) (4)
dyci-1 y DYNC1l1
eif-6 y y eIF6 (2) (1)
emb-27 y CDC16 (3) (5)
emb-8 nd POR
exos-3 y y EXOSC3
F16D3.6 y
F25B4.7 y SLC25A6
F31F6.1 n
F31F6.2 n
F31F6.3 n
F35E2.1 y
F46C5.6 n PPP4R4
F53F4.11 n RSL1D1 (6) (4) (7)
gsk-3 y GSK3A (4) (7)
iff-1 n EIF5A
iftb-1 nd EIF2S2
K08E5.1a n
lin-39 nd HOXA5
mcm-7 n MCM7 (4) (7)
mma-1 y LRPPRC
mrpl-4 y y MRPL4
npp-20 y SEC13
nxt-1 y NXT2 (4)
pqn-48 y IFI30
prp-4 n PRPF4 (1)
rpl-2 n RPL8 (2) (1)
rpl-24.2a y y RSL24D1
rps-11 n RPS11 (3) (5)
rps-23 y RPS23 (5)
rps-8 y RPS8 (3) (5) (1)
skn-1 n NFE2L3
sop-3 y
stt-3 n STT3B
T12E12.1 nd ARIH2
teg-4 y SF3B3 (2) (3) (6) (1)
tsfm-1 n TSFM
twk-43 n KCNK18
uaf-2 n U2AF1 (2)
ubq-2 nd UBA52 (2) (1)
vap-1 y CRISP2

(continued)
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of “loss of GSCs” that exceeded the parallel control suggesting a
non-linear relationship with rsks-1 (Figure 5). We note, however
that this elevated penetrance did not reach statistical significance
for any of the 16, so it is possible that some of these may act linearly
with rsks-1. We focused on the remaining 6 that did not further
enhance glp-1(rf) rsks-1(0) whatsoever, consistent with each acting
in a linear pathway with rsks-1/S6K (Figure 5B). These 6 candidate
genes encode proteins of diverse functions. We discuss these can-
didates in turn below.

Translation related genes: eif-6, rpl-24.2, mrpl-4: eif-6 is the worm
ortholog of the eukaryotic initiation factor-6 (eIF6), which is implicated
in nucleolar assembly of the 60S ribosomal subunit and in regulation of
translation and cell cycle progression in response to insulin signaling
and growth factors (Basu et al. 2001; Gandin et al. 2008; Brina et al.
2011). eif-6/eIF6 also impinges on regulation of gene expression by
associating with the RNA-induced silencing complex (RISC) complex.
In worms, depletion of eif-6 impedes lin-4miRNAmediated repression
of LIN-14 and LIN-28 target proteins and mRNA, and similar effects
are observed inmammalian cells (Chendrimada et al. 2007). It will be of
interest to determine whether either of these mechanisms underlies the
GSC phenotype.

rpl-24.2 is one of two genes in C. elegans, rpl-24.1 and rpl-24.2, that
encode the large ribosomal subunit L24 protein. Depletion of either
rpl-24.1 or rpl-24.2 from the germ line or the whole animal results in
similar growth defects (Maciejowski et al. 2005). mrpl-4 is an ortholog
of the mitochondrial ribosomal protein L4.While ribosomal protein S6
is the best-characterized substrate of S6K (Meyuhas 2015), our results
suggest that S6K may regulate – directly or indirectly – additional
ribosomal subunits both cytoplasmic and mitochondrial.

cacn-1: cacn-1 is the sole C. elegans ortholog of Cactin, a multifunc-
tional protein that was also found in several related screens (see above).
In C. elegans, cacn-1 was initially characterized in DTC migration
(Tannoury et al. 2010). It is also required in the soma for normal oocyte
development (Cecchetelli et al. 2016), and it interacts with the Wnt
pathway to regulateC. elegans larval development (Labonty et al. 2014).
In humans, Cactin was shown to negatively regulate the NFkB pathway
to modulate immune response and to modulate pre-mRNA splicing

and sister chromatid cohesion (Atzei et al. 2010; Suzuki et al. 2016;
Zanini et al. 2017). Cactin is also a component of the spliceosome
(Cecchetelli et al. 2016). How Cactin relates to S6K function remains
to be determined, but S6K1 was shown to promote efficient splicing
of lipogenic genes via phosphorylation of Serine-arginine protein
kinase 2 (SRPK2) (Lee et al. 2017a) suggesting a possible link to the
splicing activity of S6K.

exos-3: exos-3, the sole C. elegans homolog of mammalian EXOSC-3/
Rrp40, is one of the capping subunits of the conserved RNA exosome
complex (Morton et al. 2018). In the worm, exos-3 is an essential gene
(WormBase WS264) that when inactivated by RNAi in adulthood
extends lifespan and reduces fecundity (Chen et al. 2007), phenotypes
also shared by rsks-1 (Hansen et al. 2007). Together with nonsense-
mediated decay genes, exos-3 is also linked to ER homeostasis (Sakaki
et al. 2012). Finally, exos-3 RNAi alters the germline response to
ionizing radiation by interfering with cell cycle arrest and apoptosis
(Van Haaften et al. 2006). Our results implicate exos-3 in GSC main-
tenance, together with glp-1/Notch and rsks-1/S6K.

“Hedgehog-related” ligand: wrt-1: wrt-1 encodes a predicted
secreted molecule with similarity in the C-terminal region of Hedge-
hog (Hh) ligands (the “Hint” or “Hog” domain), and is thus referred
to as “Hedgehog (Hh)-related” (Aspock et al. 1999; Kuwabara et al.
2000; Zugasti et al. 2005; Bürglin and Kuwabara 2006; Bürglin
2008). While the penetrance of “loss of GSCs” in glp-1(rf) following
wrt-1 RNAi was modest, it was highly reproducible. We tested a
second wrt-1 RNAi reagent from the Vidal collection (Rual et al. 2004)
that is specific for the wrt-1 cDNA, and found that it, like the RNAi
reagent from the Ahringer collection, caused a GSC maintenance defect
in glp-1(rf) and that it did not further exacerbate the phenotype of the glp-
1(rf) rsks-1(0) double mutant (Figure 6A). Depletion of wrt-1 in the wild
type (rrf-1(+); glp-1(+)) did not cause any gross developmental delays
or fertility defects.

The function of the Hog-domain containing proteins inC. elegans is
poorly understood. “Hedge” domain-containing proteins originated
before Eumetazoa, but the “Hint/Hog” domain likely originated even
earlier, and it shares similarity with self-splicing inteins (Bürglin 2008).
Not only are C. elegans “Hedgehog-related” ligands missing the

n Table 1, continued

Gene
Penetrant

GSC defects
Functional interaction

with rsks-1/ S6K
Mammalian
ortholog(s)

Drosophila ortholog
functional interaction

with Notch

Drosophila or mammal
ortholog involved
in TORC1-S6K

Drosophila
ortholog

regulates GSCs

wrt-1 y y DHH
Y37A1A.3 n SLC2A9
Y82E9BR.3 nd ATP5G1

nd = not determined.
a
RNAi clone overlapping with rpl-24.2, which is the relevant gene hit by this RNAi reagent. C03D6.1 was dropped from analysis after further investigation. See text for
details.

References cited in the table:
(1) (Yan et al. 2014; Sanchez et al. 2016)
(2) (Mummery-Widmer et al. 2009; Saj et al. 2010; Neumüller et al. 2011)
(3) (Mummery-Widmer et al. 2009; Saj et al. 2010; Neumüller et al. 2011)
(4) (Yan et al. 2014; Sanchez et al. 2016)
(5) (Lindquist et al. 2011)
(6) (Chauvin et al. 2014)
(7) (Yu et al. 2016)
Others compared but no overlap found:
(8) (Jia et al. 2015; Lee et al. 2017b)
(9) (Jia et al. 2015; Lee et al. 2017b)
(10) (Mummery-Widmer et al. 2009; Saj et al. 2010; Neumüller et al. 2011)
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http://www.wormbase.org/db/get?name=WBGene00012929;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012929;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001609;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012929;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012929;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001234;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001234;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001234;class=Gene
http://www.wormbase.org/db/get?name=WBGene00002993;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003003;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003014;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004437;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004436;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004437;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004436;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004437;class=Gene
http://www.wormbase.org/db/get?name=WBGene00020717;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012230;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012230;class=Gene
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http://www.wormbase.org/db/get?name=WBGene00010325;class=Gene
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http://www.wormbase.org/db/get?name=WBGene00012929;class=Gene
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http://www.wormbase.org/db/get?name=WBGene00001609;class=Gene
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http://www.wormbase.org/db/get?name=WBGene00006947;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004508;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001609;class=Gene


“Hedge” domain, obvious sequence orthologs of the canonical down-
stream components of the Hh pathway in other systems (Smoothened,
Cos2, Fu and Su(fu)) are not present (Aspock et al. 1999; Kuwabara
et al. 2000; Zugasti et al. 2005; Bürglin and Kuwabara 2006; Bürglin
2008), suggesting divergent function relative to Hedgehog in other
systems. In C. elegans, both the “Hh-related” and Patched gene families
are greatly expanded (�60 Hh-related genes, 3 patched orthologs
(though one is likely a pseudogene), 2 dispatched orthologs and
24 patched-related genes), and the single Gli ortholog, TRA-1, is
well-characterized for a role in sex-determination (Zarkower and
Hodgkin 1992). The Patched ortholog ptc-1 is required for normal
germ line cytokinesis and fertility, and ptc-3 is essential and

involved in osmoregulation (Kuwabara et al. 2000; Soloviev et al.
2011). Several patched-related genes are functionally redundant and
cause molting, growth and trafficking phenotypes (Zugasti et al. 2005),
and an ancestral role has been postulated for patched-like proteins in
sterol transport (Bürglin and Kuwabara 2006). Finally, RNAi targeting
of someHh-related ligands revealed similar phenotypes to the patched-
related genes (growth, molting, alae formation, and trafficking defects;
consistent with hypodermal expression (Aspock et al. 1999; Hao et al.
2006b), suggesting that “Hh-related” proteins and Patched may have
similar rather than antagonistic roles (Zugasti et al. 2005). However, no
previous role for Hh-related genes has been reported for GSC
maintenance.

Figure 5 GSC maintenance defects and functional interaction with rsks-1/S6K. (A) Penetrance of GSC defects in rrf-1(pk1417); glp-1(e2141) is
shown as percent of gonad arms that exhibit (1) no GSCs/progenitors, (2) a reduced progenitor pool, (3) a qualitatively normal progenitor pool, or
(4) display phenotypic abnormalities that precluded classification of the progenitor pool (Other). The X-axis indicates the identities of the indi-
vidual genes depleted by RNAi; 10-30 gonad arms scored per experiment. The 21 genes to the right (with the exception of C03D6.1 that was
shown to not influence GSC maintenance (Figure S4) and rps-8 that showed a high proportion of gonad arms in the ‘Other’ category and could
not be analyzed in the rsks-1 mutant background), plus eif-6 were analyzed further. �rpl-24.2 and C03D6.1 are targeted simultaneously in two
independent RNAi-inducing plasmids; see text and Figure S4 for details. (B) The Y axis indicates any positive difference between the percent of
gonad arms displaying the “Loss of GSCs” phenotype in rrf-1(0); glp-1(e2141) rsks-1(0) for gene-x RNAi and control RNAi (L4440) in parallel
experiments (n = 50-200 gonad arms were scored in total). RNAi targeting genes listed to the left did not exacerbate at all the loss of GSCs in rsks-
1(0) vs. rsks-1(+), and thereby act in a manner consistent with a linear relationship with rsks-1.
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The C. elegans “Hh-related” proteins have been classified into
4 groups based on sequence features (Bürglin 1996; Bürglin and Kuwa-
bara 2006; Bürglin 2008). All 10 “warthog (wrt)” family members con-
tain an N terminal “Wart” domain, but they can be subdivided into two
groups based on the presence (wrt-1, -4, -6, -7, -8) or absence (wrt-2, -3,
-5, -9, -10) of the C-terminal Hint/SSR (Hint/ARR or “Hog”) domain
(Bürglin 2008). C. elegansWRT-1, as expected based on the C terminal
similarity to Hh ligands in other organisms, undergoes autoproteolytic
cleavage (Porter et al. 1996). A handful of studies have investigated
specific Hh-related ligands: wrt-5 is essential, and mutants display a

variety of morphological defects (Hao et al. 2006a); and more recently,
wrt-8 and grl-16 were implicated in actin remodeling-dependent axon
guidance, a role uncovered by their transcriptional up-regulation in
jmjd-1.2 mutants (Riveiro et al. 2017).

Given the large wrt family and the possibility of functional redun-
dancy, we wondered whether other wrt family ligands may affect GSC
maintenance.We testedwrt-4,wrt-6, andwrt-10 byRNAi in glp-1(rf) and
in the glp-1(rf) rsks-1(0) double mutant (Figure 6B-D). We note that
although wrt-10 is the most divergent wrt family member, its genomic
location next to wrt-1 suggested they may share regulatory regions.

Figure 6 Hedgehog(Hh)-related genes wrt-1, wrt-4 and wrt-10 functionally interact with rsks-1/S6K to impact GSC maintenance in the glp-1(rf)
background. (A-D) Penetrance of “loss of GSCs” phenotype is shown as percent of gonad arms (Y-axis) that have no GSCs (black). Among those
that retain a progenitor pool, a reduced progenitor pool is indicated by dark gray and a qualitatively normal progenitor pool is indicated in light
gray. The few remaining gonad arms displayed phenotypic abnormalities that interfered with progenitor pool assessment. rrf-1 is rrf-1(pk1471),
rsks-1 is rsks-1(sv31),and glp-1(rf) is glp-1(e2141). In all cases, P . 0.05 for increased penetrance of the “loss of GSCs” phenotype in wrt-x RNAi
relative to control RNAi in the glp-1(rf) rsks-1 double mutant. (D) Although wrt-6 RNAi did not enhance the “loss of GSCs” phenotype in glp-1(rf), it
enhanced the proportion of animals with a qualitatively reduced progenitor zone (P , 0.0001). Statistics: 2-tailed Fisher’s exact tests for “loss of
GSCs” phenotype, �P # 0.05, ��P # 0.01, ���P # 0.001, ����P # 0.0001, see also Table S6.
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We found that likewrt-1, depletion of eitherwrt-10 orwrt-4, but notwrt-6,
significantly enhanced the “loss of GSC” phenotype in glp-1(rf) and that
neitherwrt-10 norwrt-4RNAi further exacerbated this defect in glp-1(rf)
rsks-1(0) double mutants (Figure 6). Thus, although not easily reconciled
by sequence relationships alone, at least three C. elegans wrt-family li-
gands influence GSC maintenance in a manner consistent with a linear
pathway with rsks-1/S6K. We speculate that functional redundancy
within this family may obscure its role in the germ line.

Several connections betweenHhandTORC1or S6Kare emerging in
other systems, but with one exception, they are not likely relevant to C.
elegans since they are smoothened-dependent and/or converge on Gli
(Filbin et al. 2013; D’amico et al. 2015; D’amico and Canettieri 2016;
Miyazaki et al. 2016; Kim et al. 2017). By contrast, in the Drosophila
ovary, S6K regulates Hh release rather than acting downstream of Hh.
In the presence of dietary cholesterol, Brother of ihog (Boi) is phos-
phorylated in an S6K-dependent manner (Hartman et al. 2013). As a
result, Boi tethers Hh in the absence of cholesterol, but releases it upon
phosphorylation to promote follicle stem cell proliferation. While an
obvious boi sequence ortholog is not present in the C. elegans genome,
Boi bears similarity to adhesion proteins in C. elegans. Regardless, our
findings provide a tractable model to explore potentially ancient roles
for Hog-domain ligands, and to investigate their functional relation-
ships with Notch and S6K.
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