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A B S T R A C T   

Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two 
decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we 
provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the 
shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the 
pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for 
modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ul-
timately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the com-
munity and the need for an academic society that bridges expertise in developmental neuroscience, clinical 
science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable 
mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, 
rather than adapted, for the young brain.   
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1. Introduction 

Research in fetal, infant, and toddler neuroimaging has steadily 
increased from an average of 160 publications per year during the 
1990’s, to roughly 530 in 2021. In a period of heightened scientific in-
terest and rapid technological advancements in neuroimaging in early 
life, it is timely to review how magnetic resonance imaging (MRI) 
became a tool to study the developing brain. Few may realize that the 
field of fetal, infant, and toddler neuroimaging first emerged in the 
1980s – shortly after the development of MRI. Since that time, we have 
learned an enormous amount about brain development. This review 
chronicles the parallel developments in the fields of fetal, infant, and 
toddler neuroimaging (noting a shift from clinical to research use) and 
the resolved and ongoing challenges in this fast-growing interdisci-
plinary field. We highlight several key advances in the field to illustrate 
how early developments both in MRI technology and basic research laid 
the groundwork for modern advances in early childhood imaging. We 
also highlight the major large-scale multi-site studies, key findings, and 
technological advancements that ultimately led to the explosion of in-
terest in the field today and propelled our understanding of the early 
development of the human brain. Lastly, we consider the growing pains 
of the community and the need for a society that bridges expertize in 
developmental neuroscience, clinical science, and computational and 
biomedical engineering to ensure special consideration of the vulnerable 
mother-offspring dyad, data quality, and image processing tools. 

In doing so, we introduce a new academic society, the Fetal, Infant, 
and Toddler Neuroimaging Group (FIT’NG), which aims to bring re-
searchers together whose work share the common goal of expanding our 
understanding of neurodevelopment during the first years of life. While 
the fetal period through toddlerhood is a large age range, cognitive 
development during this time is both formative and rapid. As such, an 
understanding of developmental milestones within this window is 
essential to advancing developmental science. FIT’NG is building a 
community for networking and collaborative endeavors and a platform 
for software and hardware developers (e.g., engineers, programmers, 
and physicists) and end users of the tools (e.g., psychologists, psychia-
trists, neonatologists, neuroscientists) to engage in constructive discus-
sions related to technological and methodological gaps in our 
knowledge. Such gaps are inherent to working with such young and 
vulnerable populations and require collaborative effort to be filled. 
Together, this manuscript reviews the history and accomplishments of 
the field of fetal, infant, and toddler neuroimaging (using MRI) during 
the past 40 years and the role that FIT’NG aims to play in its advance-
ment in the upcoming years. 

2. Historical context: A brief history of MRI 

MRI is a non-invasive imaging modality that was invented in the 
20th century (Lauterbur, 1973; Mansfield and Maudsley, 1977) and is 
widely used today for the study of the human body. At least six Nobel 
prizes between 1943 and 2003 were awarded to scientists for their 
groundbreaking work that led to the invention of MRI as we know it 
today. However, just as with any new area of research, many practical 
and technical challenges in the early years existed. The first MRI ma-
chine, named ‘Indomitable’ (Kleinfield, 2014), regularly leaked liquid 
helium and was too small to fit the first participant. It was only after 
several iterations of refinement that Indomitable produced the first 
image of a human chest; at this time, it took five hours to acquire an 
image (Damadian et al., 1977). In 1980, several publications demon-
strated the feasibility of brain imaging in adults (Hawkes et al., 1980; 
Holland, Hawkes et al., 1980; Holland and Moore et al., 1980). The first 
infant and fetal brain scans would not be documented until 1982 and 
1983, respectively (Levene et al., 1982; Smith et al., 1983). In 1984, 
following technological improvements, the Food and Drug Administra-
tion (FDA) approved the use of MRI for human imaging in the United 
States. Since then, MRI has become popular in both clinical and research 

settings. In 1995 there were 2785 MRI scanners in the United States 
(OECD, 2021). Today, there are approximately 13,278 MRI scanners, 
with approximately 42 million scans being performed annually in the 
United States alone (OECD, 2019, 2021). 

As accessibility to MRI increased, the images that were acquired also 
evolved. The earliest scans (in the 1980s) were largely structural and 
used to examine the anatomy and pathology of the brain. Soon, the 
advances in echo-planar imaging brought forth other neuroimaging 
modalities. Functional magnetic resonance imaging (fMRI) was devel-
oped in 1990 (Ogawa et al., 1990). fMRI measures changes in the 
spatiotemporal distribution of neural system physiology by measuring 
the blood oxygen level dependent (BOLD) signal (Anderson and Tho-
mason, 2013). By 1992, it was clear that the BOLD signal could be used 
as an indirect measure of neural activity (Kwong et al., 1992). Also in the 
1990’s, a new technique called diffusion weighted imaging (dMRI) 
emerged (Basser et al., 1994). Since water diffusion varies with the brain 
tissue microstructure, dMRI combined with tractography uses the 
anisotropic property of diffusion in a white matter axonal bundle to 
estimate the organization of connections (Huang, 2010; Kasprian et al., 
2008). These advancements in MRI data acquisition laid the foundation 
for the field of fetal, infant, and toddler neuroimaging. (See Fig. 1 for 
timeline of key developments in fetal, infant and toddler neuroimaging). 

3. Fetal MRI 

3.1. The early years (1980s) 

Fetal MRI was driven in large part by a clinical demand. The first 
report documenting imaging of fetuses and pregnant women was in 
1983 (Smith et al., 1983, 1984). At the time, there was insufficient in-
formation regarding the safety3 of this new technology for pregnant 
women and fetuses. Consequently, much of the research at this time was 
aimed at demonstrating the feasibility of this method and comparing the 
output of structural MRI to ultrasound. During most of the 1980s, MRI 
was used in pregnant women to evaluate maternal anatomy and pa-
thology (McCarthy et al., 1985; Weinreb et al., 1985), and fetal anatomy 
(Daffos et al., 1988; McCarthy et al., 1985). Particularly there was a need 
for defining congenital anomaly of the brain and early brain injury in the 
fetal period (Menticoglou et al., 1989; Sims et al., 1985). 

3.2. Maturation of sequences to improve structural MRI (1990s) 

By the 1990s, the use of MRI during pregnancy had increased sub-
stantially and was used as a complement to ultrasound when findings 
were not definitive (Girard et al., 1993), demonstrating its utility in 
certain clinical cases (Angtuaco et al., 1992). While providing unprec-
edented visual access to the developing fetus, image quality was dis-
torted by fetal movements and the mother’s breathing movements. To 
reduce fetal movement, various pharmacological methods (e.g., neuro-
muscular blocking agents) were introduced to sedate either the mother 
and/or fetus (Daffos et al., 1988; Girard et al., 1993; Horvath and Seeds, 
1989; Yuh et al., 1994). These techniques may pose risks for the fetus 
and pregnant women (e.g., Garel and Brisse, 1998), limiting them to 
clinically necessary scans, and necessitating the development of new 
data acquisition strategies to allow for research data collection in this 
vulnerable population. 

In the 1990s, new sequences, such as the single-shot rapid acquisi-
tion sequence with refocused echoes (HASTE), were developed (Tsu-
chiya et al., 1996; Yamashita et al., 1997). These new faster sequences 
reduced acquisition times to less than a second and propelled fetal MRI 
research forward. With the ability to visualize fetal anomalies with high 
contrast and precision (Coakley et al., 1999; Garel and Brisse, 1998; 

3 For further discussion of MRI safety see: Garel and Brisse (1998); Tocchio 
et al. (2015); Welsh et al. (2011) 
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Hubbard et al., 1999; Levine et al., 1997, 1998, 1999; Sonigo et al., 
1998), and to estimate fetal brain volumes (Gong et al., 1998), MRI was 
recognized as having superior accuracy (relative to ultrasound) in 
identifying fetal anomalies (Bilaniuk, 1999; Sonigo et al., 1998). 
Nevertheless, even with the advent of more rapid sequences, fetal and 
maternal movement remains an ongoing challenge and a number of 
clinical investigators continued using invasive pharmacological 
methods to reduce fetal activity until the end of the 1990s4 (Resta et al., 
1998). 

3.3. Emergence of echo-planar imaging in fetuses (2000–2010s) 

While structural MRI studies of fetuses flourished in the 1980s and 
1990s, it would not be until the early 2000s that fMRI and dMRI studies 
in fetuses were published. In 1999, Hykin and colleagues performed the 
first fetal fMRI study (Hykin et al., 1999). This work provided evidence 
of fetal brain activity in utero, in response to an auditory stimulus, which 
was later replicated in a larger sample (Moore et al., 2001). Forthcoming 
task-based fMRI studies in fetuses assessed brain responses to visual 
stimuli (i.e., a light source shone at the maternal abdomen; Fulford et al., 
2003) and vibroacoustic stimuli (Fulford et al., 2004). Similarly, 
maternal speech has shown evidence for cortical sensory activation at 
the beginning of the third trimester (Jardri et al., 2012) and maternal 
singing has shown activation of the fetal auditory network and Heschl’s 
gyrus (Goldberg et al., 2020). These study designs were later combined 
with exciting developments in the analysis capabilities with fetal fMRI 
data including methods for automatic brain extraction, segmentation, 
registration, and reconstruction of the moving fetal brain (Caldairou 
et al., 2011; Keraudren et al., 2014; Kim et al., 2010; Kuklisova--
Murgasova et al., 2012; Rousseau et al., 2016; Seshamani et al., 2014, 
2013; You et al., 2016). While challenges exist (see Dunn et al., 2015 for 
a review), these foundational studies have allowed for deeper interro-
gation of the intrinsic functional connectivity of the fetal brain. 

After these early task fMRI studies in fetuses, many fMRI researchers 
shifted their focus to functional connectivity – functionally integrated 
association between the BOLD time courses of spatially distinct brain 
regions – collected in the absence of external structured stimuli (i.e., 
during “resting state”). While a variety of phenotypic information are 
thought to stem from patterns of functional connectivity (Liao et al., 
2017), it was not until 2012 that researchers discovered that resting 
state networks are detectable in utero (Schöpf et al., 2012). Subsequent 
longitudinal studies demonstrated that the proximal and distal connec-
tions between different brain networks form over the second half of the 

pregnancy and peak between 27 and 30 weeks (Jakab et al., 2014). 
These foundational studies provided key insight into the organization 
and development of fetal brain networks. 

The 2000s were also characterized by expansion of structural im-
aging as fetal dMRI began to emerge. This modality revealed new details 
about the microstructural changes that occur in fetal brain development 
(Huang, 2010; Jakab et al., 2017). Critically, this work was made 
possible by concurrent advancements in dMRI sequence development. 
dMRI studies are especially sensitive to motion (both from the mother 
and fetus). Thus, this work relied heavily on work that shortened dMRI 
scan times (Kim et al., 2008; Norris and Driesel, 2001; for review see 
Studholme, 2011). 

3.4. Current trends 

Several trends have emerged in fetal imaging that are currently 
shaping the focus of the field. Here we highlight a few of them. 

3.4.1. Brain development from the second to third trimester 
Recent work has continued to utilize fetal MRI to characterize brain 

development over the course of pregnancy (Dubois et al., 2014; Khan 
et al., 2019; Wilson et al., 2021), providing new insights into brain 
development prior to birth. Fetal MRI has also been used for 
gestational-age equivalent controls for preterm infants (Bouyssi-Kobar 
et al., 2016; De Asis-Cruz et al., 2020; Khan et al., 2019). In large part, 
this work has been made possible by new methodological advancements 
in MRI acquisition techniques and analysis pipelines (Fogtmann et al., 
2014; Kim et al., 2010; Marami et al., 2017; Pontabry et al., 2017; 
Rutherford et al., 2021; Seshamani et al., 2013). 

3.4.2. Predicting postnatal development 
Recently, fetal MRI has been used to predict postnatal development 

(Turk et al., 2019; van den Heuvel and Thomason, 2016; Vasung et al., 
2019). This includes pinpointing patterns of brain development in the 
fetus in association with both typical behaviors, such as motor devel-
opment (Schöpf et al., 2014; Thomason et al., 2018) and atypical out-
comes, such as autism spectrum disorder (Hulshof et al., 2021; 
Sanz-Cortes et al., 2014; Villa et al., 2021). For example, recent work has 
identified in utero markers of preterm birth (Story et al., 2021; Thoma-
son et al., 2017) – including reduced connectivity in cortical regions 
associated with language and reduced cerebrospinal fluid and cerebral 
cortex volume. However, at present, predicting clinically relevant, 
long-term individual outcomes from fetal MRI data remains unreliable 
and requires further refinement (Hart et al., 2020). 

Fig. 1. Timeline of key events in the history of fetal, infant and toddler MRI imaging.  

4 Although not the majority, some groups continue to use sedation today. 
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3.4.3. Prenatal exposures/maternal factors 
Several lines of work have also begun to explore how maternal fac-

tors and prenatal exposures (e.g., maternal anxiety, obesity, stress, and 
toxins such as alcohol) shape fetal brain development (De Asis-Cruz 
et al., 2020; Norr et al., 2021; van den Heuvel et al., 2021). This work 
has begun to pinpoint the factors that influence brain development 
before birth. 

In sum, while the field of fetal MRI has faced several challenges such 
as lack of fetal-specific computational pipelines and hardware (Serai 
et al., 2013), and no uniform best practices for data acquisition, 
harmonization, and integration, it has provided us with unprecedented 
access to investigate the developing brain in utero and has demonstrated 
the potential for important clinical applications. 

4. Infant and toddler MRI 

4.1. The early years (1980s) 

Like fetal MRI, much of the infant and toddler MRI, in the early 
1980s, was driven by clinical need, often focused on individuals with 
brain injury (typically in preterm infants). Although studies during this 
time generally included participants between birth and 5 years of age in 
a single group, this work provided proof-of-concept that MRI was safe to 
use in infants and children (Smith, 1983) and could be used to measure 
many aspects of brain injury (Johnson et al., 1983; Levene et al., 1982; 
McArdle et al., 1987a,b). Thus, just as for fetal MRI, infant and toddler 
MRI research began in the 1980s with early work focused on the use of 
MRI in a clinical context and demonstrating safety of the technology. 

4.2. Larger studies focusing on infancy (late 1980–1990s) 

In the latter half of the 1980s and into the 1990s, with safety 
established and increased accessibility to scanners, the field shifted to-
wards narrower age ranges and larger sample sizes (up to 160 infants in 
some cases). For example, with sample sizes of 90 newborns, scientists 
were able to document variation in white matter maturation (Barkovich 
et al., 1988). During this time, forerunner scientists also began to un-
derstand how early brain injury corresponded to later developmental 
outcomes (Barkovich et al., 1998; Lago et al., 1995; Mercuri et al., 1999; 
Mercuri et al., 1999; Robertson et al., 1999; Rutherford et al., 1991, 
1998), more than twenty years before similar studies with fetal MRI. 
Again, several studies of preterm infants paved the way to understand-
ing the development of white matter microstructure (Fujii et al., 1993; 
Hüppi et al., 1998a,b; McArdle et al., 1987b; Sie et al., 1997) and as-
sociations between the brain and cognitive outcomes (Hüppi et al., 
1996; Pike et al., 1994). 

4.3. Emergence of an independent research field (2000–2010s) 

In the early 2000s, several notable research trends emerged that 
helped to establish the potential of this exciting field. 

4.3.1. Beginning of longitudinal cohorts 
Most infant and toddler neuroimaging work before the 2000s relied 

on cross-sectional imaging (Gilmore et al., 2007b,a; Lin et al., 2008). 
However, the need for longitudinal cohorts with imaging at multiple 
time points to truly assess developmental trajectories soon became clear 
(Dyet et al., 2006). Some were successful at building large longitudinal 
cohort studies starting in infancy at a single site (Gilmore et al., 2006; 
Inder et al., 1999a,b; Looney et al., 2007; Maalouf et al., 1999), while 
others combined their resources to build collaborative cohorts across 
institutes (e.g., the Newborn Individualized Developmental Care and 
Assessment Program (NIDCAP; Als et al., 2004; Mewes et al., 2006) and 
the Infant Brain Imaging Study (IBIS; https://autismbabybrain. 
com/infant/; Wolff et al., 2012). Together, these studies demonstrated 
robust growth of the human brain in the first two years of life (Garcia 

et al., 2018; Knickmeyer et al., 2008), and highlighted alterations in 
growth trajectories that are associated with neurodevelopmental risk 
(Gao et al., 2009; Gilmore et al., 2007b; Hazlett et al., 2011, 2017; 
Kapellou et al., 2006; Shen et al., 2013). 

These early collaborations set the stage for funding agencies, such as 
the National Institutes of Health (NIH) to initiate large-scale studies of 
early human brain development that assembled consortiums across 
research institutions. The NIH MRI Study of Normal Brain Development 
was, to our knowledge, the first large-scale longitudinal MRI study 
conducted with healthy infants and toddlers (Almli et al., 2007; Evans, 
2006; Sanchez et al., 2012). This seven-year study enrolled over 500 
children (across 6 U.S.-based institutions), including over 100 children 
between birth and 4 years of age. The goal was to establish a database of 
healthy MRI data from the first few years of life that could be used as a 
standard for identifying pathologies (Sanchez et al., 2012). 

4.3.2. Infant MRI to identify risk for neurodevelopmental disorders 
In the 2000s, researchers also began to use infant MRI to identify 

early markers of risk for neurodevelopmental disorders (e.g., autism 
spectrum disorder, developmental dyslexia). Early structural MRI 
studies compared brain morphometry of infants and toddlers with and 
without neurodevelopmental disorders (Courchesne et al., 2001; Hazlett 
et al., 2005; Sparks et al., 2002). However, in the mid- 2000s there was a 
shift toward measuring brain changes before behavioral symptoms of 
impairment emerged (Gilmore et al., 2010; Hüppi and Dubois, 2006; 
Krishnan et al., 2007; Langer et al., 2017; Peterson, 2000; Sylvester 
et al., 2018; Woodward et al., 2006). 

4.3.3. Emergence of infant and toddler resting-state fMRI 
Just as fetal fMRI experienced a rapid expansion in the 2000s, so too 

did infant and toddler fMRI; though, infant and toddler fMRI studies 
predated those in fetuses by approximately four years. Early resting state 
fMRI studies in preterm infants have been the long-time workhorse in 
infant imaging and have taught us a great deal about the brain. For 
example, some of the earliest studies indicating that the BOLD signal can 
be reliably identified in infants and is similar to that found in adults were 
originally conducted in preterm cohorts (Arichi et al., 2010; Fransson 
et al., 2007; Heep et al., 2009). These findings were replicated in healthy 
full-term infants (Fransson et al., 2009; Gao et al., 2009; Smyser and 
Neil, 2015). Pivotal findings identified that while most resting state 
networks are found in infancy, preterm infants exhibited immature 
forms of some adult resting state networks (Smyser et al., 2010); sug-
gesting that the last trimester of gestation shapes network development 
(Damaraju et al., 2010; Doria et al., 2010). Disruption to brain networks 
in infants from the neonatal intensive care unit at term-equivalent age 
has been found to be predictive of developmental impairment (Linke 
et al., 2018). To date, studies on preterm infants make up roughly one 
third of all infant imaging research (Cabez et al., 2019; Hüppi et al., 
1996; Krishnan et al., 2007; Peterson, 2000; Rogers et al., 2017; 
Woodward et al., 2006). 

4.3.4. Emergence of infant and toddler dMRI 
Over the course of the 2000s, there were parallel developments in 

dMRI mapping postnatal white matter development (Counsell et al., 
2003; Dubois et al., 2006; Hüppi et al., 2001; Hüppi and Dubois, 2006; 
Krishnan et al., 2007). Early dMRI work focused on feasibility of 
acquisition and analysis—often concentrating on preterm samples 
(Berman et al., 2005; Maas et al., 2004; Partridge et al., 2005) and those 
with brain damage (Agid et al., 2006; Baldoli et al., 2002). This initial 
feasibility work led the way for research characterizing white matter 
maturation in typically developing samples (Bui et al., 2006; Dubois 
et al., 2006; Hüppi and Dubois, 2006; Kasprian et al., 2008). While some 
similarities exist in the methods for acquisition and post-processing 
analysis of infant versus toddler dMRI, differences in the tissue matu-
ration, with low white matter myelination, have required several 
methodological advancements that are age-specific. The development of 
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these tools has been essential to the growth of this area of research 
(Bastiani et al., 2019; Dubois et al., 2014; Hutter et al., 2018; Tournier 
et al., 2020). 

4.4. Current trends 

Currently, several research trends have received increased attention 
from researchers and funding agencies alike. These approaches aim to 
improve data acquisition and to establish developmentally sensitive 
markers for identifying those most at risk of developing illness. 

4.4.1. Infant specific equipment 
Historically, MRI technology was not designed for use in these 

populations and thus there were major challenges (and still are in many 
places) regarding access and acquisition quality. These challenges have 
historically made it difficult to engage manufacturers in discussions 
about improving these issues. However, recently several key advance-
ments have been made from a technology standpoint. In 2017, the 
United States FDA cleared the first neonatal intensive care unit (NICU) 
MRI—installed at Brigham and Women’s Hospital in the United States 
(Partners Healthcare, 2018). This regulatory clearance facilitated 
growth in the development of infant specific hardware including the 
development of the Embrace ® MRI System (Rona et al., 2010), a 
neonatal MRI machine used directly in their NICU, and infant 
size-adaptive head coils (Ghotra et al., 2021; Hughes et al., 2017). These 
new technologies make conducting infant/toddler MRIs more accessible 
and improve data quality. 

4.4.2. Task-based fMRI in infants and toddlers 
Renewed interest in task-based fMRI, both in sleeping (Adam-Darque 

et al., 2018; Allievi et al., 2016; Dall’Orso et al., 2018, 2021; Graham 
et al., 2013; Sylvester et al., 2021; Wild et al., 2017) and awake infants 
and toddlers (Baxter et al., 2019, 2021; Biagi et al., 2015; Deen et al., 
2017; Ellis et al., 2021), has expanded the early work of 
Dehaene-Lambertz and others (Anderson et al., 2001; Arichi et al., 2012; 
Dehaene-Lambertz, 2002; Dehaene-Lambertz et al., 2006). This area of 
research has been one of the slowest to progress, with many in-
vestigators paving the way by spending years refining protocols to 
optimize infant comfort during MRI scans (Raschle et al., 2012). 

4.4.3. Open-source datasets and tools 
With an increasing interest in early intervention and prediction of 

future developmental outcomes, the need for larger sample sizes com-
bined with longitudinal imaging through early childhood to identify 
age-specific versus persistent brain markers of emerging risk became 
clear. Two large-scale connectome projects, the Developing Human 
Connectome Project (dHCP; http://www.developingconnectome.org; 
Bastiani et al., 2019; Bozek et al., 2018; Fitzgibbon et al., 2020; Hughes 
et al., 2017; Makropoulos et al., 2018) and the Baby Connectome Project 
(BCP; https://babyconnectomeproject.org/; Howell et al., 2019) 
amassed datasets including longitudinal scans from over 2000 partici-
pants ranging from 20 to 45 weeks post-conception to age five years. 
This work stemmed from a growing interest in creating dynamic maps of 
brain connectivity during early life, and factors that impact their 
development (Eyre et al., 2021). Large-scale datasets have also allowed 
for normative modeling of brain development (Dimitrova et al., 2020, 
2021; Eyre et al., 2021; O’Muircheartaigh et al., 2020). In parallel, there 
has been tremendous growth in software dedicated to processing infant 
neuroimaging data including: Infant FreeSurfer (Zollei et al., 2020), 
Infant Brain Extraction and Analysis Toolbox (iBEAT; Dai et al., 2013), 
Melbourne Children’s Regional Infant Brain (M-CRIB; Adamson et al., 
2020) and Automated Segmentation tool (AutoSeg; Wang et al., 2014) 
for structural data analysis, neonatal diffusion MRI (Bastiani et al., 
2019) for diffusion tensor imaging data, and resting-state data pro-
cessing pipelines (Fitzgibbon et al., 2020). 

The NIH has recently expanded this line of work with the HEALthy 

Brain and Child Development Study (HBCD; https://heal.nih.gov/rese 
arch/infants-and-children/healthy-brain; Jordan et al., 2020; Kohlasch 
et al., 2021), set to launched in fall 2021 (planning phase started in 
2018). This project grew out of the acknowledgment that discovering 
causal links between early experiences (i.e., substance use, environ-
mental exposures, and adversity) and future health outcomes is complex 
and requires large prospective studies with detailed assessments of 
brain, behavior, genetics, and environmental contexts. As such, the goal 
of this project is to track neurodevelopmental trajectories from 0 to age 
10 to determine how early experiences shape brain development and 
health outcomes and to illuminate factors associated with risk and 
resilience. In many ways, the fact that eight institutes at the NIH have 
come together to fund this large, multi-site, multi-modal, longitudinal 
research project is reflective of a broader trend of collaborative common 
protocol endeavors. 

5. The need for a community to mature the field 

While impressive advances have been made in fetal, infant, and 
toddler imaging over the past 40 years, several key challenges remain 
related to data acquisition and analysis (Dubois et al., 2021; Raschle 
et al., 2012). These challenges necessitate novel approaches for the field 
to collectively resolve (Hughes et al., 2017). For example, the field has 
yet to establish best practices for key features of this work, including 
how to account for data acquisition during natural sleep versus awake 
(Smyser and Neil, 2015), improve the resolution of the data acquired 
from a machinery standpoint (Cusack et al., 2018), and maximize the 
possibility of acquiring data at different ages (Graham et al., 2015). 
Determining best practices requires transparency that many researchers 
want but lack the avenue to achieve. If such an avenue existed, it would 
allow experts in the field to come together to share what procedures 
have/have not worked for them, and to share associated software and 
data. 

The need for greater collaboration has led to the creation of special 
interest groups and academic societies focused on neurodevelopment 
during the fetal and infant period. The International Perinatal Brain and 
Behavior Network (IPBBN), a special interest group of the International 
Society for Developmental Psychobiology (established in 2007; https:// 
babybrain.isdp.org/), aims to advance research of prenatal, perinatal, 
and early postnatal human development, and to support new in-
vestigators in this area. In 2015, the Newborn Brain Society (NBS) was 
established (https://newbornbrainsociety.org) in response to several 
neonatal neurocritical care programs launching worldwide and ques-
tions about their efficacy. The NBS has since grown to have the broader 
goal of advancing newborn brain care through international collabora-
tion. To date, NBS leadership is largely comprised of clinicians and in-
dividuals with research programs focused on brain injury. These 
initiatives opened channels of communication for either clinician sci-
entists or developmental scientist with a foci on the perinatal to 
newborn periods. Still missing was a community forum for those inter-
ested in neurodevelopmental trajectories during the most rapid periods 
of brain growth—fetal through toddler age, and scientists with diverse 
backgrounds (e.g., clinicians, engineers) interested in early brain 
development. Critically, studying brain changes over this period has 
several unique challenges both in terms of acquisition and analysis. The 
challenges of longitudinal neuroimaging remained tangential to both 
the IPBBN and NBS’s primary aims. 

6. Building a new community – Introduction to FIT’NG 

In response to this gap, the Fetal, Infant, Toddler Neuroimaging Group 
(FIT’NG) is an academic society founded in 2018 that aims to provide a 
forum for early childhood neuroimaging researchers, including those 
technical experts (“developers,” e.g., engineers, physicists, etc.) and 
applied researchers (“appliers,” e.g., psychologists, neuroscientists, 
psychiatrists, neonatologists, etc.) (Fig. 2). FIT’NG communication 
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among developers and appliers is focused around three core areas: 
establishing best practices within the field (e.g., scan time, staffing, 
preparatory procedures for scanning, data harmonization); community 
exchange and collaboration (e.g., sharing processing and analysis tools, 
sharing data); and education (e.g., training across institutions at a range 
of levels). 

Members of FIT’NG work in diverse departments across medical and 
main university systems, and thus attend various scientific meetings. 

FIT’NG members are often a small subgroup of researchers at the con-
ferences they attend, and consequently, they lack the community needed 
at these meetings to meaningfully advance the field. FIT’NG seeks to 
establish that community and to highlight the value and innovation in 
the fast-growing area of early childhood neuroimaging research. To 
facilitate interactions and provide a common space for connection, 
FIT’NG has organized annual pre-conference workshops and several 
conference symposia since its inception at international meetings 
focused on infant, developmental neuroscience, and neuroimaging 
research (Fig. 3). Since our first full-day pre-conference workshop in 
2019 entitled “FIT’NG In: Establishing Best Practices for Infant Neuro-
imaging” at the Flux Congress, our annual workshops have expanded 
from 60 to over 250 participants. In addition to pre-conference work-
shops at FLUX and the International Congress on Infant Studies (ICIS), 
FIT’NG has hosted symposiums, some in collaboration with the National 
Institutes of Health partners and social gatherings at other societal 
meetings that different pockets of scientists in our field attend to further 
strengthen our sense of community. These formal and informal dialogs 
and gatherings are essential to the advancement of the field, as they 
provide a starting point to move toward consensus of best practice 
standards. Individuals interested in FIT’NG can join our listserv, follow 
us on Twitter (@FIT_NGIn), and/or become members via our website 
https://fitng.org/. Members have on-demand web access to materials 
created to facilitate training in FIT imaging including tutorials on how to 
use infant-specific software, discussions of recent papers that are of 
broad interest, and interviews with leaders in the field among other 
benefits detailed on our website. These materials are curated and 
maintained by our trainee-led committee, FIT’NG Together, and offer an 
opportunity for trainees to identify key topics that they believe would 
advance their training. 

In 2020, we incorporated – becoming an official non-profit society. 
Unfortunately, the COVID-19 pandemic has limited the initiatives that 
FIT’NG has been able to launch to be virtual and has limited research on 
the developing brain because pregnant women and infants/toddlers are 
particularly vulnerable to COVID-19. For this reason, we have post-
poned our inaugural meeting until 2022. In 2021, we held a one-day 

Fig. 2. FIT’NG aims to provide a forum for early childhood neuroimaging re-
searchers, including those who have technical expertize (e.g., engineers, 
physicists) and applied researchers (e.g., psychologists, psychiatrists, 
neonatologists). 

Fig. 3. Scientific events and activities organized by FIT’NG.  
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virtual workshop entitled “FIT’NG All Ages: Advantages and Challenges 
of Longitudinal Fetal, Infant, and Toddler Neuroimaging.” This as well 
as our other prior events sets the stage for an annual meeting in per-
petuity and a connected community of multidisciplinary scientists who 
will advance the field. FIT’NG is currently in the process of expanding to 
include scientists using modalities other than MRI (including EEG, 
fNIRS, MEG, and ultrasound) to facilitate new directions in the study of 
brain development. 

7. Conclusion 

Over the course of 40 years, fetal, infant, and toddler neuroimaging 
has seen a rapid maturation as a research field from small safety and 
proof of concept studies to massive, large-scale NIH and international 
initiatives. To celebrate the pioneering science of the field and appre-
ciate just how far we have come, this review documents a brief high-
lights’ reel of this maturation. Nevertheless, many challenges continue 
to exist in fetal, infant, and toddler neuroimaging that hinder its growth 
and that cannot be solved in silos. FIT’NG provides a forum for com-
munity building, scientific collaboration, and communication of new 
advancements in the field. 
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