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ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) enables
the characterization of transcriptomic profiles at
the single-cell resolution with increasingly high
throughput. However, it suffers from many sources
of technical noises, including insufficient mRNA
molecules that lead to excess false zero values,
termed dropouts. Computational approaches have
been proposed to recover the biologically meaning-
ful expression by borrowing information from sim-
ilar cells in the observed dataset. However, these
methods suffer from oversmoothing and removal of
natural cell-to-cell stochasticity in gene expression.
Here, we propose the generative adversarial net-
works (GANs) for scRNA-seq imputation (scIGANs),
which uses generated cells rather than observed
cells to avoid these limitations and balances the per-
formance between major and rare cell populations.
Evaluations based on a variety of simulated and real
scRNA-seq datasets show that scIGANs is effective
for dropout imputation and enhances various down-
stream analysis. ScIGANs is robust to small datasets
that have very few genes with low expression and/or
cell-to-cell variance. ScIGANs works equally well on
datasets from different scRNA-seq protocols and is
scalable to datasets with over 100 000 cells. We
demonstrated in many ways with compelling evi-
dence that scIGANs is not only an application of

GANs in omics data but also represents a compet-
ing imputation method for the scRNA-seq data.

INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) revolutionizes
the traditional profiling of gene expression, making it able
to fully characterize the transcriptomes of individual cells
at the unprecedented throughput. A major problem for
scRNA-seq is the sparsity of the expression matrix with a
tremendous number of zero values. Most of these zero or
near-zero values are artificially caused by technical defects
including but not limited to insufficient mRNA molecules,
low capture rate and sequencing depth, or other technolog-
ical factors so that the observed zero does not reflect the
underlying true expression level, which is called dropout
(1). A pressing need in scRNA-seq data analysis remains
identifying and handling the dropout events that, other-
wise, will severely hinder downstream analysis and atten-
uate the power of scRNA-seq on a wide range of biological
and biomedical applications. Therefore, applying computa-
tional approaches to address problems of missingness and
noises is very important and timely, particularly considering
the increasingly popular and large amount of scRNA-seq
data.

Several methods have been recently proposed and widely
used to address the challenges resulted from excess zero
values in scRNA-seq. MAGIC (1) imputes missing ex-
pression values by sharing information across similar cells,
based on the idea of heat diffusion. ScImpute (2) learns
each gene’s dropout probability in each cell and then
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imputes the dropout values borrowing information from
other similar cells selected based on the genes unlikely af-
fected by dropout events. SAVER (3) borrows information
across genes using a Bayesian approach to estimate unob-
served true expression levels of genes. DrImpute (4) impute
dropouts by simply averaging the expression values of simi-
lar cells defined by clustering. VIPER (5) borrows informa-
tion from a sparse set of local neighborhood cells of similar
expression patterns to impute the expression measurements
in the cells of interest based on nonnegative sparse regres-
sion models. Meanwhile, some other methods aim at the
same goal by denoizing the scRNA-seq data. DCA (6) uses
a deep count autoencoder network to denoise scRNA-seq
datasets by learning the count distribution, overdispersion,
and sparsity of the data. ENHANCE (7) recovers denoized
expression values based on principal component analysis
on raw scRNA-seq data. During the preparation of this
manuscript, we also noticed another imputation method
DeepImpute (8), which uses a deep neural network with
dropout layers and loss functions to learn patterns in the
data, allowing for scRNA-seq imputation.

While existing studies have adopted varying approaches
for dropout imputation and yielded promising results, they
either borrow information from similar cells or aggregate
(co-expressed or similar) genes of the observed data, which
will lead to oversmoothing (e.g. MAGIC) and remove nat-
ural cell-to-cell stochasticity in gene expression (e.g. scIm-
pute). Moreover, the imputation performance will be sig-
nificantly reduced for rare cells, which have limited in-
formation and are common for many scRNA-seq studies.
Alternatively, SCRABBLE (9) attempts to leverage bulk
data as a constraint on matrix regularization to impute
dropout events. However, most scRNA-seq studies often
lack matched bulk RNA-seq data and thus limit its prac-
ticality. Additionally, due to the non-trivial distinction be-
tween true and false zero counts, imputation and denoizing
need account for both the intra-cell-type dependence and
inter-cell-type specificity. Given the above concerns, a deep
generative model would be a better choice to learn the true
data distribution and then generate new data points with
some variations, which are then independently used to im-
pute the missing values and avoid overfitting.

Deep generative models have been widely used for miss-
ing value imputation in fields (10–12), however, other than
scRNA-seq. Although a deep generative model was used
for scRNA-seq analysis (13), it’s not explicitly designed for
dropout imputation. Among deep generative models, gener-
ative adversarial networks (GANs) have evoked increasing
interest in the computer vision community since its first in-
troduction in 2014 (14). GANs has become an active area
of research with multiple variants developed (15–19) and
holds promising in data imputation (20) because of its ca-
pability of learning and mimicking any distribution of data.
Given the great success of GANs in inpainting, we hypothe-
size that similar deep neural net architectures could be used
to impute dropouts in scRNA-seq data.

In this study, we propose scIGANs, a GANs framework
for scRNA-seq imputation (Figure 1A and Supplementary
Figure S1). Inspired by its established applications in in-
painting, we convert the expression profile of every single
cell to an image, wherein the pixels are represented by the

normalized gene expression. And then dropout imputation
becomes the process of inpainting an image by recover-
ing the missing pieces that represent the dropout events.
Because of the inherent advantages of GANs, scIGANs
does not impose an assumption of specific statistical dis-
tributions for gene expression levels and dropout probabil-
ities. It also does not force the imputation of genes that
are not affected by dropout events. Moreover, scIGANs
generates a set of realistic single cells instead of directly
borrowing information from observed cells to impute the
dropout events, which can avoid overfitting for the cell type
of big population and meanwhile promise enough impu-
tation power for rare cells. We systematically evaluate the
performance of scIGANs and compare it with 11 state-of-
the-art scRNA-seq imputation methods using three sim-
ulated and 19 real datasets measured across different ex-
perimental protocols (Figure 1B and Supplementary Table
S1). We demonstrate its superior performance in recovering
the biologically meaningful expression, identifying subcel-
lular states of the same cell types, improving differential ex-
pression and temporal dynamics analysis. ScIGANs is ro-
bust to the dataset that has a small number of genes with
low expression and cell-to-cell variance. Additionally, scI-
GANs works equally well on datasets generated by different
scRNA-seq protocols and is well scalable to data size.

MATERIALS AND METHODS

The idea and design of scIGANs

Generative adversarial networks (GANs), first introduced
in 2014 (14), evoked much interest in the computer vision
community and has become an active area of research with
multiple variants developed (15–19). Inspired by its excel-
lent performance in generating realistic images (21–25) and
recent application to generating realistic scRNA-seq data
(26), we propose scIGANs, the generative adversarial net-
works for scRNA-seq imputation (Figure 1A). The basic
idea is that scIGANs can learn the non-linear gene–gene de-
pendencies from complex, multi-cell type samples and train
a generative model to generate realistic expression profiles
of defined cell types (26). To train scIGANs, the real single-
cell expression profiles are first reshaped to images and fed
to GANs, wherein each cell corresponds to an image with
the normalized gene expression representing the pixel (Fig-
ure 1A and Supplementary Figure S1A). The generator gen-
erates fake images by transforming a 100-dimensional latent
variable into single-cell gene expression profiles (Supple-
mentary Figure S1A). The discriminator evaluates whether
the images are authentic or generated. These two networks
are trained concurrently whilst competing against one an-
other to improve the performance of both (Figure 1A).

Once trained, the generative model is used to generate
scRNA-seq data of defined cell types. And then we propose
to infer the true expression of dropouts from the generated
realistic cells. The most important benefit of using gener-
ated cells instead of the real cells for scRNA-seq imputa-
tion is to avoid overfitting for the cell type of big popula-
tion but insufficient power for rare cells. The generator can
produce a set of cells of any number with the expression pro-
files faithfully characterizing the demand cell type; then the
k-nearest neighbors (KNN) approach is used to impute the
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Figure 1. Overview of generative adversarial networks for single-cell RNA-seq imputation and systematic evaluations. (A) The high-level architecture of
scIGANs. The expression profile of each cell is reshaped to a square image, which is fed to the GANs (Supplementary Figure S1A). The trained generator
is used to generate a set of realistic cells that are used to impute the raw scRNA-seq expression matrix (Supplementary Figure S1B). KNN, k-nearest
neighbors. MSE, mean squared error. (B) A schematic view of the datasets and strategies used for benchmark comparison between scIGANs and other 11
imputation methods. Colored bars in the right panel indicate the corresponding analyses and evaluations present in the result sections and datasets defined
in the left panel. Also see Supplementary Figure S1.

dropouts of the same cell type in the real scRNA-seq data
(Supplementary Figure S1B). The scIGANs is implemented
in Python and R and compiled as a command-line tool
compatible with both CPU and GPU platform. The core
model is built on the PyTorch framework and adopted to
accommodate scRNA-seq data as input. It’s publicly avail-
able at https://github.com/xuyungang/scIGANs.

The strategy for scIGANs training

Training the GANs is a strategy to define a game be-
tween two competing networks. The generator network
maps a source of noise to the input space. The discrim-

inator network receives either a generated sample or a
true data sample and must distinguish between the two.
The generator is trained to fool the discriminator. For-
mally, the game between the generator G and discrimina-
tor D is the minimax objective min

G
max

D
E

x∼Pr

[log(D(x))] −
E

x̃∼Pg

[log(1 − D(x̃))]; where D is the discriminator that can

be any network, Pr is the real data distribution and Pg
is the model distribution implicitly defined by x̃ =
G(z), z ∼ p(z); G is the generator which can be any net-

work, z can be sampled from any noise distribution p,
such as the uniform distribution or a spherical Gaussian
distribution.

https://github.com/xuyungang/scIGANs
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It is difficult to train the original GANs model since
minimizing the objective function corresponds to mini-
mizing the Jensen-Shannon divergence between Pr and
Pg, which is not continuous for the generator’s param-
eters. Earth-Mover (Wasserstein-1) distance W(q, p) is
used to deal with such difficulty (27). Such a model is
called Wasserstein GANs(WGANs) which the objective
function is constructed as min

G
max
D∈D E

x∼Pr

[D(x)] − E
x̃∼Pg

[D(x̃)];

where D is the set of 1-Lipschitz function, the defini-
tion of other symbols are the same as the original GANs
model. To enforce the Lipschitz constraint on the critic,
one can clip the weights of the critic to lie within a
compact space [−c, c]. The set of functions satisfying
this constraint is a subset of the k-Lipschitz functions
for some k which depends on c and the critic architec-
ture. Researchers introduced an alternative way to en-
force the Lipschitz constraint, usually called improved
WGANs(IWGANs), which is widely used in training
GANs models (19). The objective is min

G
max
D∈D E

x̃∼Pg

[D(x̃)] −
E

x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(‖ ∇x̂ D(x̂)‖2 − 1)2]; where x̂ is sampled

from the straight lines between pairs of points sampled from
the real data distribution and the generator distribution. λ is
a predefined parameter. BEGAN (28) is an equilibrium en-
forcing method paired with a loss derived from the Wasser-
stein distance (19) for training auto-encoder based Genera-
tive Adversarial networks. The BEGAN objective is:

⎧⎨
⎩

LD = L(x) − kt. L(G(zD)) for θD

LG = L(G(zD)) for θG

kt+1 = kt + λk(γ L(x) − L(G(zD))) for each training step t

where

L (ν) = |ν − D (ν)|η where

⎧⎨
⎩

D : RNx �→ R
Nx is the autoencoder function.

η ∈ {1, 2} is the target norm.

ν ∈ R
Nx is a sample of dimension Nx

BEGAN uses Proportional Control Theory to maintain
the balance between the generator and discriminator losses
which is relaxed with the introduction of a new hyper-
parameter γ ∈ [0, 1] defined as γ = E[L(G(z))]/E[L(x)].
This is implemented using a variable kt ∈ [0, 1] to control
how much emphasis is put on L(G(zD)) during gradient de-
scent. We initialize k0 = 0. λk is the proportional gain for k;
in machine learning terms, it is the learning rate for k. We
used 0.001 as default for scIGANs and all experiments in
this manuscript. In essence, this can be thought of as a form
of closed-loop feedback control in which kt is adjusted at
each step to maintain equation γ = E[L(G(z))]/E[L(x)].
In this work, we use this method to train our scIGANs.

The procedures for scIGANs training and dropout imputation

To be noted that scIGANs is designed scalable to the
datasets with any number of cell types and genes, though we
here assume an example dataset with 9 cell types and 32*32
= 1024 genes to elucidate how it works. The generator net-
work of scIGANs is defined as G(z, Laz; θ ). The inputs of
the generator are: z ∼ norm(0, 1), and label Laz ∼ U(1, 9).
Denote θ as the parameters need to be learned. The genera-
tor is defined as following the steps (Supplementary Figure
S1A):

1. Do transposed convolution on z by GConv1 1 and get
the tensor zn of dimension (32,32,32).

2. Do transposed convolution on Laz by GConv1 2 and get
the tensor Lan of dimension (8,32,32).

3. Concatenate zn and Lan to get GConcat1 of dimension
(40,32,32).

4. Do convolution on GConcat1 by GConv2 1 and
GConv2 2 to get the tensor of dimension (1,32,32),
which is the output of the Generator.

The discriminator network is defined as D(x, Lax; w).
The inputs of discriminator are samples of real data x ∼
Pr (or x̃ ∼ Pg) representing the reshaped expression profile
of an individual cell, and label of x(or x̃) denoted by Lax
representing the cell type or subpopulation. Denote w as
the parameters need to be learned. The discriminator is de-
fined as following the steps (Supplementary Figure S1A):

1. Do convolution on x or x̃ by DConv1 1 and get the ten-
sor of dimension (16,32,32).

2. Do convolution on Lax by DConv1 2 and get the tensor
of dimension (16,32,32).

3. Concatenate results of steps (1) and (2) as Dconcat1,
which is a tensor of the dimension (32,32,32).

4. Convert the Dconcat1 to a vector of length 16 using a
fully connected network (FCN).

5. Do convolution on the result of step (4) by GConv2 1
and GConv2 2 to get the tensor of dimension (1,32,32),
which is the output of the Discriminator.

With a well-trained GANs model, for a given cell ci
which belongs to the subpopulation Kci , we generate a can-
didate set AKci with ncan expression profiles. Denote c′

i knn
as the k nearest neighbors using Euclidian distance in the
set AKci . We then use the following equation to impute
j th gene in the cell ci (Supplementary Figure S1B): ĉi, j =
{ci, j , i f ci, j > 0

c′
iknn, j , else .

Data processing and normalization

The data of a scRNA-seq study are usually organized as a
read count matrix with N rows representing genes and M
columns representing cells, which is the input of scIGANs.
Since scIGANs is trained similarly to the training for image
processing, we need to transfer the expression profile of each
cell to a grayscale image (Supplementary Figure S1A). To
this end, scIGANs firstly normalizes the raw count matrix
by the maximum read count of each sample (cell) so that
all genes of each sample will have the expression values in a
[0,1] range. scIGANs then reshapes the expression profile of
each cell to a square image in a column-wise manner, with
the normalized gene expression values representing the pix-
els of the image. The image size will be n × n, where n is the
minimum integer so that n × n ≥ N. If the gene number is
less than n × n, extra zeroes will be filled. Then, a scRNA-
seq matrix with M cells will be represented as M grayscale
images and used to train a conditional GANs with the cell
labels.
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Simulated scRNA-seq datasets

We first simulated a simple scRNA-seq data with 150 cells
and 20180 genes using the default CIDR simulation func-
tion scSimulator(N = 3, k = 50) (29). Three cell types
are generated with 50 cells for each [dataset in Supplemen-
tary Table S1: CIDR sim]. The raw data has a dropout
rate of 52.8%. Figure 2A, Supplementary Figure S2A, and
Table S2 are derived from this data. We then tested the
performance of different imputation methods on differ-
ent dropout rates simulated by Splatter (30). We took the
same simulation strategy used by SCRABBLE (9) with the
same parameters for the Splatter simulator. Specifically,
three scRNA-seq datasets with three different dropout rates
(71%, 83% and 87%) were simulated; each dataset has 800
genes and 1000 cells grouped into three clusters (cell types)
[dataset in Supplementary Table S1: Splatter sim]. Supple-
mentary Figure S2B–E and Table S3 were derived from
these datasets. To test the robustness of imputation meth-
ods, we repeated 100 times of the above Splatter simula-
tions and generated 100 datasets for each of the above three
different dropout rates [dataset in Supplementary Table S1:
Splatter sim100]. Figure 2B, Supplementary Figure S3A–F,
and Table S4 (EXCEL) were derived from these datasets.

Real scRNA-seq datasets

Human brain scRNA-seq data. We used scRNA-seq data
of 466 cells capturing the cellular complexity of the adult
and fetal human brain at a whole transcriptome level
[dataset in Supplementary Table S1: Human brain] (31).
Tag tables were downloaded from the data repository
NCBI Gene Expression Omnibus (GEO access number:
GSE67835) and combined into one table with columns rep-
resenting cells and rows representing genes. We excluded the
uncertain hybrid cells and remained 420 cells in eight cell
types with the expression of 22 085 genes. This dataset was
used to generate Figure 2C-D, Supplementary Figure S3G,
and Table S5.

ERCC spike-in RNAs scRNA-seq data. In a scRNA-seq
dataset for mESCs (32) [dataset in Supplementary Table S1:
ERCC], ERCC spike-in RNAs were added to each cell and
sequenced. ERCC spike-in RNAs consist of 92 RNA tran-
scripts in the length of 250–2000 nt, which are widely used in
scRNA-seq experiments to remove the confounding noises
from biological variability. Since spike-in RNAs are added
to samples with the identical amount to capture the techni-
cal noise, the readout for the spike-in RNAs should be free
of cell-to-cell variability and the detected variance of expres-
sion, if exists, should only come from technical confounders
other than biological contexts (e.g. cell types). Therefore,
the expression profiles of spike-in RNAs that were added
to individual cells should not be able to cluster these cells
into different subgroups regarding cell types or other bio-
logical states. Therefore, we used the ERCC spike-in read
counts from the real scRNA-seq data for mESCs to evalu-
ate the imputation methods on denoizing the technical vari-
ation without introducing extra noise. This data was used to
generate Figure 2E and Supplementary Figure S3H-I, and
Table S6.

Cell-cycle phase scRNA-seq data. To evaluate the perfor-
mance of different imputation methods on identifying dif-
ferent cellular states of the same cell type, we analyzed a
single-cell RNA-seq data from mESCs (32) [dataset in Sup-
plementary Table S1: Cell cycle phase]. A set of 96 asyn-
chronously dividing cells for each cell-cycle phase of G1,
S and G2M was captured using the Fluidigm C1 system,
and sequencing libraries were prepared and processed. In
this dataset, 288 mESCs were profiled and characterized by
38293 transcripts with a dropout rate of 74.4%. This dataset
was used to generate Figure 3A, B and Supplementary Fig-
ure S4, and Table S7. Specifically, the cell states of individual
cells in Figure 3B and Supplementary Figure S4B were in-
ferred by R package Seurat (v3.1) based on a collection of
predefined cell cycle marker genes (33,34).

Mouse ESC scRNA-seq dataset for cell-cycle dynamics.
Mouse embryonic stem cells (mESC) were profiled using the
droplet-microfluidic scRNA-seq approach with 1 biologi-
cal replicate (933 cells) and two technical replicates (2509
and 3443 cells for each) [dataset in Supplementary Table S1:
Mouse ESC]. The processed count matrix was downloaded
from Gene Expression Omnibus (GEO) with the access ID
GSE65525. All other 11 imputation methods and scIGANs
were used to impute the raw matrix with an exception that
SCRABBLE and DrImpute failed to impute this data be-
cause take longer than a month to finish the imputation.
This data was used to generate Figure 3C and Supplemen-
tary Figure S4C–N.

Cell cycle dynamics assessment was performed according
to Figure 6E and F of reference (35). Briefly, the Pearson’s
correlation was applied among a list of previously catego-
rized 44 cell-cycle genes based on their expression across
these ∼6.8k cells. Genes were ordered by hierarchical clus-
tering on the correlation matrix and their previously catego-
rized cell-cycle phases were indicated as linked dots repre-
senting cell-cycle oscillations (Figure 3C and Supplemen-
tary Figure S4C–N). Clustering measurements were also
applied to the gene clusters against their pre-assigned cell-
cycle phased (barplots in Figure 3C and Supplementary
Figure S4C–N), which represent the performances of im-
putation methods by clustering the cell-cycle genes across
cells.

Human ESC scRNA-seq dataset for differential expres-
sion analysis. To compare the performance of different
imputation methods on detecting differentially expressed
genes (DEGs), we utilized a dataset with both bulk and
single-cell RNA-seq experiments on human embryonic
stem cells (ESC) and the differentiated definitive endoderm
cells (DEC) (36) [dataset in Supplementary Table S1: Hu-
man ESCs]. This dataset includes six samples of bulk RNA-
seq (four for H1 ESC and two for DEC) and scRNA-seq of
350 single cells (212 cells for H1 ESC and 138 cells for DEC).
The percentage of zero expression is 14.8% for the bulk
dataset and 49.1% for the single-cell dataset. This dataset
was used to generate Figure 4 and Supplementary Figures
S5–S7.

We used scIGANs and 11 other imputation methods to
impute the gene expression for single cells and then used
DESeq2 (37) to perform differential expression analysis
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on the raw and 11 imputed data, respectively. DEGs are
genes with the absolute log fold changes (H1/DEC) ≥ 1.5,
adjust-P ≤ 0.05, and base mean ≥ 10. Taking the DEGs
from bulk RNA-seq data as the gold standard, the overall
performances of DEG detection from imputed scRNA-seq
datasets were defined as the correspondences of DEGs be-
tween bulk RNA-seq and scRNA-seq (Figure 4A). To more
fairly quantitate the performance of DEG detection using
scRNA-seq data, we took the DEG detection as the pro-
cess of predicting a gene is DEG or not, based on the gold
standard from bulk RNA-seq. Then we calculated the ac-
curacy (ACC), F score (also F1-score or F-measure), and
the area under the receiver operating characteristic curve
(AUC) for each DEG detection from the imputed scRNA-
seq datasets. The overall performance was defined as the
average of the above three measurements (Figure 4B). Ad-
ditionally, a set of top 1000 DEGs (500 best up-regulated
and 500 best down-regulated genes based on the adjust-P
values) from bulk RNA-seq data were used to calculate the
correlations between log fold changes of DEGs from bulk
and single-cell RNA-seq datasets. between scRNA-seq and
bulk RNA-seq data (Figure 4C and Supplementary Figure
S5). To further illustrate the improvement of imputation on
DEG detection, five signature genes highlighted in Figure
1C of the source paper (37) for H1 and DEC, respectively,
were plotted out (Figure 4D and Supplementary Figure S6).
The expression of two marker genes (SOX2 for H1 cell and
CXCR4 for DEC cell) were overlaid to the UMAP space of
single cells to show the expression signature of these two cell
types (Figure 4E, F and Supplementary Figure S7).

Time-course scRNA-seq data for cellular trajectory anal-
ysis. We utilize a time-course scRNA-seq data derived
from the differentiation from H1 ESC to definitive endo-
derm cells (DEC) (36) [dataset in Supplementary Table S1:
Time cousre]. A total of 758 cells were profiled at 0 (cell
number n = 92), 12 (n = 102), 24 (n = 66), 36 (n = 172),
72 (n = 138) and 96 (n = 188) hours after inducing the dif-
ferentiation from H1 ESCs to DECs (Figure 5A). We apply
scIGANs and all other 11 imputation methods to the raw
scRNA-seq data with known time points and then recon-
struct the trajectories using Monocle3 (38). This dataset was
used to generate Figure 5 and Supplementary Figure S8.

Subsampled scRNA-seq datasets

We subsampled the scRNA-seq data derived from human
embryonic stem cells (ESC) and the differentiated defini-
tive endoderm cells (DEC) (36). This dataset has expres-
sion profiles of 350 single cells (212 for H1 ESC and 138 for
DEC) across 19 097 genes. Three different sampling strate-
gies were used to generate different sub-datasets for robust-
ness tests. These datasets were used to generate Figure 6 and
Supplementary Figure S9.

1) datasets with a subset of genes that have top- and
lower-mean of expressions across all 350 cells, denoted
as mean.top and mean.low (Supplementary Table S1).
Specifically, the expression matrix (genes in rows and
cells in columns) was sorted by the row-wise means (de-
scending) and the first and last 5000 genes were selected,

representing two subsets with high and low expressions,
respectively. Then 1024 (32*32) genes were randomly
picked from these 5000 genes to generate the two test
datasets, mean.top and mean.low with the zero-rate of
6.34% and 97.25%, respectively.

2) datasets with a subset of genes that have top- and lower-
standard deviation (sd) of expressions across all 350
cells, denoted as sd.top and sd.low (Supplementary Ta-
ble S1). Specifically, the expression matrix (genes in rows
and cells in columns) was sorted by the row-wise stan-
dard deviation (descending) and the first and last 5000
genes were selected, representing two subsets with high
and low expression standard deviations, respectively.
Then 1024 (32*32) genes were randomly picked from
these 5000 genes to generate the two test datasets, sd.top
and sd.low with the zero-rate of 8.72% and 92.42%, re-
spectively.

3) dataset with a subset of 1024 genes randomly selected
from all 19097 genes, denoted as global.random (Sup-
plementary Table S1). It has the zero-rate of 49.51%.

Cross-platform scRNA-seq datasets

To evaluate how scIGANs works equally well for dif-
ferent scRNA-seq protocols/platforms, we collected a
cross-platform benchmark dataset derived from 3 hu-
man lung adenocarcinoma cell lines, including H1975,
H2228 and HCC827 (39). The three cell lines were
mixed equally and processed by 10X Genomics/Chromium,
CEL-seq2/Fluidigm, and Drop-seq/Droplet, by which the
datasets were generated and referred to as sc 10X, sc CEL-
seq2 and sc Drop-seq, respectively (Supplementary Table
S1). We clustered the cells and calculate the clustering met-
rics based on the raw matrix and matrix imputed by dif-
ferent methods (Figure 7A-B, Supplementary Figures S10–
S11, and Table S8). We also calculated the Spearman cor-
relation coefficients between the expression profiles of the
same cell types from different sequencing methods (Figure
7C and Supplementary Figure S12A). Taking H1975 cell
between sc 10X and sc CEL-seq2 as an example, the Spear-
man correlation coefficients were calculated for each cell-
cell pair, of which one H1975 cell from the sc 10X dataset
and the other H1975 cell from the sc CEL-seq2 dataset.
Figure 7C and Supplementary Figure S12A are plotted us-
ing a random subsample of 500 cell-cell pairs for each com-
parison.

scRNA-seq datasets with different cell numbers

To test the scalability of scIGANs and 11 other im-
putation methods to data sizes, we created a set of
scRNA-seq datasets by randomly sampling 1000
(pmbc 1k), 5000 (pmbc 5k), 25000 (pmbc 25k),
50 000 (pmbc 50k) and 100 000 (pmbc 100k) cells
from the PMBC 10k dataset (Supplementary Ta-
ble S1, https://support.10xgenomics.com/single-cell-
gene-expression/datasets/3.0.0/pbmc 10k v3). These
datasets were used to test the running time and mem-
ory usage of each method on different data sizes
(cell numbers). All methods were tested on a sin-
gle node of the TACC Lonestar 5 (LS5) system

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3
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(https://portal.tacc.utexas.edu/user-guides/lonestar5).
Specifically, we assessed the scalability to the data sizes
of each method by computational time (in hours) and
memory usage (in gigabytes, GB) using the values ‘Elapsed’
and ‘AveRSS’ from the job information returned from
Slurm command sacct. To be noted that, some methods
were failed on some datasets because they need either more
than 48 h (Failed T) or more than 64 GB of the memory
(Failed M), which exceeds the limit of the TACC Lonestar
system (Supplementary Table S9). Correspondingly, these
failed jobs were assigned 49 hours for running time and
65GB for memory usage, respectively, so that all methods
can be plotted at all data points in Figure 7D and Sup-
plementary Figure S12B. scIGANs was also tested on an
in-house GPU system configured with one NVIDIA Tesla
V100 32GB Graphic Card, from which the measurements
are labeled as scIGANs GPU in Figure 7D, Supplementary
Figure S12B and Table S9.

Implementation

ScIGANs is implemented in Python (>2.7) and R (>3.6)
with a Linux/Unix wrapper script. An expression matrix
of the single cells is the only required input file. Optionally,
a file with the cell labels (cell type or subpopulation infor-
mation) can be provided to direct scIGANs for cell type-
specific imputation. If there are no prior cell labels provided,
scIGANs will pre-cluster the cells using a spectral clustering
method. ScIGANs can run on either CPUs or GPUs. The
output is the imputed expression matrix of the same dimen-
sions, of which only the true zero values will be imputed
without change other expression values.

Quantitative measurements of single-cell clusters

We used 11 numeric metrics to quantitate the clustering of
single cells. RI, the Rand index, is a measure of the simi-
larity between two data clusters. ARI, the adjusted Rand
index, is adjusted for the chance grouping of elements.
MI, mutual information, is used in determining the sim-
ilarity of two different clusters of a dataset. As such, it
provides some advantages over the traditional Rand in-
dex. AMI, adjusted mutual information, is a variation of
mutual information used for comparing clusters. VI, the
variation of information, is a measure of the distance be-
tween two clusters and a simple linear expression involv-
ing the mutual information. NVI the normalized VI. ID
and NID refer to the information distance and normalized
information distance. All these metrics are computed us-
ing clustComp() from R package ‘aricode’ (https://cran.r-
project.org/web/packages/aricode/). F score (also F1-score
or F-measure) is the harmonic mean of precision and re-
call. AUC, the area under the receiver operating charac-
teristic (ROC) curve, is the probability that a classifier will
rank a randomly chosen positive instance higher than a
randomly chosen negative one. ACC, accuracy. The above
three classification metrics are defined by comparing the in-
dependent clustering of cells to the true cell labels. Clus-
tering was done using prediction() from the R package
SC3 (40). The in-house R scripts for these metrics are pro-
vided in the codes for reproducibility (https://github.com/
xuyungang/scIGANs Reproducibility).

Statistical information

All statistical tests are implemented by R (version 3.6.1).
Specifically, the Pearson correlation tests (Figure 4C and
Supplementary Figure S5) were done by the R function
cor.test() with default parameters; the student’s t-tests (Fig-
ure 6C, D and Supplementary Figure S9) were done by
the R function t.test() with default parameters; the dif-
ferentially expressed genes (DEGs) were identified by DE-
Seq2 with the P-adjust ≤ 0.05, log2FoldChange ≥ 1.5, and
baseMean ≥ 10 (Figure 4A–C and Supplementary Figure
S5); the Spearman correlation were done by the R function
cor() with default parameters (Figure 7C and Supplemen-
tary Figure S12A).

RESULTS

ScIGANs recovers single-cell gene expression from dropouts
without inflicting extra noise

Recovery of the biologically meaningful expression from
dropout events is the major goal of scRNA-seq imputation
to benefit the downstream analyses and biological discov-
eries. We use both simulated and real scRNA-seq datasets
to illustrate the performance and robustness of scIGANs in
rescuing dropouts and avoiding additional noise from im-
putation (Supplementary Table S1).

First, simulated datasets are used to evaluate the impu-
tation performance since they have known ‘truth’ and can
thus benchmark different methods. In a single dataset with
a 52.8% zero rate that was simulated according to an inde-
pendent single-cell clustering method CIDR (29), scIGANs
performs superiorly over all other 11 methods in recover-
ing the gene expression and cell population clusters (Figure
2A and Supplementary Figure S2A; Table S2). Although
GANs is a supervised model that requires pre-defined cell
labels, we implemented scIGANs to accommodate scRNA-
seq data without prior labels, instead to learn the labels by
applying spectral clustering (41) on the input data. Trained
by the same simulated data without labels (scIGANs w/o),
scIGANs slightly reduces the performance but still holds
the superiority over the other 11 compared methods, ex-
cept for scImpute (2) (Figure 2A and Supplementary Figure
S2A; Table S2).

Second, we test the performance of scIGANs and other
methods on datasets with different dropout rates simulated
by Splatter (30). ScIGANs ranks in the top in rescuing the
population clusters (Supplementary Figure S2B-D) and has
the highest resistance to dropout rate increase (Supplemen-
tary Figure S2E; Table S3). Moreover, to evaluate the ro-
bustness of imputation methods, we use the same simulation
strategy described by SCRABBLE (42) to repeat the above
Splatter simulation 100 times for each dropout rate. We
evaluate the performance by multiple quantitative cluster-
ing metrics (Supplementary Table S4). The second-ranked
SCRABBLE performs superiorly over all other 10 meth-
ods; however, it has worse concordance among simulated
replicates with a higher dropout rate (Figure 2B). In con-
trast, scIGANs ranks at the top among all methods and has
the most robust performance among the replicates with in-
creasing dropout rates (Figure 2B and Supplementary Fig-
ure S3A–F; Table S4).

https://portal.tacc.utexas.edu/user-guides/lonestar5
https://cran.r-project.org/web/packages/aricode/
https://github.com/xuyungang/scIGANs_Reproducibility
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Figure 2. ScIGANs recovers single-cell gene expression from dropouts without extra noise. (A) The UMAP plots of the CIDR simulated scRNA-seq data
for Full, Dropout, and imputed matrix by 12 methods. Multiple clustering measurements are provided in Supplementary Figure S2A and Table S2. (B)
The adjusted rand index (ARI), a representative clustering measurement to indicate performance and robustness of all methods on the Splatter simulated
data with three different dropout rates (71%, 83%, and 87%) and 100 replicates for each. Full list of clustering measurements provided in Supplementary
Table S4. (C) The selected UMAP plots of real scRNA-seq data for the human brain. (D) The selected clustering measurements for the scRNA-seq data
of the human brain. ACC, accuracy; AUC, area under the curve of ROC (receiver operating characteristics); F score, the harmonic mean of precision
and recall; NMI, normalized mutual information. The full list of all considered clustering measurements is provided in Supplementary Table S5. (E) The
evaluation of robustness in avoiding extra noise using scRNA-seq data of spike-in RNAs. All UMAP plots are provided in Supplementary Figure S3H.
Also see Supplementary Figures S2 and S3.

Third, we evaluate the imputation methods using a real
scRNA-seq dataset from the Human brain, which contains
420 cells in eight well-defined cell types after we exclude un-
certain hybrid cells (31). However, the raw data doesn’t show
clear clustering of all cell types because of the dropouts and
technical noise. After imputation, scIGANs enhances the
cell type clusters to the maximum extent so that all eight cell
types could be separated and identified (Figure 2C). Quanti-
tative evaluations of the clustering following different impu-
tation methods highlight the superiority of scIGANs over
the others, even trained without the prior cell labels (Figure
2D and Supplementary Figure S3G; Table S5).

Last, we test another important yet difficult to quantify
robustness, i.e. to what extent the imputation method will
not introduce extra noise by, for example, mistakenly imput-
ing biological ‘zeros’ or over-imputation. None of the exist-
ing imputation methods evaluated their robustness in avoid-
ing extra noise using real scRNA-seq data. Spike-in RNAs
(e.g. ERCC spike-in developed by the External RNA Con-
trols Consortium) are a common set of external RNA con-
trols that are equally added to an RNA analysis experiment
after sample isolation. It is widely used in scRNA-seq ex-
periments to remove the confounding noises from biological
variance. Because the spike-in RNAs are added to samples
with the identical amount to capture the technical noise, the
readout for the spike-in RNAs should be free of cell-to-cell

variability and the detected variances of expression, if exists,
should only come from technical confounders other than bi-
ological contexts (e.g. cell types). Therefore, the expression
of spike-in RNAs that were added to individual cells should
not be able to cluster these cells into different subgroups,
such as cell types or other biological states. We here use the
ERCC spike-in read counts from a real scRNA-seq study
(32) to evaluate the imputation methods on denoising the
technical variance without introducing extra noise. These
92 ERCC RNAs were added to 288 single-cell libraries of
three sets of 96 cells with different cell-cycle states. However,
the raw counts failed to cluster these cells into one cluster
due to the dropouts of spike-in RNAs (Figure 2E). We ex-
pect that the imputation can impute the artificial zeros with-
out exposing the variability of cell states to spike-in pro-
files and thus all cells should have the same spike-in profiles
and will be clustered into a single group. ScIGANs success-
fully recovers the spike-in profiles with minimum cell-to-
cell variability and clustered all cells closely into one group,
even though it was trained with supervisory cell labels (Fig-
ure 2E and Supplementary Figure S3H-I). However, other
imputation methods suffer from introducing extra noises
and thus make the clustering even worse (Supplementary
Figure S3H, I; Table S6). Altogether, scIGANs performs
superiorly on imputing the dropouts and avoiding extra
noise.
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Figure 3. ScIGANs enables the identification of cell-cycle states and dynamics. (A) The UMAP plots of the real scRNA-seq data for cell-cycle states of
homogeneous mouse ESCs. The full list of all clustering metrics is provided in Supplementary Figure S4A and Table S7. (B) Cells are projected to the
cell-cycle phase spaces based on a collection of cell-cycle marker genes. The plots for all other methods are provided in Supplementary Figure S4B. (C)
Cell cycle dynamics are shown as the hierarchical clustering of 44 cell-cycle-regulated genes across 6.8k mouse ESCs. Full dynamic cell-cycle profiles from
the scRNA-seq data before and after imputation by different methods are provided in Supplementary Figure S4C–N. The barplots show the quantitative
concordance between the assigned cell-cycle phases by hierarchical clustering and the true phases that these genes serve as the markers. F score, the
harmonic mean of precision and recall; AUC, area under the curve of ROC (receiver operating characteristics); ACC, accuracy. Also see Supplementary
Figure S4.

ScIGANs enables the identification of subcellular states of
the homogeneous cell population

Single-cell RNA-seq is typically used to identify different
cell types from heterogeneous tissues or cell populations.
However, cell populations that seem homogeneous, in terms
of expression of cell surface markers, comprise many dif-
ferent cellular states with hidden cell-to-cell variability that
can have significant effects on cell function (43,44), such
as cellular functions, developmental stages, cell cycle phase,
and adjacent microenvironments. Therefore, many biolog-
ical discoveries require deeper investigation beyond the
cell types towards implied cellular states, such as cell-cycle
phases of the same cell type. It was reported that cell cycles
contribute to phenotypic and functional cell heterogeneity
even in monoclonal cell lines (45–47). However, identifying
the cell-cycle phases of individual cells from a homogeneous
cell population is more challenging for scRNA-seq data
due to the prevalence of dropout and high technical vari-
ance, which was recently reported more attributable than
cell cycle to the single-cell transcriptomic variability (46).
We thereby test how imputation could benefit the identifi-
cation of cell cycle variability from two scRNA-seq studies
(Supplementary Table S1).

First, we reanalyze a scRNA-seq dataset from mouse
embryonic stem cells (mESC) that were sorted for G1, S
and G2M phases of the cell cycle (32). Due to the dropout
and other technical noise, the raw data does not show clus-

ter structures regarding the three different cell-cycle phases
(Figure 3A) and has the poorest clustering measurements
(Supplementary Figure S4A). All other imputation meth-
ods fail to recover the cluster structure regarding the cell-
cycle states (Figure 3A and Supplementary Figure S4A; Ta-
ble S7). Only scIGANs shows significant improvement in
detecting cell-cycle states with the best performance (Figure
3A and Supplementary Figure S4A). Using a collection of
independently predefined cell-cycle marker genes from Seu-
rat (33,34), scIGANs significantly improves the identifica-
tion of the cell cycle states superior over all other methods,
shown as the most of sorted cells are correctly assigned in
the cell-cycle phase spaces (Figure 3B and Supplementary
Figure S4B).

Second, we assess the performance of different imputa-
tion methods on pinpointing the cell-cycle dynamics us-
ing a large scRNA-seq data of about 6.8k mouse ESCs
(35). The previous work confirmed that ES cells lack strong
cell-cycle oscillations in mRNA abundance, but they do
show evidence of limited G2/M phase-specific transcrip-
tion (35). Imputation by scIGANs significantly improved
the cell-cycle oscillations with especially a more obvious
G2/M phase-specific transcription (Figure 3C and Supple-
mentary Figure S4C-N). All the above results demonstrate
that scIGANs performs better than all other methods on re-
covering and capturing the subcellular states and very sub-
tle cell-cycle dynamics among single cells of the homoge-
neous population.
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Figure 4. ScIGANs increases the correspondence between single-cell and bulk differential expression analysis. (A) The correspondence of differentially
expressed genes (DEGs) between bulk and single-cell RNA-seq with different imputation approaches. The yellow and green bars (connoted dots) highlight
the poorest agreement of AutoImpute and scGAIN with all other methods. (B) The barplots show the performances of DEG detections from raw and
imputed scRNA-seq datasets based on the gold standard defined by the bulk RNA-seq dataset. F score, the harmonic mean of precision and recall; AUC,
area under the curve of ROC (receiver operating characteristics); ACC, accuracy; Comb., the combined overall performance as the average of the AUC,
ACC and F score. (C) The correlations between log fold-changes of differentially expressed genes from bulk and single-cell RNA-seq datasets. Detailed
legends and the plots of results from all other imputation methods are provided in Supplementary Figure S5. (D) The expression for one of five selected
signature genes of H1 and DEC cells, respectively. All plots of other genes with different imputation methods are provided in Supplementary Figure S6.
(E, F) The UMAP plots of the single cells overlaid by the expression of SOX2 and CECR4, which is the marker gene of H1 and DEC cells, respectively.
Raw (E) and scIGANs imputed (F) data are shown and data from all other methods are provided in Supplementary Figure S7. Also see Supplementary
Figures S5–S7.

ScIGANs improves the differential expression analysis

Differential expression analysis refers broadly to the task
of identifying those genes with expression levels that de-
pend on some variables, like cell type or state. Ultimately,
most single-cell studies start with identifying cell popula-
tions and characterizing genes that determine the cell types
and drive them different from one to another. Using the
scRNA-seq data (36) that have matched bulk RNA-seq data
(Supplementary Table S1), we compare the performances of
different imputation methods on improving the identifica-
tion of differentially expressed genes (DEGs). This dataset
has six samples of bulk RNA-seq (four for H1 ESC and
two for definitive endoderm cells, DEC) and 350 samples
of scRNA-seq (212 for H1 ESC and 138 for DEC). DE-
Seq2 (37) is used to identify DEGs for both bulk and single-
cell RNA-seq data between the H1 and DEC cells. The
raw scRNA-seq has a much higher zero expression rate
than bulk RNA-seq (49.1% versus 14.8%) and shares fewest
DEGs with bulk samples (Figure 4A). After imputation, the
number of DEGs is increased toward the DEGs numbers
of bulk samples (except the four other deep learning-based
methods, AutoImpute (48), DCA (6), DeepImpute (8) and

scGAIN (49), which detect much fewer DEGs than raw
data). Especially highlighted by the yellow and green bars
in Figure 4A, the AutoImpute and scGAIN detect signif-
icantly fewer DEGs and show the poorest agreement with
other methods. In contrast, scIGANs imputation identifies
the highest number of dataset-specific DEGs and shares a
significant number of DEGs with bulk RNA-seq (Figure
4A). To more fairly quantitate the performance of DEG
detection using scRNA-seq data, we define the accuracy
(ACC), F score (also F1-score or F-measure), and the area
under the receiver operating characteristic curve (AUC) for
each DEG detection from the imputed scRNA-seq datasets,
by taking DEGs from bulk RNA-seq as the gold standard
(refer to Materials and Methods for details). The overall
performance was defined as the average of the above three
measurements. ScIGANs ranks in second place with scIm-
pute, slight behind VIPER (Figure 4B).

Additionally, we use a set of top 1000 DEGs from bulk
samples (500 up-regulated and 500 down-regulated genes)
as a benchmark to evaluate the correspondence of DEG de-
tection between single-cell and bulk RNA-seq data. With-
out exception, scIGANs-imputed scRNA-seq data show
the highest correspondence with bulk RNA-seq, depicted
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Figure 5. scIGANs improves time-course scRNA-seq data analysis and
reconstructing differentiation trajectory. (A) The time points of scRNA-
seq sampling along with the differentiation from the pluripotent state (H1
cells) through mesendoderm to definitive endoderm cells (DEC). (B, C)
The trajectories reconstructed by monocle3 from the raw (C) and scIGANs
imputed (D) scRNA-seq data. (D, E) The expression dynamics of two
pluripotent (left) and DEC (right) signature genes are shown in the order
of the pseudotime. The plots of all other imputation methods are provided
in Supplementary Figure S8. Also see Supplementary Figure S8.

as the most number of shared top 1000 DEGs and highest
correlation of the fold-changes versus bulk RNA-seq (Fig-
ure 4C and Supplementary Figure S5). Moreover, the ex-
pressions of five marker genes for H1 and DEC cells are
investigated to compare the extent to which the imputation
methods recover the expression patterns of signature genes.
Results show that scIGANs best reflect the expression sig-
natures of both H1 and DEC cells by removing undesirable
variation resulted from dropouts (Figure 4D and Supple-
mentary Figure S6). Projection of cells to the UMAP space
overlaid by the expression of signature genes furtherly high-
lights the performance of scIGANs on recovering the ex-
pression patterns of signature genes (Figure 4E, F and Sup-
plementary Figure S7). In summary, scIGANs improves the
identification of DEGs from scRNA-seq data with the best
performance among other competing methods.

ScIGANs enhances the inference of cellular trajectory

Beyond characterizing cells by types, scRNA-seq also
largely benefits organizing cells by time-course or develop-
mental stages, i.e. cellular trajectory. In general, trajectory
analysis starts with reducing the dimensionality of the ex-
pression data, then reconstructs a trajectory along which
the cells are presumed to travel, and finally projects each cell
onto this trajectory at the proper position. Although single-
cell experiments can illuminate trajectories in a wide variety
of biological settings (38,50–52), none of the single-cell tra-
jectory inference methods account for dropout events. We

speculate that inferring the cellular trajectory on scRNA-
seq data after imputation could improve the accuracy of
pseudotime ordering. We utilize a time-course scRNA-seq
data derived from the differentiation from H1 ESC to defini-
tive endoderm cells (DEC) (36). A total of 158 cells were
profiled at 0, 12, 24, 36, 72 and 96 h after inducing the
differentiation from H1 ESCs (Figure 5A and Supplemen-
tary Table S1). We apply scIGANs and all other 11 im-
putation methods to the raw scRNA-seq data with known
time points and then reconstruct the trajectories using Mo-
cocle3 (38). Imputation by scIGANs produces the high-
est correspondence between the inferred pseudotime and
real-time course (Figure 5B-C and Supplementary Figure
S8), suggesting that scIGANs recovers more accurate tran-
scriptome dynamics along the time course. We also investi-
gate the signature genes of pluripotency (e.g. NANOG and
POU5F1) and DECs (e.g. CER1 and HNF1B) and find
that scIGANs improves the gene expression dynamics af-
ter imputation (Figure 5D, E) and has better performance
than other imputation methods (Supplementary Figure S8).
These results demonstrate that scIGANs can help to im-
prove the single-cell trajectory analysis and recover the tem-
poral dynamics of gene expression.

ScIGANs is robust to the small dataset of few genes with low
expression or cell-to-cell variance

In general, other imputation methods (e.g. SAVER (3) and
scImpute (2)) heavily rely on a set of pre-selected informa-
tive genes that are highly expressed and unlikely to suffer
from the dropout. Imputation is then performed from the
most similar cells defined by these informative genes. In con-
trast, scIGANs automatically learns the gene-gene and cell-
cell dependencies from the whole dataset. More important,
scIGANs converts each single-cell expression profile to an
image so that a one-dimension ‘feature’ vector is reshaped
to a two-dimension matrix with each element represent-
ing the expression of a single gene (Supplementary Figure
S1A). Like image processing, scIGANs is then trained by
convolution on the matrix so that the two-dimension gene-
gene relations within each cell are captured. Therefore, we
hypothesize that scIGANs is more robust to genes of low
expression or with less cell-to-cell variance.

From the aforementioned scRNA-seq data with 350 cells
(212 H1 ESC and 138 DEC) (36), we randomly sample
small sets of genes (n = 1024 for each) from the 5000-gene
sets with top/lower means or variances, as well as a set of
1024 genes randomly picked from all expressed genes (Sup-
plementary Table S1; refer to Materials and Methods for de-
tails). Visualizations based on the 1024 genes (only ∼5% of
detected genes) with very low expression or variance show
that the two types of cells are almost mixed up without any
cluster characterization for the raw expression profiles (Fig-
ure 4E and 6A). Imputation by scIGANs successfully recov-
ered the two cell clusters for both datasets with only 1024
genes of low expression and variance, respectively (Figure
6B). However, all other methods failed in identifying the
two cell types from these datasets (Supplementary Figure
S9). Moreover, scIGANs significantly changes the mean
and variance of expression after imputation, while they are
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Figure 6. scIGANs is robust to a small set of genes with very low expression or cross-cell variance. (A, B) The UMAP visualizations of H1 and DEC
cells using only 1024 genes from raw (A) or scIGANs imputed (B) expression matrix based on three different sampling strategies. The sampling strategies
are described in Methods. (C, D) The boxplots show the mean (C) or standard deviation (sd, D) of the 1024 sampled genes before and after scIGANs
imputation. The same series of plots for all other imputation methods are provided in Supplementary Figure S9. Also see Supplementary Figure S9.

not always the same cases for other methods (Figure 6C, D
and Supplementary Figure S9). All these results show that
scIGANs is robust to a small dataset composed of very few
genes (∼5% of detected genes) with very low expression or
cell-to-cell variance, which are less informative for other im-
putation methods. It’s the strong support to the expectation
that scIGANs can learn very limited gene–gene and cell–cell
dependencies from a small set of lowly or close-to-uniform
expressed genes.

ScIGANs is scalable to scRNA-seq methods and data sizes

The last but not least concern on scRNA-seq imputation
raises in terms of the scalability to data sizes and sequenc-
ing methods, since the scRNA-seq becomes increasingly
high-throughput in cell numbers and available on different
protocols/platforms. To evaluate scIGANs and compare it
with other methods regarding this concern, we collected a
set of real scRNA-seq data to test the scalability to data
sizes and sequencing methods (Supplementary Table S1).
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Figure 7. scIGANs is scalable to scRNA-seq methods and data sizes. (A) The UMAP visualizations of the same cell populations sequenced by three
different scRNA-seq methods (protocols/platforms). 10X, 10X Genomics/Chromium; CEL-seq2, CEL-seq2/Fluidigm; Drop-seq, Drop-seq/Droplet. (B)
Cross-platform performances of different methods represented as the F scores for cell type clusters against the pre-defined cell types. The same series
of plots and source data for all other clustering metrics are provided in Supplementary Figure S11 and Table S8. (C) Cell-cell correspondence of the
expression profiles between 10X and CEL-seq2, shown as the Spearman correlation coefficients from the expression profiles of the same cell types before
and after imputation by different imputation methods. Correlations between other sequencing methods are provided in Supplementary Figure S12A. (D)
The running time (in hour) of the imputation methods on datasets with different sizes (cell numbers). The failed jobs in Supplementary Table S9 are
assigned auxiliary values of 49 hours for plotting purposes. Also see Supplementary Figures S10–S12.

We first test how scIGANs works equally well on
scRNA-seq data from different single-cell methods. We
use the datasets from three 3 human lung adenocar-
cinoma cell lines (H2228, H1975, HCC827) generated
by 10X Genomics/Chromium, CEL-seq2/Fluidigm and
Drop-seq/Droplet, respectively, which represent two single-
cell platforms, i.e. droplet-based and plate-based. The cell
clusters from raw data with dropouts show that 10X
Genomics/Chromium generate the best outcomes while
CEL-seq2/Fluidigm and Drop-seq/Droplet are more af-
fected by the dropouts (Figure 7A Supplementary Figure
S10), which is consistent with the observation from a very
recently publish benchmarking work (34). Imputation is
expected to attenuate the dropout effects between differ-
ent scRNA-seq methods; however, the performance varies
largely across imputation methods. ScIGANs is among the
four top-ranked methods showing a minor difference in the
performances across different sequencing methods (Figure
7B and Supplementary Figure S11; Table S8). To further
test how imputation could improve the correspondence of
single-cell gene expression profiled by different sequenc-
ing methods, we calculated the Spearman correlation co-
efficient from the expression profiles of the same cell type
generated by different sequencing methods (refer to Ma-

terials and Methods for details). With a high agreement
with the clustering metrics (Figure 7B and Supplementary
Figure S11; Table S8), scIGANs is top-ranked in recov-
ering the highly correspondent expression profiles of the
same cell types generated from different scRNA-seq meth-
ods (Figure 7C and Supplementary Figure S12A). These
results demonstrate that scIGANs shows equally high per-
formance on scRNA-seq datasets generated by different
scRNA-seq methods (protocols/platforms).

Second, we assess the computational intensity of impu-
tation methods using five datasets of 1000 (1k), 5000 (5k),
25 000 (25k), 50 000 (50k) and 100 000 (100k) cells created
by random sampling from the PMBC 10k dataset (Supple-
mentary Table S1, Materials and Methods). As shown in
Supplementary Table S9, many methods, including SAVER
and scImpute, failed the jobs on the datasets with 50k or
more cells because of the high requirements of memory
(>64GB). Specifically, SCRABBLE failed on all datasets
because of requiring more than 48 h, even on the 1k dataset.
Only scIGANs, DeepImpute, and MAGIC complete all
jobs on five datasets. Among these three outstanding meth-
ods, scIGANs shows comparable scalability to data sizes
in terms of the running time and memory usage, especially
when accelerated by GPU (Figure 7D and Supplementary
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Figure S12B; Table S9). Therefore, superior over most of the
other tested methods, scIGANs can impute the scRNA-seq
dataset with >100k cells, which covers the throughputs of
most scRNA-seq studies. To sum up, scIGANs is scalable
to data sizes and scRNA-seq methods and promises equal
performance.

DISCUSSION

Here, we propose the generative adversarial networks for
scRNA-seq imputation (scIGANs). ScIGANs converts the
expression profiles of individual cells to images and feeds
them to generative adversarial networks. The trained gen-
erative network produces expression profiles representing
the realistic cells of defined types. The generated cells,
rather than the observed cells, are then used to impute the
dropouts of the real cells. We assess scIGANs regarding
its performances on the recovery of gene expression and
various downstream applications using simulated and real
scRNA-seq datasets. We provide compelling evidence that
scIGANs performs superior over the other 11 peer impu-
tation methods. Most importantly, using generated rather
than observed cells, scIGANs avoids overfitting for the cell
type of big population and meanwhile promise enough im-
putation power for rare cells.

While there are many methods for scRNA-seq imputa-
tion, we specifically show how the GANs can improve the
imputation and downstream applications, representing one
of three pioneering applications of GANs to genomic data.
Two other recent manuscripts used GANs to simulate (gen-
erate) realistic scRNA-seq data with the applications of ei-
ther integrating multiple scRNA-seq datasets (18) or aug-
menting the sparse and underrepresented cell populations
in scRNA-seq data (26). We, for the first time, advance the
applications of GANs to scRNA-seq for dropout imputa-
tion. Inspired by the great success of GANs in inpainting
and highly relevant work that applied GANs for ‘realistic’
generation of scRNA-seq data (26), we speculate that the
generated realistic cells can not only augment the observed
dataset but also benefit the dropout imputation since it was
proved that the generated data mimics the distribution of
the real data in their original space with stable fidelity (26).
Our multiple downstream assessments and applications on
simulated and real scRNA-seq datasets demonstrated its
advantage in dropout imputation, superior over other peer
methods. Especially for cells coming from very small pop-
ulations, generated data were proved to faithfully augment
the sparse cell populations (26) and thus reduce the sam-
pling bias and improve the imputation power, which, how-
ever, are suffered by all other imputation methods. Addi-
tionally, GANs can learn dependencies between genes be-
yond pairwise correlations (26), which enables scIGANs
more sensitive and robust to small datasets with very low or
uniform expressions. We demonstrated these advantages by
ERCC spike-in RNAs (Figure 2E and Supplementary Fig-
ure S3H-I) and downsampling real scRNA-seq data (Figure
6 and Supplementary Figure S9).

The underlying basis of scIGANs is that the real scRNA-
seq data is derived from sampling, which does not have
enough cells to characterize the true expression profiles of

each cell type, even for the major cell populations; and the
generated realistic cells could augment the observations, es-
pecially for sparse and underrepresented cell populations,
and thus improve the dropout imputation of scRNA-seq
data. There are many benefits of using realistic rather than
the observed cells for imputation. First, the generated cells
characterize the expression profiles of real cells, and faith-
fully represent the cell heterogeneity. Therefore, the realistic
cells are ideal to serve as extra samples and independently
impute the observed dropouts to avoid the ‘circular logic’ is-
sue (overfitting) suffered by other methods (e.g. scImpute),
which borrow information from the observed data per se.
Second, the realistic cells will augment the rare cell-types,
and thus overcome potential sampling biases to avoid im-
putation performance skewed to dominant cell populations.
Additionally, benefitting from the power of GANs in adver-
sarially discriminating between real and realistic data, and
the augmentation from generated data, scIGANs is more
sensitive to subcellular states like the cell-cycle phases in-
vestigated in this study. Imputation by scIGANs enables the
investigation of scRNA-seq data beyond the identification
and characterization of cell types but go deeper into sub-
cellular states and capture cell-to-cell variability of the ho-
mogenous cell populations. This is critical for the applica-
tions of scRNA-seq to pinpoint the state transitions along
the cellular trajectory or identify and remove the subcellular
confounding factors (e.g. cell-cycle phases) (46). Our eval-
uations on cell-cycle phase detection and trajectory con-
struction show the superiority of scIGANs over all other
11 tested methods.

During the submission of this work, another work using
GANs for scRNA-seq imputation (referred to as scGAIN)
was posted in BioRxiv (49). We added it in all evaluations
and downstream analyses in our work and found that sc-
GAIN is not as good as scIGANs in all evaluations. We,
therefore, want to specifically discuss the reasons for this
difference.

First, scGAIN and scIGANs use different network archi-
tectures in their GANs. ScIGANs uses convolutional neu-
ral networks (CNN) while scGAIN uses full connected net-
works (FCN). FCN may hold good performance on high-
quality data with low or no dropout and noise. However,
we focus on detecting and imputing the dropouts. For this
purpose, FCN will not promise good performance. Instead,
through multi-layer networks, convolutional neural net-
works (CNN) will map the features to adjacent positions,
thereby forming representative local features and being cap-
tured by subsequent networks. This idea is widely used in
stock market prediction (53,54). Specifically, in scRNA-seq
data imputation, we extract high-quality information from
features by concatenating a pooling layer to each convo-
lutional layer. We use max pooling, which means to re-
tain the highest expressions from the local area of the fea-
ture space. After multilayer mapping of the feature space,
the effect of dropout in a local area will be attenuated by
the high-quality information (high expression). Therefore,
CNN with convolution-pooling architecture will automati-
cally filter out the dropouts and noise and not compromise
feature extraction. This explains why scIGANs works better
than scGAIN and other methods in identifying subcellular
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states (Figure 3 and Supplementary Figure S4), such as the
cell-cycle phase, which always is implied and confounded
with technical noise in scRNA-seq data.

Second, during either training or imputation steps, sc-
GAIN requires a mask matrix to identify which entries in
the input matrix are targets for imputation, which was pre-
defined by a hard threshold. In contrast, the expression ma-
trix is the only required input for scIGANs. Once trained,
scIGANs uses the KNN algorithm to heuristically define
and impute dropouts. The uniform expression cutoff for
dropouts may largely compromise the performance since
genes have different expression patterns among cells. This
is why scGAIN has the worst performance in DEG detec-
tion, which heavily relies on the expression patterns across
cells (Figure 4A and B).

Third, along with the changes in the generator and dis-
criminator models from a standard GAN, scGAIN uses dif-
ferent loss functions. The discriminator no longer takes two
sets of samples (real or fake); instead, the discriminator dis-
tinguishes between observed and imputed portions (proba-
bility) of that sample. In contrast, scIGANs takes each cell
as a whole and distinguishes the fake from real based on the
overall expression profile of each cell rather than individual
genes. Additionally, scIGANs reshapes the expression pro-
files of individual cells into a two-dimension ‘images’ and
takes these ‘images’ rather than the original one-dimension
vectors as samples for training. In this way, scIGANs can
learn the non-linear gene-gene dependencies from complex
and multi-cell type samples, which enable scIGANs more
robust to a small set of genes with very low expression or
cross-cell variance (Figure 6 and Supplementary Figure S9).

In summary, scIGANs is a method that takes advantage
of both the gene-to-gene and cell-to-cell relationships to re-
cover the true expression level of each gene in each cell,
removing technical variation without compromising bio-
logical variabilities across cells. ScIGANs is also compati-
ble with other single-cell analysis methods since it does not
change the dimension (i.e. the number of genes and cells) of
the input data and it effectively recovers the dropouts with-
out affecting the non-dropout expressions. Additionally,
ScIGANs is robust to small datasets that have few genes
with low expression and/or cell-to-cell variance. Last but
not least, scIGANs is also scalable to data sizes and works
equally well on datasets generated by different scRNA-seq
protocols/platforms. Altogether, scIGANs is not only an
application of GANs in omics data but also represents a
competing imputation method for the scRNA-seq data.

DATA AVAILABILITY

ScIGANs is an open-source tool available in the
GitHub repository with a usage tutorial (https:
//github.com/xuyungang/scIGANs). The sources and
pre-processes of all data are described in Methods.
The processed datasets and codes used to reproduce
the Figures and Tables are available at GitHub (https:
//github.com/xuyungang/scIGANs Reproducibility).
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