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ABSTRACT: Transition-metal- or oxidant-promoted deconstruc-
tive functionalizations of noncyclic carbon−nitrogen bonds are well
established, usually only leaving one moiety functionalized toward
the final product. In contrast, concomitant C- and N-functionaliza-
tions via the unstrained C(sp3)−N bond under metal- and oxidant-
free conditions are very rare, which would favorably confer
versatility and product diversity. Disclosed herein is the first
difluorocarbene-induced deconstructive functionalizations embody-
ing successive C(sp3)−N bond cleavage of cyclic amines and
synchronous functionalization of both constituent atoms which would be preserved in the eventual molecular outputs under
transition-metal-free and oxidant-free conditions. Correspondent access to deuterated formamides with ample isotopic incorporation
was demonstrated by a switch to heavy water which is conceivably useful in pharmaceutical sciences. The current strategy
remarkably administers a very convenient, operationally simple and novel method toward molecular diversity from readily available
starting materials. Therefore, we project that these findings would be of broad interest to research endeavors encompassing fluorine
chemistry, carbene chemistry, C−N bond activation, as well as medicinal chemistry.

1. INTRODUCTION
The polar disconnection of the C(sp3)−N bond yields two
reactive synthons, the carbon electrophile and nitrogen
nucleophile which are versatile precursors of synthetically
useful functionalities.1 A consecutive C(sp3)−N cleavage−
reassembly strategy is therefore prized to derive compounds of
heightened structural diversity and complexity in a single step.2

In biological systems, enzymes mediate C(sp3)−N bond
scission to generate α-amino acids from proteins3 whereas
C−N bond disconnection of tertiary amines is synthetically
mediated by transition metals (TMs), oxidants, or the
combination of both.4−6 Atom economy is nonetheless
compromised in most cases given that only one entity (either
C or N) is functionalized toward the final product while the
other converts to sacrificial compounds (Figure 1a).4,5 The
efficiency of these methods is also often predicated on
expensive and toxic metals4,5 or stoichiometric oxidants as in
oxidative transformations6 which generates an equivalent
amount of undesired byproducts.14 Contrarily, concomitant
C- and N-functionalization would favorably confer versatility
and product diversity.7−9 Sporadic seminal works only
exemplified a confined substrate scope typified by 1,4-
diazabicyclo[2.2.2]octane (DABCO) and the quaternary
ammonium salts (Figure 1b).10 The von Braun reaction11 is
also a C−N bond activation reaction, which refers to the
treatment of tertiary amines with cyanogen bromide, resulting
in a substituted cyanamide. BrCN is called a counter attack
reagent, which is a kind of reagent that achieves the two kinds
of transformations needed in the reaction to produce the

product. In recent years, many chemists have used this strategy
to modify tertiary amines; great achievements have been made
in both the organic synthesis methodology and total
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Figure 1. (a) C(sp3)−N cleavage of noncyclic amines. (b) C(sp3)−N
cleavage of cyclic amines. (c) First difluorocarbene-induced C(sp3)−
N cleavage of various amines (this work).
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synthesis.12 However, the applications of this strategy have
some inherent defects. For example, BrCN has strong
hygroscopicity and is sensitive to air and moisture, which
limits its applications. Moreover, it can only provide bromine
and cyano groups and cannot provide more useful
modifications. Given the assortment of tertiary amines readily
exploitable, eliminating these limitations and, at the same time,
conferring mild reaction conditions, broad substrate scope, as
well as good functional group tolerance upon this trans-
formation would be highly appealing.
The difluorocarbene species is an exceedingly reactive

intermediate possessing high electron deficiency13 to be used
as a robust difluoromethylating reagent14 or difluoromethyle-
nating reagent.15 The industrially important tetrafluoro-
ethylene is prepared via dimerization of this species under
high temperature.16 Furthermore, our recent research efforts
culminated in the discovery and development of several
transformations featuring in situ generated difluorocarbene
(:CF2) as C1 synthons to assemble various valuable N-
containing compounds.17 The synthetic utility of difluorocar-
bene is nonetheless reckoned to be underexplored considering
that in situ generation of difluorocarbene is easy under mild
conditions from readily accessible starting materials. Grounded
in our previous experience,17 we envisioned capturing the
difluorocarbene species to activate and execute C−N bond
cleavage in tertiary amines by leveraging the favorable matched
electronics between electron-rich tertiary amines and highly
electron-deficient difluorocarbene (Figure 1c).13

We considered several formidable challenges to realize the
titled transformation: (1) surmounting the high bond
dissociation energy of C(sp3)−N without the aid of transition
metal and oxidant;18 (2) the posited interaction between
tertiary amines and difluorocarbene as well as the formation of
ammonium salt species which found no literature precedence;
and (3) chemo- and regioselective cleavage of one single C−N
bond.1 The success of many C−N bond cleavage trans-
formations of tertiary amines resides in the weakened C−N
sigma bonds that prime them toward nucleophilic attack when
the lone electron pairs are engaged in forming the new N−C
bond in ammonium salt. Therefore, if the union of
difluorocarbene and tertiary amine indeed generates the
hypothesized difluoromethylammonium salt, the stage is set
for the occurrence of the proposed reaction. Herein, we report
an unprecedented difluorocarbene (derived in situ from
BrCF2COOEt, ICF2COOEt, TMSCF2H, and ClCF2H)-
induced tertiary amine activation under transition-metal- and
oxidant-free conditions. In situ decomposition of halodifluor-
oalkyl reagents simultaneously releases difluorocarbene species
and halide anions. While the former forms an ammonium
entity with the tertiary amine substrate, the halide performs a
nucleophilic attack on the α-carbon to enact C(sp3)−N bond
fission. Interception by an external nucleophile at this stage
would further enrich the architectural diversity of products.
Consequently, a novel catalyst- and oxidant-free methodology
comprising C−N bond cleavage and C−X (X = I, Br, Nu)
bond formation is consummated. The instability of the thus-
formed difluoromethyl tertiary amines under basic conditions
induces their rapid hydrolyses to formamides (Figure 1c).
Meanwhile, deuterated formamides with high isotopic
incorporation could be procured when interposed by D2O.
The amide bond is one the most important functional motifs in
chemistry and biology. Amides feature as prevalent pharma-
cophores in small-molecule pharmaceuticals. This procedure

would allow facile entry to deuterated drugs and late-stage
modification of candidates of medicinal importance.19

2. RESULTS AND DISCUSSION
Development of Mild Reaction Conditions. The

validation of our hypothesis commenced with a model reaction
of N-phenylmorpholine (1a) and ICF2COOEt (2a) with the
choice of K2CO3 as the base. Compound 4a embedded with
iodo functionality was successfully isolated in 31% yield when
the reaction was conducted at 90 °C in CH3CN (Table 1,

entry 1), indicating the feasibility of our conjecture.
Mechanistic scrutiny prompted the inclusion of an external
iodide ion source to promote C−N bond cleavage by
providing a higher iodide concentration in the reaction
mixture. This attempt (Table 1, entries 2−5) fruitfully
identified ZnI2 and KI (Table 1, entry 3 or entry 5) as the
more competent candidates to deliver 4a in 79% and 78%
yield, respectively. Subscribed to cost and accessibility
considerations, KI was opted for subsequent optimization
studies. Water was found crucial for the current reaction
(Table 1, entries 6−8) where product formation could be
significantly enhanced from 63% to 77% (Table 1, entries 7
and 8) when the amount was increased from 0.1 to 0.3 mL.
Replacing K2CO3 with Na2CO3 resulted in a superior result
(Table 1, entry 9), yet neither DBU nor NaHCO3 gave better
yields (Table 1, entries 10 and 11). CH3CN was found
impeccable given that other solvents such as DMF, acetone,
and CH3OH furnished the titled product in notably inferior

Table 1. Optimization of the Reaction Conditions of the
Conversion of N-Phenylmorpholine (1a)

entry base additive
H2O (X
mL) solvent T (°C) yielda (%)

1 K2CO3 0.5 CH3CN 90 31b

2 K2CO3 Nal 0.5 CH3CN 90 71
3 K2CO3 ZnI 0.5 CH3CN 90 79
4 K2CO3 TBAI 0.5 CH3CN 90 25
5 K2CO3 KI 0.5 CH3CN 90 78
6 K2CO3 KI 0.01 CH3CN 90 trace
7 K2CO3 KI 0.1 CH3CN 90 63
8 K2CO3 KI 0.3 CH3CN 90 77
9 Na2Co3 KI 0.3 CH3CN 90 88 (84)b

10 DBU KI 0.3 CH3CN 90 68
11 NaHCO3 KI 0.3 CH3CN 90 trace
12 Na2CO3 KI 0.3 DMF 90 trace
13 Na2CO3 KI 0.3 acetone 90 51
14 Na2CO3 KI 0.3 CH3OH 90 70
15 Na2CO3 KI 0.3 CH3CN 80 75
16 Na2CO3 KI 0.3 CH3CN 100 82
17 Na2CO3 KBr 0.3 CH3CN 90 70c

aReaction condition 1: 1a (0.2 mmol), ICF2COOEt (2, 0.6 mmol),
additive (3 equiv), base (3 equiv), H2O (X mL), solvent (2 mL), for
10 h, N2; GC yields. bIsolated yields. cReaction condition 2: 1a (0.2
mmol), BrCF2COOEt (3, 0.6 mmol), KBr (3 equiv), Na2CO3 (3
equiv), H2O (0.3 mL), CH3CN (2 mL) under 90 °C for 10 h, isolated
yield. TBAI = tetra-n-butylammoniumiodide, DMF = N,N-dimethyl-
formamide.
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yields (Table 1, entries 12−14). The reaction proceeded most
optimally at 90 °C; higher or lower temperature did not further
improve the outcomes (Table 1, entries 15 and 16).
Exquisitely, the bromide congener of 5a was formed in 70%
yield by switching ICF2COOEt to BrCF2COOEt and KI to
KBr (Table 1, entry 17). This implied that the more cost-
effective BrCF2COOEt was an adequate alternative of
ICF2COOEt in this transformation to introduce the bromo
group as a functional handle in the product.
Substrate Scope of Cyclic Tertiary Amines. With the

optimal reaction conditions in hand (Table 1, entries 9 and
17), various tertiary cyclic amines were perused against proton
sources (H2O) with both ICF2COOEt-KI and BrCF2COOEt-
KBr systems (Table 2). Under standard reaction conditions,

model substrate 1a and the 4-bromo derivative 1b were
converted to respective long-chain iodinated tertiary for-
mamide (4a, 4b) as well as brominated (5a, 5b) in equally
good yields. Both six-membered (1a−1c) and five-membered
(1d−1n) analogues of cyclic tertiary amines were well-suited
for this transformation, exhibiting insensitivity toward aryl
substitutions (alkyl, alkoxyl, phenoxyl, halo, phenyl, fused,
etc.). The corresponding target products (4c−4n and 5c−5n)
were isolated in 65%−97% yields. A drug intermediate, 2,3,6,7-
tetrahydro-1H,5H-benzop[i, j]quinolizine (1o) (or Julolidine),
which contains two six-membered cyclic tertiary amines,
selectively cleaving one moiety, delivered iodide (4o) in 41%
yield. Interestingly, for the asymmetric cyclic tertiary amines
1p, due to the influence of steric hindrance, we can selectively
obtain the product 5p from the less steric hindered side in 82%
yield. When 4-methyl-1-phenylpiperidine (3q) was subjected
to the standard conditions, the target products (4p and 5p)

were obtained in 92% and 81% yields. The target product
could not be obtained in a satisfactory yield by using both
ICF2COOEt-KI and BrCF2COOEt-KBr systems when we
examined four-membered analogues of cyclic tertiary amines.
After optimizing the conditions, we found that TMSCF2Br is a
suitable difluorocarbene provider, and the target products can
be obtained in good yields from the substrates of four-
membered aza-rings (1r−1t).

Substrate Scope of Noncyclic Tertiary Amines. The
exploration of substrate scope ensued by examining the
reaction generality against noncyclic tertiary amines (Table
3). Expectedly, these substrates were equipotent to afford
formylated products in excellent yields under marginally
reoptimized conditions as follows: K2CO3 as the base and
MeCN as the solvent without any halide salt additives at 90 °C
for 10 h under a N2 atmosphere (see the SI for details).
Employing BrCF2COOEt as the model reaction partner,

varied para-substituted N,N-dimethylanilines (6a−6d) af-
forded the corresponding desired products (7a−7d) in good
to excellent yields. Subsequently, N,N-dimethyl-[1,1′-biphen-
yl]-4-amines with differing substituents on Ar2 rings including
electron-neutral (6e), electron-rich (6f−6h, 6k), as well as
electron-withdrawing groups (6i and 6j) underwent the
current transformation without event to furnish formamides
7e−7k in excellent yields. Diazo functionality in (E)-N,N-
dimethyl-4-(phenyldiazenyl)aniline (6l) was left unscathed
which reacted with commendable efficiency. Heterocycle-
containing N,N-dimethylpyridin-2-amine (6m) and aliphatic
tertiary amines (6n−6t), both cyclic and chain amines, led to
corresponding products in exemplary yields without event.
Interestingly, substrate tethered with two N,N-dimethylamines
(6u, 6w) could undergo selective aza-Arbuzov reaction to
deliver mono- or bis-formylated products (7u−7x) by
modulating the proportion of BrCF2COOEt and tertiary
amines. Remarkably, when diphenhydramine (6y, antihist-
amine), cyproheptadine (6z, anticoagulant and antiallergic),
caulophylline (6aa, hypoglycemic), (R)-tomoxetine (6ab,
attention deficit hyperactivity disorder, ADHD), fluoxetine
(6ac, antidepressant), desloratadine (6ad, antiallergic), tropi-
setron (6ae, 5-HT3 receptor antagonists), and amoxapine (6af,
tricyclic antidepressants) were subjected to the standard
conditions, formylated products (7y−7af) were obtained in
41−90% yields. Importantly, ClCF2H as the smallest
halodifluoroalkyl reagent with wide industrial applications is
also a known precursor of difluorocarbene. When treated with
various tertiary amines (6ag−6an), good yields were
delightfully mirrored in target products (7ag−7an) which
carry a gamut of functional groups.
To assess the susceptibility of different C−N bonds toward

scission, a panel of N-substituted tertiary amines was reacted
under the standard conditions (Table 4). N-Methylanilines
with a different N-substituent (6ag, 6ao−6aq) were first
inspected, and the target products (7ag, 7ao−7aq) were
obtained in 99%, 63%, and 42% yield and a trace amount.
When N,N-dimethylaniline (6ag) was studied against different
N,N-disubstituted anilines such as N,N-diethyl (6ar), N,N-
dinpropyl (6as), and N,N-dinbutyl (6at) under the same
reaction conditions, only the former two substrates rendered
7ag and 7ao in 99% and 32% yield, while the latter two (6as
and 6at) could not be processed under our system. Based on
these results, we speculated that the bulkier N-substituent
would incur steric hindrance toward difluorocarbene species,
which is reflected in low to nil product yields as the tethering

Table 2. Substrate Scope of Cyclic Tertiary Amines (H2O as
the Proton Source)a

aReaction conditions: 1 (0.2 mmol), ICF2COOEt (3 equiv), Na2CO3
(3 equiv), CH3CN (2 mL), KI (3 equiv), H2O (0.3 mL) under N2
atmosphere at 90 °C for 10 h. b1 (0.2 mmol), BrCF2COOEt (3
equiv), Na2CO3 (3 equiv), CH3CN (2 mL), KBr (3 equiv), H2O (0.3
mL) under N2 atmosphere at 90 °C for 10 h. All yields are isolated
yields.
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alkyl group gets larger. This imparts chemo- and site-selectivity
to the current strategy for selective functionalization in the
existence of multiple C−N bonds.
Deuteration Results. Deuterium incorporation as part of

isotope labeling has a broad range of applications, including in
the investigation of reaction mechanisms and the analysis of
drug absorption, distribution, metabolism, and excretion
(ADME), as well as in nuclear magnetic resonance spectros-
copy (NMR) and mass spectrometry (MS).20 In 2017, FDA
approval for the first deuterated drug, deutetrabenazine
(Austedo),21 has created an urgent demand for synthetic
methods that efficiently generate deuterated building blocks.

Grounded in our current successful formamide formation via
C(sp3)−N bond activation of tertiary amines with H2O,
herein, we invented a mild and generic method for the
deuteration of formamides with D2O, an inexpensive
deuterium source. Delightfully, when H2O was replaced with
D2O under the standard conditions, the yields of the products
were barely affected along with excellent deuteration ratios
(Table 5). Both cyclic and noncyclic tertiary amines were
inspected under the corresponding reaction conditions with
either ICF2COOEt (a), BrCF2COOEt (b), or ClCF2H (c) as
difluorocarbene sources. Gratifyingly, the corresponding target
products (8a−8ao) were procured in up to 97% yields
accompanied by excellent deuteration ratios. Of note, like
before, the drug molecule intermediate 2,3,6,7-tetrahydro-
1H,5H-benzop[i, j]quinolizine (Julolidine) (1o) as well as
drug molecules diphenhydramine (6y) and cyproheptadine
(6z) were all competent to our systems, and the corresponding
deuterated products (8l, 8aj−8ak) were obtained in good
yields along with excellent deuteration ratios.
This system could be extrapolated to a three-component

reaction with thiols as extraneous nucleophiles (Table 6). The
C(sp3)−S bond plays a pivotal role in modern organic
synthesis, natural products, and pharmaceuticals. Clinical trials
demonstrated that the introduction of C(sp3)−S moieties
could improve their biological activities, such as antitumor,
anti-inflammatory, and immunomodulatory properties.22 Be-
sides that, the C(sp3)−S bond can also be found in the natural
amino acid, such as cysteine, and facilitate the metabolism
process of the related protein in the organism.23 Then, we
introduce a sulfur-containing nucleophilic reagent, which could
directly assemble the C(sp3)−S bond through direct C−N
difunctionalization. Relevant optimization efforts utilizing 1-
phenylpyrrolidine (1d), BrCF2COOEt (3), and thiol 9 as
model substrates (see the SI for details) concluded the optimal
conditions herewith: Na2CO3 as the base and KBr as an
additive in CH3CN at 90 °C for a 10 h reaction. As shown in
Table 6, both aromatic (9a−9f) and aliphatic thiols (9g−9j)
were auspiciously coupled onto formamide products in
moderate to excellent yields. Except the substrate 1d, the
four-membered (1r) and six-membered (1c) analogues of
cyclic tertiary amines were well-suited for this transformation,
rendering the corresponding products 10k−10l and 10m in
excellent yields (Table 6). Phenol acted as an equally fitting
nucleophile for this three-component reaction with 1-phenyl-
pyrrolidine (1d) and BrCF2COOEt (3) to afford N-(4-
phenoxybutyl)-N-phenylformamide (12) in excellent yield
with DMF as the cosolvent.

Table 3. Substrate Scope of the Noncyclic Tertiary Amines
(H2O as the Proton Source)a

aReaction conditions: 6 (0.2 mmol), 3 (3 equiv.), K2CO3 (3 equiv.),
CH3CN (2 mL), H2O (0.5 mL) under N2 atmosphere at 90 °C for 10
h. b3 (2.4 equiv.) c3 (4 equiv.), K2CO3 (4 equiv.), H2O (0.7 mL). d6
(0.2 mmol), BrCF2COOEt (3 equiv.), K2CO3 (3 equiv.), CH3CN (2
mL), CH3OH (0.5 mL), under N2 atmosphere at 90 °C for 30 h. e6
(0.1 mmol), CClF2H (3 equiv.), S8 (35 mol %), K2CO3 (3 equiv.),
CH3CN (2 mL), H2O (0.5 mL) at 90 °C for 10 h. All yields are the
isolated yields, and the numbers in parentheses are the conversion
rate of raw materials.

Table 4. Effect of Substituents on N Atomsa

aReaction conditions: 6 (0.2 mmol), BrCF2COOEt (3 equiv.),
K2CO3 (3 equiv.), CH3CN (2 mL), H2O (0.5 mL) under N2
atmosphere at 90 °C for 10 h, isolated yield.
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Synthetic Elaborations. Under standard conditions,
product 4d was scalably prepared from tertiary amine 1d in
excellent yields (96%). Having sufficient 4d compound at our
disposal, structural elaborations were performed (Figure 2).
Alkylboronic ester (13) was readily obtained in 55% yield from
4d and B2pin2,

24 which is amenable toward chemical
modifications through various coupling protocols. 4d readily
reacted with diethylamine, phenol,25 and benzoic acid in DMF
to furnish 1,4-diamine compounds (14), N-(4-phenoxybutyl)-
N-phenylformamide (12), and 4-(N-phenylformamido) butyl
benzoate (17) in 99% yield. For complex drug molecules, such
as sertraline and (S)-(+)-ibuprofen, they can achieve their late-
stage modification products 15 and 16 with 4d under mild
conditions.

Mechanistic Investigation. Mechanistic insights on the
current reaction were gathered via several control experiments
(Figure 3). Smooth reactions were observed in the presence of
radical scavengers (TEMPO, BHT, and 1,1-diphenylethylene)
to produce 4d in 77%, 79%, and 82% yields, respectively,
which could possibly rule out an operating radical process
(Figure 3, eq 1). When carbene trapping reagents, namely, 2-
aminopyridine 15 and aniline 17, were added individually into
this system, the formation of N-(difluoromethyl)pyridin-2-
amine 16 (detected by GC-MS) and the formylated product
18 in 91% yield alongside a trace amount of 4d attested to the
intermediacy of difluorocarbene species (Figure 3, eqs 2 and
3). For a comprehensive understanding of reactions with thiol
substrates, several control experiments were carried out:
cotreatment of 1d with BrCF2COOEt in the absence of KBr
did not yield product 5d, while in standard conditions with 3
equiv of KBr, the product 5d was procured in 84% yield
(Figure 3, eq 4). When 5d was exposed to 4-methylbenzene-
thiol 9a under basic conditions, the long-chain thioether 10a
was obtained in near-quantitative yield (Figure 3, eq 5).
However, when 4-methylbenzenethiol 9a was directly added to

Table 5. Deuteration with D2O as the Deuterium Source

aReaction condition: 1 (0.2 mmol), ICF2COOEt (3 equiv.), Na2CO3
(3 equiv.), CH3CN (2 mL), KI (3 equiv.), D2O (0.3 mL) under N2
atmosphere at 90 °C for 10 h. b1 (0.2 mmol), BrCF2COOEt (3
equiv.), Na2CO3 (3 equiv.), CH3CN (2 mL), KBr (3 equiv.), D2O
(0.3 mL) under N2 atmosphere at 90 °C for 10 h. c6 (0.2 mmol),
BrCF2COOEt (3 equiv.), K2CO3 (3 equiv.), CH3CN (2 mL), D2O
(0.5 mL) under N2 atmosphere at 90 °C for 10 h, isolated yield. d3
(2.4 equiv.). e3 (4 equiv.), K2CO3 (4 equiv.), D2O (0.7 mL). f6 (0.1
mmol), CClF2H (3 equiv.), S8 (35 mmol %), K2CO3 (3 equiv.),
CH3CN (2 mL), D2O (0.5 mL) at 90 °C for 10 h. All yields are the
isolated yields, and the numbers in parentheses are the deuteration
ratios of the corresponding deuterated products.

Table 6. Substrate Scope of the External Nucleophilesa

aReaction conditions: 1d (0.2 mmol), 3 (3 equiv.), 9 (3 equiv.),
Na2CO3 (3 equiv.), CH3CN (2 mL), KBr (3 equiv.), H2O (0.3 mL)
under air atmosphere 90 °C for 10 h, isolated yield.

Figure 2. Synthetic applications.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://dx.doi.org/10.1021/acscentsci.0c00779
ACS Cent. Sci. 2020, 6, 1819−1826

1823

https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00779?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00779?ref=pdf


the mixture of substrate 1d and BrCF2COOEt under the
standard conditions without KBr, only 42% of 10a was
observed (Figure 3, eq 6). These results implied that thiols
should directly attack the activated carbon of the C−N bond
leading to the product 10a. Nonetheless, an alternate pathway
that involves the prior formation of 5d followed by
nucleophilic substitution of thiol could not be exclusively
refuted.
Proposed Mechanism. Grounded in these empirical data,

a proposed mechanism is depicted in Figure 4. Difluor-

ocarbene (:CF2) should first be unmasked from halodifluor-
oalkyl reagents (ICF2COOEt, BrCF2COOEt, or ClCF2H) in
the presence of the base. Tertiary amine A then reacts with the
in situ generated :CF2 species to deliver ammonium salt B
under basic conditions. Internal (X−) or external nucleophiles
(X−, S−, or O−) attack the α carbon of ammonium salt B to

render intermediate C via C−N bond cleavage. Upon C−F
bond scission in intermediate C, complex D could be
hydrolyzed through two different pathways (via complex E
or F) to generate the target molecule.17a

3. DISCUSSION
A new deconstructive halogenation reaction that features C−N
bond cleavage of various tertiary amines has been developed
with in situ generated difluorocarbene as an activating reagent.
The long-chain halogen-containing amide compounds pre-
pared via this strategy were inaccessible by any previously
known protocols. Densely functionalized formamides and the
deuterated congeners were assembled from simple amine
building blocks in one-pot reactions without any metal catalyst
or oxidant. Further investigations to extend the reaction scope
and applications of this process are currently in progress.
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