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We discuss a recent approach to investigating cognitive control, which has the potential to deal with
some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a
formal, computational model that performs the task at hand and whose performance matches that of a
research participant. The internal variables in such a model might then be taken as proxies for latent
variables computed in the brain. We discuss the potential advantages of such an approach for the study
of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions
underlying the interpretation of data obtained using this approach.
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We humans can engage in a complex repertoire of
behaviours geared towards often far-removed
goals. We have to override reflexive and habitual
reactions in order to orchestrate behaviour in
accordance with our intentions. These mechanisms

are commonly referred to as “cognitive control
processes”, and their function is to control lower
level sensory, memory, and motor operations for
a common purpose (Miller, 2000). Processes
associated with cognitive control are often highly
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dynamic and context dependent. They rely not just
on the presented stimuli, but also on factors that
are difficult to control and to observe for the exper-
imenter, such as the participant’s experience, trial
history, motivation, and individual differences.
These factors can vary on a trial-by-trial basis.
This poses a number of problems for experimental
scientists, who often rely on averaging data
recorded over a substantial number of trials in
the same circumstances to achieve a reasonable
power for statistical analysis. Even though these
variables are difficult to observe, it is widely
accepted that the brain does use these types of vari-
able. Thus, traditional experimental designs often
allow only a limited view on the computational
processes that underlie our behaviour (Corrado &
Doya, 2007).

The goal of the current paper is to introduce
the model-based technique for studying cogni-
tive control as it is recently being employed in
neuroimaging to the wider audience of exper-
imental psychologists. This technique allows
the researcher to circumvent some of the pro-
blems mentioned above. The paper is divided
up into two parts. In the first part we discuss
the model-based approach in detail and focus
on general methodological and interpretational
issues. In the second part, we discuss some
examples of applications of the model-based
approach to problems of cognitive control. We
focus specifically on data obtained from exper-
iments with human participants, using as depen-
dent variables behaviour and measures of brain
activity associated with behaviour, such as event-
related brain potentials (ERPs) and the blood-
oxygen-level-dependent (BOLD) signal that can
be recorded using functional magnetic resonance
imaging (fMRI).

The model-based approach

The solution adopted by the model-based
approach is to construct an explicit computational
model of the task the participant has to solve.
This model should describe the transformation of
stimuli to the observable behavioural responses
and should contain the unobservable (i.e. latent)

variables that affect this transformation.
Variations in the estimated levels of the latent
variables on each trial are then correlated with
behaviour or neural activity (Figure 1a; see also
Corrado & Doya, 2007; Corrado, Sugrue,
Brown, & Newsome, 2009). The most well-
known application of this type of model-based
analysis is in studies of reward-based decision
making, and we look at this application to describe
the approach in more detail.

Behavioural studies have shown that reward-
related learning depends on the predictability of
the reward (Rescorla & Wagner, 1972). Studies
of the monkey dopamine system have shown
that activity of midbrain dopamine neurons,
which project to the ventral striatum, does not
simply differentiate rewarded from unrewarded
events, but codes the difference between expec-
tations of reward and the actual reward that is
received (Schultz, Dayan, & Montague, 1997).
This reward prediction error thus has a strong
correlate in neural activity but its variations are
difficult to observe in a standard “subtraction”
design, simply comparing activity in two exper-
imental conditions. It relies on the animal
having a prediction of how rewarding a future
event (e.g., action or stimulus) is likely to be,
and this, in turn, is dependent on the animal’s
past reward history.

In the 1980s the insight that behaviour is deter-
mined by expectations about reward found its way
into neural network models (Sutton & Barto,
1981). Since then, the relationship between the
predictions of these models and neurophysiological
activity has become a viable topic of research.
These models emphasize that when behaviour is
determined by expectations of reward it is crucial
to ensure that the expectations are revised appro-
priately when a previous prediction turned out to
be wrong, as evidenced by the reward prediction
error. The variation of the reward prediction
error on a trial-by-trial basis can be estimated in
a simple reinforcement learning model (Sutton &
Barto, 1998). In this class of models, the compu-
tational goal is to maximize the obtained reward.
On each trial, the model makes a prediction
about the value of the reward V associated with
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the state s it is in at time t, V(st), and updates this
estimate of value for the next trial, V(stþ1), on the
basis of the prediction error at time t, dt:

V ðstþ1Þ ¼ V ðstÞ þ a� dt ð1Þ

where a is parameter determining the rate of
learning, and the prediction error at t, dt, is
defined as the difference between the actual
reward Rt and the expected reward V(st):

dt ¼ Rt � V ðstÞ ð2Þ

The model can then be used to generate values
of V(st) and dt for each trial. V(st) and dt can then
be regressed against the behavioural data or to
neuroimaging data to discover areas of the brain
in which the BOLD signal varies parametrically
with these quantities, trial-by-trial. This approach
has been used extensively, and activity that

correlates with dt has been found in the striatum
and prefrontal and anterior cingulate cortex (see
O’Doherty, Hampton, & Kim, 2007; Rushworth
& Behrens, 2008, for reviews).

Fit each model to the data
Models often have a number of free parameters.
Free parameters are variables that have to be set
to a certain value in order for the model to be
able to make predictions. According to the pro-
cedure advocated in Figure 1b (MacKay, 1992),
these parameters are fitted to the data before the
model is used to predict trial-by-trial fluctuations
in latent variables. In the case of the reinforcement
learning model described above a can be regarded
as a free parameter. This learning rate can differ
between individuals and different learning
environments (Behrens, Woolrich, Walton, &
Rushworth, 2007; M. X. Cohen, 2007). In most

Figure 1. (a) Approaches to data analysis. The traditional approach (left) tries to directly correlate variations in stimuli and observable

behaviour to variations in neural data, while the model-based approach infers latent variables in an explicit computational model based

on the observable stimuli and behaviour and, in turn, correlates these variables to neural data. From “Understanding Neural Coding

through the Model-Based analysis of Decision Making”, by G. Corrado and K. Doya, 2007, Journal of Neuroscience, 27, pp. 88–180.

Copyright 2007 by the Society for Neuroscience. Adapted with permission. (b) Processing pipeline for model-based analysis of

neuroimaging data. The experimenter formulates a set of candidate models and gathers the experimental data (e.g., behaviour; blood-

oxygen-level-dependent, BOLD signals; event-related potentials, ERPs; or motor-evoked potentials). Each model is than fitted to the

data, and the models are compared using some model comparison technique, such as Akaike’s information criterion (AIC) or Bayes factors.

Inference is then based on the model that best explains the data. Adapted from MacKay (1992).
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studies, the learning rate is kept constant over the
course of the experiment.

Parameters can be fitted to both behavioural and
neural data. However, a more common strategy for
the analysis of neural data, such as fMRI or ERP
data, is to fit the parameter to the behavioural
data and use the resulting parameters for the
model, which is then fitted to the neural data.
Behavioural data might be less noisy, and thus
fitting the parameters to these data might be pre-
ferable. This procedure of course relies on the
assumption that all neural data and the
behavioural data are fitted optimally by the
same parameters, an assumption that might not
always hold.

Comparing models: Which model accounts for the
data best?
An important limitation of the model-based
approach is that it does not allow inference
beyond the model tested. Thus, it is possible to
have a model that describes a significant amount
of variance in the neuroimaging data even though
this model is not the best description of the algor-
ithm employed by the brain. Indeed, when fitting a
single model, it is only possible to find evidence in
favour of this model or not. This runs against the
normal practice in science, to try to disprove
one’s hypothesis, rather than to simply try to find
evidence in favour of it. To overcome this
problem, rather than just fitting one potential
model, there should be a set of different candidate
models of how the brain solves a particular
problem. Each of these models is than fitted to
the data, and a model comparison technique is
used to determine with model is best supported
by the data. These techniques should not simply
test which model explains the most experimental
variance, but also take into account the complexity
of the model. Models with more free parameters
are penalized, since adding an extra parameter
will normally explain more variance, even if the
parameter is not plausible. Inference is then
based on this “best” model or a combination of
the “best” models (Burnham & Anderson, 2002).

Two popular model comparison techniques
are information-theoretic selection based on

Kullback–Leibler information loss and model
selection based on Bayes factors (see Burnham &
Anderson, 2004). The first class is often rep-
resented by Akaike’s information criterion (AIC;
Akaike, 1973), which is an approximation of the
log-evidence for a model. Bayes factors are compu-
tationally quite complex to calculate, but can be
approximated by Bayesian information criterion
(BIC). Both AIC and BIC are thus approxi-
mations for the true evidence in favour of a
model. Based on empirical evidence, Kass and
Raftery (1993) suggest that BIC is biased
towards simple models and AIC to complex
models. One strategy to circumvent these
problems is to only consider one model in
favour of another if both AIC and BIC agree.
Model selection techniques have recently
found their way into the analysis of neuroimaging
data (e.g., Kiebel, Garrido, Moran, Chen, &
Friston, 2009; Rosa, Bestmann, Harrison, &
Penny, 2010).

Just as parameter fitting can be done with
respect to either behavioural or neural data so can
model comparison be done on the basis of just
the behavioural data or the neural data. As an
example of the former, in a recent study Lau and
Glimcher (2005) were interested in the type of
information monkeys can use to guide their
decisions in a probabilistic reinforcement learning
task. They formulated a number of models to
predict a monkey’s choice on each trial based on
the past history of reinforcements and choices. A
family of candidate models varied the length of
reinforcement and choice histories that influenced
the choice on a given trial. The authors then fitted
each model separately to each monkey’s data using
maximum likelihood and used AIC to compare the
different models. A number of recent neuroima-
ging studies have used a variant of the former
approach by fitting different models to the behav-
ioural data and regressing to the neuroimaging data
only the parameters of the model that comes out
“best” by reference to the behavioural data (e.g.,
Forstmann et al., 2008). Other studies directly
compare models fitted to the neural data
(Bestmann et al., 2008; Hampton, Bossaerts, &
O’Doherty, 2006). Importantly, these studies do
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not just compare a strong candidate model to an
obviously implausible model, such as using a
model with and without learning parameters to
assess neural contributions to a learning process,
but test equally valid models that could all plausi-
bly underlie the process of interest.

Although formally comparing different models is
preferable to only fitting a single model, this still
leaves open the possibility that the “best” model is
not part of the candidate set. Indeed, it has been
argued that the number of factors influencing any
type of biological data is far too great to ever allow
the specification of the “true” underlying model
that generates the data (Burnham & Anderson,
2002). It follows that we can only ever reach a com-
parative conclusion. It might be argued that this
puts the model-based analysis of neuroimaging
data at a significant disadvantage to standard
approaches, which might be more explorative in
nature. However, more explorative studies can
never hope to draw strong conclusions about the
nature of the computation used by a neural system.

Which models to compare?
We saw in the previous section that, when using
models to analyse behavioural or neuroimaging
data, instead of just fitting a single model it is pre-
ferable to compare the performance of several
models with one another. However, this does not
mean that the model that is supported best by
the data is always the best model from the
researcher’s point of view. The aim of fitting
models is ultimately to discover how the brain
carries out the computations that lead to partici-
pants’ behavioural performance. For that to
succeed, quantities in the model (parameters and
components) must correspond in some way to
quantities being computed over in algorithms
implemented in neural circuits. Some elements of
the model need not map in any obvious way onto
neural circuitry; indeed the model may only
capture some aspects of the algorithms that are
actually being computed, but when a correlation
is found between a model component and a
neural signal, that is taken as evidence that the
brain implements an algorithm that involves

calculating over that component. For example,
the correlation between the trial-by-trial predic-
tion error d in a simple reinforcement learning
model and the BOLD signal in the striatum is
taken as evidence that the relevant neural circuit
implements an algorithm that calculates over
trial-by-trial prediction errors (or something like
them), amongst other quantities. In this section,
we make a number of points that need to be
considered for a model-based analysis and accom-
panying model comparison to successfully lead to
insight into neural processing.

First, although model comparison techniques
like AIC do penalize models for having more
free parameters, they take no account of how
likely it is that components of the model reflect
aspects of the mechanism being studied (they are
not designed to). Given free choice from the
wide range of models that are a priori possible,
the one that comes out best on the basis of
model comparison might nevertheless have little
empirical plausibility. The point is that model-
based analysis should not be driven entirely by
the specific data set in this way but instead it
should reflect background knowledge about such
factors as the model’s anatomical plausibility
and its success in predicting performance on
related tasks. For example, Friston (2003) has
emphasized the relationship between aspects of
anatomy and certain computational models, and
Rushworth and colleagues (Rushworth, Mars, &
Summerfield, 2009) argued for particular
computational perspectives into visual and social
learning partly because similar concepts have
already proved useful in another domain—that
is, that of reinforcement learning. Apart from
using prior information in the formulation of
models, it is possible to bias the model comparison
process by means of formulating priors in order to
give more weight to evidence in favour of certain
models. Notice that this makes the model-based
analysis approach more hypothesis driven, and
less prone to overfitting of the data, than is
sometimes assumed. We have already alluded to
the importance of choosing plausible models for
the comparison. Comparing a model only with
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respect to a number of neutrally implausible
models does not lead to novel insight.

A problem arises when several plausible candi-
date models cannot be effectively distinguished
by standard procedures for model comparison.
For instance, the prediction error discussed above
is under some circumstances similar to the “sur-
prise” or Shannon’s information (Mars et al.,
2008; Shannon, 1948) of a stimulus. If the
models are very similar to one another—that is,
when two different algorithms make very similar
predications regarding the neural data—then
there is a danger that the result of a model com-
parison will be driven by peculiarities of a particular
data set, rather than facts about which model best
captures the algorithms being computed. So the
general conclusion can be made much more confi-
dently than the specific one. Once compared to the
range of alternative models that seem plausible
given background knowledge, it is reasonable to
conclude that the brain implements an algorithm
that computes over something like surprise or pre-
diction error—that some quantity of this general
sort is one of the decision variables deployed in
whatever algorithm is in play. A more specific con-
clusion, for example preferring a prediction error
model over a surprise model, is necessarily much
more tentative. One can argue that the problem
of highly correlated predictions is precisely why
the model-based approach is employed in the
first place, since standard subtraction designs
often predict the same pattern of behaviour or
neural activity in a number of different compari-
sons. However, this does not mean that the
model-based approach is immune to the problem
of correlated predictions, and researchers should
be careful in the conclusion they draw.

A third issue that arises is whether each com-
ponent of a model should be expected to be
found in neuroimaging data. For instance,
although most studies on reinforcement learning
focus on the prediction error, Behrens et al.
(2007) focused on the learning rate a, and some
authors have focused on the representation of the
value weights (see M. X. Cohen, 2008).
However, typically not all components of a model
will be found in the neuroimaging data. In most

reinforcement learning studies, for example,
neural signals related directly to the representation
of the probability of each stimulus are not
reported—indeed, they are not searched for.
Rather, these studies only search for signals corre-
lating with a computation performed on these esti-
mated probabilities: the prediction error. We do
not feel that the fact that not all of a model’s com-
ponents are represented in observable neural
signals is a weakness of the model-based approach.
Indeed, one of the advantages of a model-based
approach is that models can abstract away from
details to capture a general insight. In this
respect, there is a disadvantage to making the
model more complicated, which is that it may
deliver less insight about which processes are
most important. One aspect of this trade-off is
reflected in model comparison tests like the AIC,
which penalize free parameters; but such tests do
not directly reflect the value of having a model
that fails to fully describe the data, but which
seems to capture an important underlying feature
of the phenomenon. Asking which model best
fits the data can obscure the more important
point, which is that they both predict a lot of the
variance in the data set, they both have good back-
ground plausibility, and they share a key structural
feature in the similarity between surprise and pre-
diction error.

Recent work in philosophy of science reinforces
this point (Sterrett, 2002; Weisberg, 2007). One of
the merits of model-based science is that prac-
titioners can assess how well a model fits reality
and can work on the internal coherence of the
model itself, without having very much idea how
some aspects of the model map onto features of
the phenomenon being modelled. Contrast a
theory or other direct representation of a phenom-
enon. Various properties are known about and
measured, and their relationships are investigated.
Boyle’s law is a theory about how the pressure
and volume of a gas are related. It gains empirical
support by measuring pressure, measuring
volume, and observing the relation between these
quantities. By contrast, the reinforcement learning
model gained some support from its fit to behav-
ioural data, even before anyone had any idea how
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components like prediction error and learning rate
mapped onto the neural mechanisms carrying out
actual computations. The fact that the modeller
can remain neutral about how features of a
model are reflected in properties of the target
system can be seen as an advantage of the strategy
of model-based science (Godfrey-Smith, 2006),
although the model’s neural plausibility is impor-
tant, as emphasized above. That advantage is
undercut by a premature attempt to achieve a
best fit between neuroimaging data and all the
components of a very specific model.

Corrado et al. (2009) reflect the same motivation
in their agenda-setting paper on the model-based
analysis of decision making. Rejecting the idea that
models should be taken as literal hypotheses about
neural computations and embracing the notion
that the computations carried out in neural circuits
may differ from the details of the model, they say:

This conservative stance frees us from the necessity of demon-

strating that all elements of the model are plausibly

implemented in the brain, and instead allows us to focus on

our primary objective—identifying neural correlates of the key

decision variables. (p. 467)

The remark is puzzling, since the strategy would
only work in finding neural correlates if the key
decision variables over which the model quantifies,
or something similar, are indeed being computed
in neural circuits. Rather than disclaiming any
mapping relation between the model and the
neural system that is its target, their remark is
perhaps reflecting the fruitful neutrality that mod-
elling permits about the relation between model
and target. That allows Corrado et al. to remain
neutral about how, or even whether, various
aspects of a model will map onto computations
performed in neural circuits, while still discovering
how other aspects of the model (e.g., prediction
errors) map onto the target system.

Interpretational issues: Neural algorithms and
neural signals
Informed by background knowledge about likely
mechanisms, a comparative model-based analysis

can yield conclusions about the class of algorithms
that it is likely that the brain uses in performing a
given task, including identifying neural structures
or circuits that are involved in representing some
of the quantities over which the algorithms
compute. Model-based analysis can remain
neutral about how, or even whether, some com-
ponents of the model are realized in neural algor-
ithms, while gathering evidence about the neural
implementation of others. In this section we
draw out and make explicit the assumption about
how such algorithms are implemented in the
brain, which underpins this inference.

Marr (1982) distinguished between compu-
tational, algorithmic, and implementational levels
of analysis of a system. The computational level
sets out some goal or function that is to be per-
formed and outlines the logic or strategy by
which it is carried out. For example, in reward-
guided decision making the problem is to take as
input a series of stimuli and outcomes and to
produce as output the series of actions that maxi-
mize rewarding outcomes. A computational
theory might further specify that the system
chooses its actions based on the history of
reinforcement of those actions. At the algorithmic
level, a particular way of performing this compu-
tation is specified, for example in the algorithm
for simple reinforcement learning, which is given
by Equations 1 and 2 above.1 However, a
problem now arises on any view, including
Marr’s, since the algorithm itself is multiply realiz-
able in physical structures. Put in another way,
there are many ways of implementing the same
algorithm in neural circuits. An interesting
example comes from the cognitive control litera-
ture, where a popular model of anterior cingulate
cortex function models the activity in this brain
region as the product of activity in neurons repre-
senting difference responses (Botvinick, Braver,
Barch, Carter, & Cohen, 2001). Although it is
unlikely that neurons literally compute a product,
at the algorithmic level this model has proven
extremely successful.

1 Here, we consider the distinction between computation and algorithm heuristically useful, rather than suggesting that one can

be drawn precisely in each case.
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Multiple realizability emerges in many guises.
The same algorithm could be realized in different
neural circuits in different species, in differ individ-
uals of the same species, in the same individual at
different times through neural plasticity and learn-
ing, and in the same individual in different con-
texts. Nevertheless, we do find evidence of
commonalities in the way various decision-
relevant parameters are represented: The same
neural circuits are often involved in a range of
species (e.g., prediction errors in dopamine
neuron-rich regions of the brain such as the
ventral tegmental area in rats, monkeys, and
humans; D’Ardenne, McClure, Nystrom, &
Cohen, 2008; Roesch, Calu, & Schoenbaum,
2007; Schultz et al., 1997), in a range of individ-
uals, and within a given individual during the
course of an experiment. When a neural correlate
of a model parameter or component is found,
then that vindicates the assumption against mul-
tiple realizability. For example, it has been found
that the covert decision to add rather than subtract
a pair of numbers that are yet to be viewed is suffi-
ciently stably realized within an individual that
their covert intention can be decoded from activity
in medial and lateral prefrontal cortex (Haynes
et al., 2007). The correlation between a quantity
in the algorithm and a neural signal is evidence
that some neural algorithm is being realized that
computes over that quantity (or something like
it) and that each time the quantity is neurally
represented, there is some detectable similarity
in the specific pattern of brain activation that is
produced. For instance, prediction errors could be
multiply realizable within an individual in a way
that would make them undetectable to fMRI.
But it turns out that they are not: They are
reflected in the BOLD signal. That result means
that a whole series of nested assumptions can be
maintained:

. Representations of prediction errors rely on a
common neural circuit each time they are com-
puted in the brain.

. The subset of neurons in that circuit involved in
representing prediction errors make a detectable
difference to cerebral blood flow, hence BOLD

signal, against the background of other factors
capable of making a difference, which are kept
fixed or varied randomly between conditions.

. The BOLD signal relates quantitatively to rep-
resented prediction errors in an approximately
linear relationship.

The key point for our purposes is that, as a way of
discovering the algorithms computed by the brain,
the sensitivity of this method is superior to its
specificity. If prediction errors were represented
in some other way, for example by phase coding
instead of rate coding, then it would be impossible
to find evidence of them by recessing a model
against the BOLD signal. But that would not
licence a conclusion against such features of the
model being represented and computed over. It
would just mean that the neural signal we are
using happens not to carry evidence of them.

Given, then, that a particular algorithm is
implemented the same way in each case, the ques-
tion arises whether we can say anything more about
this implementation. It is important to realize that
the system-level neuroimaging methods discussed
here do not have power to make inferences at the
level of individual neurons. Although we can con-
clude that the algorithm is realized the same way
every time around, we cannot say with any confi-
dence whether the relevant parameter is computed
at the neural level in the same way as the research-
er’s model does. Additionally, one has to be careful
to conclude that the component of the algorithm
detected is actually computed in the regions
identified, as BOLD seems to correlate better
with the afferent input to a brain region and
interneural activity within a regions, rather than
its spiking output activity (Logothetis, Pauls,
Auguth, Trinath, & Oeltermann, 2001).

Applications of the model-based approach to
cognitive control

Beyond neuroimaging of reward-based decision
making
The model-based approach outlined above has
recently started to be employed outside the
context of reward-based decision making in

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (2) 259

MODEL-BASED ANALYSIS OF COGNITIVE CONTROL



which it became popular; both in terms of the
methodology and in the terminology (see
Rushworth et al., 2009). For instance, model-
based approaches have recently been applied to
study trial-by-trial modulations in behaviour and
neural activity during motor preparation
(Bestmann et al., 2008), associative learning
(Den Ouden, Friston, Daw, McIntosh, &
Stephan, 2009), and social interactions (Behrens,
Hunt, Woolrich, & Rushworth, 2008).
Consequently, it has been suggested that neuroi-
maging is moving from a strict focus on localiz-
ation of function (“where”) to more “how” type
questions (Dolan, 2008).

Researchers interested in cognitive control have
often been at the forefront of employing compu-
tational models to understand brain function
(e.g., Botvinick et al., 2001; Brown, Reynolds, &
Braver, 2007; J. D. Cohen, Dunbar, &
McClelland, 1990; Gilbert & Shallice, 2002;
Holroyd & Coles, 2002; Yu & Dayan, 2005).
However, although in the past investigators have
tended to test whether the overall distribution of
the data is as predicted by the model, they have
rarely used trial-by-trial evaluations and formal
model comparisons, as in some of the reward-
based decision-making studies discussed above.
Furthermore, although this model-based approach
is becoming increasingly popular in fMRI studies,
it has not yet achieved widespread application in
studies employing more traditional psychophysio-
logical methods, such as ERPs and motor-evoked
potentials. As a case in point, reinforcement learn-
ing models have recently become a valuable tool
for describing the behaviour of the error-related
negativity, an ERP component associated with
the processing of errors and subsequent behaviour-
al adjustments (Holroyd & Coles, 2002; Holroyd,
Nieuwenhuis, Mars, & Coles, 2004), but these
studies mostly compare model predications and
data on a qualitative basis (e.g., M. X. Cohen &
Ranganath, 2007; Holroyd & Coles, 2002;
Nieuwenhuis et al., 2002).

Recently, however, a more formal model-based
approach has started to be applied to psychophy-
siological data, such as data obtained using tran-
scranial magnetic stimulation (Bestmann et al.,

2008) and event-related brain potentials (Kiebel
et al., 2009; Mars et al., 2008). In this section,
we describe a number of example applications of
the model-based approach to the study of cogni-
tive control. The examples focus on behavioural,
neuroimaging, and psychophysiological data and
illustrate some of the issues discussed above
regarding model fitting, model comparison, and
interpretation.

Cognitive control and the anterior cingulate cortex
The anterior cingulate cortex (ACC) of the human
brain is one of the primary foci of researchers inter-
ested in the neural correlates of cognitive control
(Botvinick et al., 2001; Ridderinkhof, Ullsperger,
Crone, & Nieuwenhuis, 2004; Walton & Mars,
2007). Adding to its popularity, the ACC has
been suggested to be the source of two ERPs that
are quite prominent in the study of cognitive
control: the error-related negativity (ERN;
Dehaene, Posner, & Tucker, 1994) and the N2
(Van Veen & Carter, 2002). The ACC is activated
by a wide range of cognitive demands (Duncan &
Owen, 2000) and is a prominent “blob” in many
neuroimaging studies, which makes it difficult to
ascribe any specific computational function to it.
Indeed, contrasts showing activity in the ACC
have been claimed to rely on processes as diverse
as conflict detection (Botvinick et al., 2001),
performance monitoring (Ridderinkhof et al.,
2004), action selection (Holroyd et al., 2004), and
autonomous functions (Critchley et al., 2003).

As described above, the ERN has been
suggested to reflect the prediction error d in
reinforcement learning models (Equation 2, this
study; Holroyd & Coles, 2002). Indeed, reinforce-
ment learning models, and especially prediction
errors, have been used extensively to describe
activity in the ACC (Rushworth & Behrens,
2008). Taking this approach a step further,
Behrens et al. (2007) recently investigated pro-
cesses related to the learning rate parameter in
reinforcement learning models, a (Equation 1).
As discussed above, the learning rate is typically
set by the experimenter or estimated from the
behavioural data and then kept constant. Behrens
et al. (2007) introduced a further level of
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sophistication, arguing that the learning rate
should be dependent on the rate with which the
statistics of the environment change. The best esti-
mate of the reward value of what is going to
happen next is based on using the most relevant
information available. Therefore, in a very stable
environment that changes only slowly, participants
should not just consider the outcomes of their most
recent decisions but they should also consider his-
torically distant information. Undue consideration
should not be given to the most recent outcome,
and estimates of future reward should not be dra-
matically changed if there is only a single surprising
outcome. By contrast, in a very variable environ-
ment historically distant events are a poor guide
to what will happen next, and relatively more
weight should be given to information signalled
by the most recent outcome. Thus, when the
environment is stable it is preferable to have a
lower learning rate, whereas when the environment
is highly changeable or very uncertain only recent
trials should be considered, and the learning rate
should be higher.

The authors developed an explicit model of how
participants integrated past information to select
their choices on any given trial. Rather than
fixing the learning rate a they constructed the
model to not only update the value estimate V
(Equation 1), but also its “trust” in the consistency
of the environment. This model predicted behav-
iour better than competing reinforcement learning
models that had fixed learning rates, suggesting
that the brain indeed uses this parameter in its
decision making. The model taking into account
the consistency of the environment was even
superior to models that had a separate, but fixed,
a for stable and volatile periods. Subsequently,
the authors showed that the volatility of the
environment correlated with the BOLD signal in
the anterior cingulate cortex. Although there are
numerous studies that suggest a role for the
anterior cingulate cortex in reward-based learning
(e.g., Hester, Barre, Murphy, Silk, & Mattingley,
2008; Mars et al., 2005), this type of inference
could only be made with a model-based analysis.
Thus, the model-based approach is able to show
that activity in the ACC covaries with the

dynamics of certain computational variables even
though conventional subtraction designs fail to
do so. Formal model comparison allows the
research to test which model provides the best
description of the data.

Task switching in probabilistic environments
As a further illustration of a potential application
of the model-based approach to cognitive control,
we can consider data from a task-switching para-
digm. Task switching is one of the most well-
established paradigms in the study of cognitive
control (Monsell, 2003), requiring participants to
switch from the implementation of one rule to
respond to environmental stimuli to another rule.
Following the results obtained by Behrens et al.
(2007) and discussed above, we suggested that
when participants are trying to learn which rule is
appropriate in a given environment the influence
of previous trials on the choice of rule might
depend on the rate of change of the environment.
We asked participants to perform a classification
task in which stimuli had to be categorized based
on either their shape or their colour (Figure 2a).
The correct rule was determined probabilistically,
requiring participants to switch between using
the different classification rules. Critically, the
probabilities changed either infrequently (stable
environment) or more frequently (volatile
environment). Indeed, we found that in the
stable environment participants took into account
trials going back further in the past, while in the
volatile environment only very recent trials were
taken into account (Figure 2c). By fitting a
reinforcement learning model to the participants’
behavioural data, we then determined the learning
rate a for each participant in the different
environments. The learning rate was significantly
modulated by the volatility of the environment,
with a larger a, indicating more influence of
the most recent trials, in the highly volatile
environment (Figure 2d). Additionally, a model
such as the one described by Behrens et al.
(2007, see above) provided a better explanation of
the data than models with a stationary value of a.
This example demonstrates that the model-
based approach to data can be successfully
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applied to paradigms employed in the study of
cognitive control and, moreover, that similar
models might be applicable in different cognitive
functions.

Balancing speed and accuracy
The speed–accuracy trade-off is one of the hall-
marks of action control. It refers to the balance
between the competing demands of deliberate
choice and response or decision speed. The pro-
cesses responsible for determining this balance
have been studied extensively, resulting in a large
behavioural literature and a range of formal
models. Generally, these models take the form of
an accumulator model, which commits to a
decision when the evidence in favour of a particu-
lar response reaches a certain threshold. This type
of modelling is consistent with known physiologi-
cal data (Gold & Shadlen, 2007). The speed–
accuracy balance is then implemented by raising
or lowering the response threshold. Even though

there is a large body of work investigating the
mechanisms of the speed–accuracy trade-off,
little is known about its neural basis. This is
partly due to the fact that simple contrasts of
conservative versus fast responses are difficult to
control for confounding factors, such as difficulty
and attention.

In a recent study, Forstmann et al. (2008)
attempted to circumvent these problems by using
a model-based approach to study the neural
substrates of the speed–accuracy trade-off. They
used a version of the popular accumulator
models, the linear ballistic accumulator (Brown
& Heathcote, 2008). They fitted the model to
each participant’s behavioural data, estimating a
parameter representing each individual’s response
threshold. BIC was used to determine that a
model varying only this parameter allowed the
best description of the data. The resulting par-
ameter was then used as a covariate in a fMRI
analysis of the same participant’s BOLD data

Figure 2. Application of model-based analysis to examine the influence of the volatility of the environment on behaviour during task

switching (N. Kolling, R. B. Mars, & M. F. S. Rushworth, personal communication, September 2008). (a) On each trial participants

had to match a top stimulus to one of two bottom stimuli based on either the shape or the colour. (b) Which of these sorting criteria was

correct was determined probabilistically. Critically, the rate at which the probabilities change differed between volatile (top) and stable

(bottom) phases of the experiment. Figure indicates which rule was correct on any given trial. (c) Participants took into account a greater

number of trials into the past in determining their selection criteria on any given trial in the volatile (top) than in the stable (phase)

phase as determined by a regression analysis determining the influence of past trials on current trial criterion. �Indicates significant

influence of this trial on the selected criterion on the current trial. (d) A reinforcement learning type model was fitted to each participant’s

data allowing an estimation of each participant’s learning rate a in both the volatile and the stable conditions. As predicted, a was

greater in the volatile than in the stable phase, indicating a greater effect of more recent trials. To view a colour version of this figure,

please see the online issue of the Journal.
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while performing the task. They then showed that
a measure related to the estimated response par-
ameter, the so-called “response caution”, correlated
negatively with BOLD signal strength in the
pre-SMA (pre-supplementary motor area) and
striatum. This suggests that participants who
decreased their response threshold more in response
to demands for faster responding had more activity
in these two brain areas. These results thus show
that the striatum has a role in adjusting response
caution. Although this had previously been
assumed by a number of computational models,
this has proven difficult to determine experi-
mentally. The combined use of computational
models, fitted to behavioural data, and fMRI
were, however, able to address this question.

P300: A model-based analysis of the event-related
brain potential
Our final example concerns a model-based analysis
of the P300 component of the ERP. Although one
might argue that the P300 is not a component tra-
ditionally studied in the realm of cognitive control,
it has been associated with processes such as allo-
cation of attention (Nieuwenhuis, Aston-Jones,
& Cohen, 2005) and updating of the brain’s
internal models (Donchin & Coles, 1988), both
of which are relevant to the study of cognitive
control. Furthermore, the discussed study is one
of only very few studies applying the model-
based approach to trial-by-trial fluctuations in
ERPs. Given the large application of ERPs to
the study of cognitive control, we believe this
makes this example particularly useful for research-
ers interested in cognitive control.

Mars and colleagues (Mars et al., 2008) were
interested in studying the factors modulating the
amplitude of the P300 component of the human
ERP. The extensive literature on P300 suggests
that this component is involved in the updating
of a contextual representation. This has been
studied in a number of tasks, but the most
famous example is in the context of oddball tasks,
in which participants have to respond to a
number of stimuli presented in succession. In
these tasks, some of the stimuli are presented
only rarely. The typical result is that participants

respond slower and make more errors in response
to the infrequent stimuli. Neurally, the infrequent
response is associated with an enlarged P300 as
compared to the frequent stimuli (Duncan-
Johnson & Donchin, 1977).

To investigate the role of the P300 in this so-
called context updating more closely, Mars et al.
(2008) asked participants to perform a simple learn-
ing oddball task (Figure 3a). Participants were first
trained on the associations between four visual
stimuli and four manual responses (button
presses). Following this training, participants per-
formed blocks in which the relative probability of
the stimuli was manipulated. Participants were not
informed of this manipulation, but were simply
instructed to respond to each stimulus with the
appropriate button press as quickly as possible.
Context-updating models suggest that participants
maintain a representation of the probability of
each stimulus that is updated on each trial based
on the stimuli encountered. Accordingly, the
authors constructed a simple model, which treated
participants as ideal observers who tried to learn
the probability distribution of the stimuli presented.
They assumed that each participant started with
equal prior—that is, that all stimuli were equally
probable—and updated the probability of each
stimulus, p(xi), on each trial:

pðxiÞ ¼ n
j
i þ 1

P4

k¼1

n
j
k þ 1

ð3Þ

where n
j
i refers to the number of occurrences of

outcome i up until observation j, and the sum-
mation is over all k stimuli. From these estimated
probabilities, they calculated on each trial the
unpredictability or “surprise” of the presented
stimuli (Figure 3b). Formally, the surprise I was
quantified as the Shannon (1948) information
carried by the stimulus xi:

I ðxiÞ ¼ �log2 pðxiÞ ð4Þ

Thus, if there had been very few occurrences of
a stimulus xi the information or surprise associated
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with an occurrence of that stimulus xi would be
high. Following the suggestion that it is these
“surprising” stimuli that require additional atten-
tional processing and updating of ongoing task
processing it was hypothesized that this surprise
would predict trial-by-trial changes in P300
amplitude. Rather than sorting trials by a prior fre-
quency, as determined by the experimenter, this
approach thus predicts trial-by-trial fluctuations
in P300 amplitude based on the participant’s
internal, unobservable estimation of the stimulus
probabilities. This simple model captures a
number of features of the P300. For instance, the
P300 to the second of two successive oddball
stimuli is smaller than the P300 to the first
oddball stimulus because the participant has
updated the estimated probability of the occur-
rence of this stimulus following the presentation
of the first oddball.

In the example study discussed above, Mars
et al. (2008) tested not only surprise as defined
in Equation 4, but also an alternative measure of
context updating, the Kullback–Leibler (KL)
divergence, which is a measure of the difference
between the participant’s estimated probability

distribution before and after trial j:

KL ¼
X4

i¼1

p
j
i ln

p
j
i

p
j�1
i

ð5Þ

Bayesian model comparison was then used to
compare these two candidate models and a
third model, a traditional analysis of variance
(ANOVA) model in which the trials were sorted
by a priori stimulus category by the experimenter.
As shown in Figure 3c, the surprise model pro-
vided the best description of the ERP data,
better than the alternative KL divergence model
and better than a traditional ANOVA (“subtrac-
tion design”) model.

This example shows the feasibility of applying
the model-based analysis advocated in this paper
to more traditional psychophysiological measures,
such as the event-related brain potential.
Additionally, it provides a possible route to
making the rather general theories associated
with some ERP components, in this case the
P300, more explicit and to formally test them.

Figure 3. Example of model-based analysis of event-related potential (ERP) data in a choice reaction time task. (a) Participants

responded with button presses to visual stimuli presented every 2 seconds. (b) Manipulating the occurrence of different trials (top)

allows calculation of surprise/Shannon information (middle) and Kullback–Leibler (KL) divergence (bottom) on a trial-by-trial

basis. (c) Model comparison shows that surprise/Shannon information provides the best description of the data. Positive score on y-

axis indicates evidence in favour of the surprise model as compared to a traditional analysis of variance (ANOVA) model and the KL

divergence. From “Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of

Surprise”, by R. B. Mars et al., 2008, Journal of Neuroscience, 28, pp. 12539–12545. Copyright 2008 by the Name of Copyright

Holder. Adapted with permission.
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CONCLUSION

We have discussed the use of model-based analyses
of behavioural and neuroimaging data. These types
of analyses are becoming more and more wide-
spread, finding their way into not only the study of
reward-based decision making, but also visual
perception, motor preparation, and cognitive
control. They offer the exciting possibility of inves-
tigating aspects of neural processing that are not
directly observable using standard “subtraction”
type designs. This approach might be particularly
useful in the study of the neural substrates of cogni-
tive control given the dependence of these processes
on context, participants’ expectancy, and trial-by-
trial dependence. Moreover, they are being
applied to an ever-extending range of neuroima-
ging techniques, using ever more sophisticated
techniques.

However, this technique relies on a number of
underlying assumptions. We have tried to make
these assumptions more explicit and provide
some pointers on the types of interference that
can be reliably drawn from model-based analyses.
We have illustrated a number of issues associated
with these types of analyses. We have advocated a
model comparison approach, in which a number
of plausible models are tested against one
another. The candidate models should be plaus-
ible, for example based on the underlying
anatomy or proven ability of the model in other
domains. However, even given these precautions,
the inference is limited to the set of candidate
models. An important problem is the level of
description of this approach. Although this tech-
nique can differentiate between different algor-
ithms that might be computed by the brain, it
cannot tell us directly how an algorithm is
implemented.

REFERENCES

Akaike, H. (1973). Information theory as an extension of
the maximum likelihood principle. In B. N. Petrov &
F. Csaki (Eds.), Second international symposium on

information theory (pp. 267–281). Budapest,
Hungary: Akademiai Kiado.

Behrens, T. E. J., Hunt, L. T., Woolrich, M. W., &
Rushworth, M. F. S. (2008). Associative learning of
social value. Nature, 456, 245–250.

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., &
Rushworth, M. F. S. (2007). Learning the value of
information in an uncertain world. Nature

Neuroscience, 10, 1214–1221.
Bestmann, S., Harrison, L. M., Blankenburg, F., Mars,

R. B., Haggard, P., Friston, K. J., et al. (2008).
Influences of contextual uncertainty and surprise on
human corticospinal excitability during preparation
for action. Current Biology, 18, 775–780.

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C.
S., & Cohen, J. D. (2001). Conflict monitoring and
cognitive control. Psychological Review, 108, 624–652.

Brown, S. D., & Heathcote, A. J. (2008). The simplest
complete model of choice reaction time: Linear
ballistic accumulation. Cognitive Psychology, 57,

153–178.
Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A

computational model of fractionated conflict-control
mechanisms in task-switching. Cognitive Psychology,
55, 37–85.

Burnham, K. P., & Anderson, D. R. (2002). Model

selection and multi-model inference. A practical infor-

mation-theoretic approach (2nd ed.). New York:
Springer.

Burnham, K. P., & Anderson, D. R. (2004).
Multimodel inference: Understanding AIC and
BIC in model selection. Sociological Methods

Research, 33, 261–304.
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990).

On the control of automatic processes: A parallel
distributed processing account of the Stroop effect.
Psychological Review, 97, 332–361.

Cohen, M. X. (2007). Individual differences and the
neural representations of reward expectation and
reward prediction errors. Social Cognitive and

Affective Neuroscience, 2, 20–30.
Cohen, M. X. (2008). Neurocomputational mechanisms

of reinforcement-guided learning in humans: A
review. Cognitive, Affective, and Behavioral

Neuroscience, 8, 113–125.
Cohen, M. X., & Ranganath, C. (2007). Reinforcement

learning signals predict future decisions. Journal of

Neuroscience, 27, 371–378.
Corrado, G., & Doya, K. (2007). Understanding neural

coding through the model-based analysis of decision
making. Journal of Neuroscience, 27, 8178–8180.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (2) 265

MODEL-BASED ANALYSIS OF COGNITIVE CONTROL



Corrado, G. S., Sugrue, L. P., Brown, J. R., &
Newsome, W. T. (2009). The trouble with choice:
Studying decision variables in the brain. In P. W.
Glimcher, C. F. Camerer, E. Fehr, & R. A.
Poldrack (Eds.), Neuroeconomics: Decision making

and the brain (pp. 463–480). Amsterdam: Elsevier.
Critchley, H. D., Mathias, C. J., Josephs, O.,

O’Doherty, J., Zanini, S., Dewar, B. K., et al.
(2003). Human cingulate cortex and autonomic
control: Converging neuroimaging and clinical
evidence. Brain, 126, 2139–2152.

D’Ardenne, K., McClure, S. M., Nystrom, L. E., &
Cohen, J. D. (2008). BOLD responses reflecting
dopaminergic signals in the human ventral tegmental
area. Science, 319, 1264–1267.

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994).
Localization of a neural system for error detection
and compensation. Psychological Science, 5, 303–305.

Den Ouden, H. E. M., Friston, K. J., Daw, N. D.,
McIntosh, A. R., & Stephan, K. E. (2009). A dual
role for prediction error in associative learning.
Cerebral Cortex, 19, 1175–1185.

Dolan, R. J. (2008). Neuroimaging of cognition: Past,
present, and future. Neuron, 60, 496–502.

Donchin, E., & Coles, M. G. H. (1988). Is the P300
component a manifestation of context updating?
Behavioral and Brain Science, 11, 357–374.

Duncan, J., & Owen, A. M. (2000). Common regions
of the human frontal lobe recruited by diverse
cognitive demands. Trends in Neurosciences, 23,

475–483.
Duncan-Johnson, C., & Donchin, E. (1977). On

quantifying surprise: The variation of event-related
brain potentials with subjective probability.
Psychophysiology, 14, 456–467.

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J.,
Von Cramon, D. Y., Ridderinkhof, K. R., et al.
(2008). Striatum and pre-SMA facilitate decision-
making under time pressure. Proceedings of the

National Academy of Sciences USA, 105, 17538–17542.
Friston, K. (2003). Learning and inference in the brain.

Neural Networks, 16, 1325–1352.
Gilbert, S. J., & Shallice, T. (2002). Task switching: A

PDP model. Cognitive Psychology, 44, 297–337.
Godfrey-Smith, P. (2006). The strategy of model-based

science. Biology and Philosophy, 21, 725–740.
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of

decision making. Annual Reviews of Neuroscience, 30,

535–574.
Hampton, A. N., Bossaerts, P., & O’Doherty, J. P.

(2006). The role of the ventromedial prefrontal

cortex in abstract state-based inference during
decision making in humans. Journal of Neuroscience,
26, 8360–8367.

Haynes, J. D., Sakai, K., Rees, G., Gilbert, S., Frith, C.,
& Passingham, R. E. (2007). Reading hidden inten-
tions in the human brain. Current Biology, 17,

323–328.
Hester, R., Barre, N., Murphy, K., Silk, T. J., &

Mattingley, J. B. (2008). Human medial frontal
cortex activity predicts learning from errors.
Cerebral Cortex, 18, 1933–1940.

Holroyd, C. B., & Coles, M. G. H. (2002). The neural
basis of human error processing: Reinforcement
learning, dopamine, and the error-related negativity.
Psychological Review, 109, 679–709.

Holroyd, C. B., Nieuwenhuis, S., Mars, R. B., & Coles,
M.G. H. (2004). Anterior cingulate cortex, selection
for action, and error processing. In M.I. Posner
(Ed.), Cognitive neuroscience of attention

(pp. 219–231). New York: Guilford Press.
Kass, R. E., & Raftery, A. E. (1993). Bayes factors and

model uncertainty, (Tech. Rep. No. 254). University
of Washington, Seattle, WA.

Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C. C., &
Friston, K. J. (2009). Dynamic causal modelling for
EEG and MEG. Human Brain Mapping, 20,

1866–1876.
Lau, B., & Glimcher, P. W. (2005). Dynamic response-

by-response models of matching behaviour in rhesus
monkeys. Journal of the Experimental Analysis of

Behavior, 84, 555–579.
Logothetis, N. K., Pauls, J., Auguth, M., Trinath, T., &

Oeltermann, A. (2001). Neurophysiological investi-
gation of the basis of the fMRI signal. Nature, 412,

150–152.
MacKay, D. J. C. (1992). Bayesian interpolation. Neural

Computation, 4, 415–447.
Marr, D. (1982). Vision. A computational investigation

into the human representation and processing of visual

information. New York: W.H. Freeman and
Company.

Mars, R. B., Coles, M. G. H., Grol, M. J., Holroyd, C.
B., Nieuwenhuis, S., Hulstijn, W., et al. (2005).
Neural dynamics of error processing in human
medial frontal cortex. NeuroImage, 28, 1007–1013.

Mars, R. B., Debener, S., Gladwin, T. E., Harrison, L.
M., Haggard, P., Rothwell, J. C., et al. (2008). Trial-
by-trial fluctuations in the event-related electro-
encephalogram reflect dynamic changes in the
degree of surprise. Journal of Neuroscience, 28,

12539–12545.

266 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (2)

MARS ET AL.



Miller, E. K. (2000). The prefrontal cortex and cognitive
control. Nature Reviews Neuroscience, 1, 59–65.

Monsell, S. (2003). Task switching. Trends in Cognitive

Sciences, 7, 134–140.
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D.

(2005). Decision making, the P3, and the locus
coeruleus-norepinephrine system. Psychological

Bulletin, 131, 510–532.
Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D.,

Coles, M. G. H., Holroyd, C. B., Kok, A., et al.
(2002). A computational account of altered error pro-
cessing in older age: Dopamine and the
error-related negativity. Cognitive, Affective, and

Behavioral Neuroscience, 2, 19–36.
O’Doherty, J. P., Hampton, A., & Kim, H. (2007).

Model-based fMRI and its application to reward
learning and decision making. Annals of the

New York Academy of Sciences, 1104, 35–53.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of

Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. In
A. H. Black & W. F. Prokasy (Eds.), Classical

conditioning. II: Current research and theory

(pp. 64–99). New York: Appleton-Century-Crofts.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., &

Nieuwenhuis, S. (2004). The role of the medial frontal
cortex in cognitive control. Science, 306, 443–447.

Roesch, M. R., Calu, D. J., & Schoenbaum, G. (2007).
Dopamine neurons encode the better option in rats
deciding between differently delayed or sized
rewards. Nature Neuroscience, 10, 1615–1624.

Rosa, M. J., Bestmann, S., Harrison, L., & Penny, W.
(2010). Bayesian model selection maps for group
studies. NeuroImage, 49, 217–224.

Rushworth, M. F. S., & Behrens, T. E. J. (2008).
Choice, uncertainty and value in prefrontal
and cingulate cortex. Nature Neuroscience, 11,

389–397.
Rushworth, M. F. S., Mars, R. B., & Summerfield, C.

(2009). General mechanisms for making decisions?
Current Opinion in Neurobiology, 19, 75–83.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A
neural substrate of prediction and reward. Science,
275, 1593–1599.

Shannon, C. E. (1948). A mathematical theory of
communication. Bell Systems Technical Journal, 27,

379–423.
Sterret, S. G. (2002). Physical models and fundamental

laws: Using one piece of the world to tell about
another. Mind & Society, 5, 51–66.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern
theory of adaptive networks: Expectation and
prediction. Psychological Review, 88, 135–170.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement

learning: An introduction. Cambridge, MA: MIT
Press.

Van Veen, V., & Carter, C. S. (2002). The timing of
action-related processes in the anterior cingulate
cortex. Journal of Cognitive Neuroscience, 14,

593–602.
Walton, M. E., & Mars, R. B. (2007). Probing human

and monkey anterior cingulate cortex in variable
environments. Cognitive, Affective, and Behavioral

Neuroscience, 7, 413–422.
Weisberg, M. (2007). Who is a modeler? British Journal

for Philosophy of Science, 58, 207–233.
Yu, A., & Dayan, P. (2005). Uncertainty, neuromodu-

lation, and attention. Neuron, 46, 681–692.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (2) 267

MODEL-BASED ANALYSIS OF COGNITIVE CONTROL




