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Abstract

Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this
study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized
via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-
231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our
modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-
view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell
lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed
cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell
axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range
were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell
behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral
protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and
motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping
vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body
geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell
tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic
breast cancer cells.
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Introduction

Cell behaviors, including morphology changes and migration

variations, are reflections of intracellular tension dynamics. The

study of cell behaviors is of significance in understanding many

fundamental biological processes, such as wound healing [1], tissue

repair [2], cell growth [3], chemotaxis [4] and immune responses

[5–7]. Cell migration is a coordinated process with constant shape

changes associated with assembly and disassembly of actin

filaments from the leading edges to the trailing edges, respectively

[8]. It plays an important role in embryonic development [9],

during which, large amount of cells migrate collectively to form

the three layer embryo. Stem cells then migrate from epithelial

layers to target locations and differentiate to specialized cells that

make up different tissues and organs [10]. Cell behaviors can also

be related to the onset and progression of many diseases. For

example, most cancer-related deaths are due to metastatic disease,

which is a result of cancer cell migration from original locations to

remote sites and the formation of secondary tumors [11].

Therefore, cell motility, which can be partially evaluated by cell

instantaneous migration speed [12–17], is taken as an important

factor that may correlate with the potential of cancer metastasis

and invasion [16,18–21].

Live cell tracking has been used to investigate and compare cell

behaviors by measuring cell migration speed, monitoring migra-

tion trajectories, and examining temporal changes in cell shape

and area [13,15,22,23]. Automated cell tracking, however, suffers

from various difficulties, such as the accuracy of cell lineage

construction and simultaneous detection of cell boundaries during

tracking. Most studies have, therefore, been limited to measuring

instantaneous migration speed of the entire cell population

[15,16,21]. Except for a few studies [22], the heterogeneity among

cell behaviors has not been adequately addressed despite the well-

recognized existence of heterogeneous subpopulations in estab-

lished cell lines. Furthermore, the effects of different phases in cell

cycle progression on cell behaviors cannot be addressed by

employing a population-level approach. In this study, we aim to

develop a live cell-tracking platform that allows us to conduct
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quantitative measurements of temporal changes in cell geometry

and cell motion through distinct phases of the cell cycle for

individual cells. We applied novel algorithms and necessary

procedures to optimize cell imaging, cell segmentation, and

separation of aggregated cells, along with off-line editing programs

to further enhance accuracy of cell lineage construction and

simultaneous detection of cell boundary over several cell cycles.

Indeed, combination of automated segmentation and tracking

with manual post-processing tools has been reported to be effective

by others [22,24,25].

In general, cell tracking consists of three steps, cell imaging, cell

segmentation, and cell association. Regarding cell imaging,

fluorescence microscopic imaging [26] offers good image contrast.

However, cells need to be either genetically engineered to generate

fluorescent proteins or fluorescently labeled to enhance cell

boundary information. Moreover, cells often suffer from photo

bleaching that prevents frequent or long-term monitoring for live

cell tracking. Bright field microscopic imaging can approximately

estimate cell boundary by recording variations of light intensity at

various vertical positions, as cells have greater variations in light

intensity than the substrate [27]. Positive phase contrast micro-

scopic imaging is also widely used in live cell tracking as cell bodies

have lower light intensity than background [15,23,28]. However,

mitotic cells and cells with increased cell height will show reversed

image contrast, such that their cell bodies will have higher light

intensity than background. In this study, we applied negative

phase contrast microscope imaging to eliminate the confusion of

image contrast reversion caused either by cell division or increased

cell height. All cells including mitotic cells consistently show

positive image contrast in our study.

Multiple algorithms have been applied for cell segmentation to

extract information on cell location and cell boundary in acquired

images. With spatial information of each cell location and the time

interval among sequential cell images, one could determine

migration speed and migration trajectory of any given cell being

monitored. With cell boundary information, one could determine

temporal variation and heterogeneity in cell geometry among

monitored cells. The threshold method is a simple method that

utilizes a threshold value to distinguish foreground and back-

ground areas in an image [29]. The threshold value is normally

obtained through the overall light intensity distribution on cell

bodies and substrates. This method highly depends on the image

contrast of cells. Accordingly, cell segmentation is sensitive to the

selection of the threshold value such that cells of low image

contrast may not be detected. Another method for cell segmen-

tation is region based active contour method [13], which can

achieve robust cell segmentation and is less sensitive to quality of

image contrast. However, this method suffers from difficulty in

achieving optimized estimation of cell boundaries for individual

cells due to its global based approach. In comparison, edge based

active contour method, which utilizes the local light intensity

information, can achieve optimized estimation of cell boundary

[23]. The need of contour initialization for each target cell in this

method makes it difficult to track all of the cells due to the

Figure 1. Contour expansion method for cell boundary detection. (A) It is assumed that most cells have illustrated height profiles with one
peak located above the cell nucleus. In negative phase contrast images, the light intensity of cells is proportional to cell height. Therefore, the light
intensity distribution over cell surface is similar to a height profile of cells with one peak located above each cell body. (B) Mesh plot of the light
intensity for a selected cell (shown in Fig. 1D), which demonstrates the distribution of light intensity over cell surface. (C) Quiver plot of the gradient
of light intensity for the selected cell. Over cell surface, the gradient of light intensity is pointing outwards. (D) Demonstration of contour expansion
method for cell segmentation. The first figure shows the negative phase contrast image. The threshold method is used to get a preliminary mask for
the selected cell, as shown in the second figure. The boundary of the mask is extracted and taken as the initial contour (the third figure). With contour
expansion method, the initial contour is driven by the field of gradient of light intensity to gradually converge to the cell boundary (the fourth figure).
The contour is finally converged at the boundary of the cell, where the contour achieves the minimum energy (the fifth figure).
doi:10.1371/journal.pone.0098762.g001
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presence of hundreds of cells in one field of view. In our live cell

tracking system, cell segmentation was implemented by combining

the ‘‘threshold method’’ for cell localization with the ‘‘modified

edge based active contour method’’ for optimization of cell

boundary detection. We refer to our modified edge based active

contour method as ‘‘contour expansion method’’. Consequently,

boundary detection for all cells in the field of view is optimized and

the capacity of massive cell tracking is not compromised.

Another challenge in cell segmentation is separation of

aggregated cells. The watershed method has been applied to

separate multiple cells in one detected area [30]. This method

often suffers from over- or under-segmentation as it utilizes the

shape of detected area to determine the number and correspond-

ing boundary of individual cells by constructing Euclidian distance

map within the detected area. In this study, we utilize cell light

intensity information rather than shape of the detected area to

improve cell separation. The geographic peaks of light intensity

within the detected areas were used to determine the numbers and

locations of multiple cells, and their corresponding boundaries

were determined by a combination of threshold method with

contour expansion method.

Figure 2. Cell localization, contour detection, and separation of aggregated cells. (A) Based on negative phase contrast image, peaks of
light intensity are detected for all cells, as indicated by red circles. (B) Preliminary masks are obtained with the threshold method. Masks in green are
areas with multiple peaks indicating aggregated cells. Masks in yellow are areas with single cell. (C) The boundaries of the preliminary masks are
extracted to serve as initial contours for individual cells. (D) The contour expansion method is applied to detect cell boundaries for all cells in the field
of view. (E) Steps taken to separate three aggregated cells selected in figure (A). The first figure shows three peaks detected, indicating three cells in
the selected area. The second figure shows the mask area defined by the threshold method and locations of three detected peaks. The third figure
shows division of the mask area into three sub-areas based on shortest distance between any given pixels and the three detected peaks. The fourth
figure shows contour initiation by extracting the outlines of sub-areas. The fifth figure shows the final contours of three cells after contour expansion.
doi:10.1371/journal.pone.0098762.g002
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Cell association is a procedure that links cell identities and

corresponding data for individual cells between any two consec-

utive frames [31]. The overlapping area based method, which

assumes that the two segmented areas of the same cell in two

consecutive video frames have the largest overlapping area, has

been proven to be reliable [13]. The time interval between two

consecutive video frames must be short enough to guarantee

continuous tracking of the cells, in particular for cells with high

migration speed. Cell mitotic detection is implemented by

detecting one cell to two cells association between two consecutive

frames. With the detection of cell division, cell lineage families can

be constructed and a complete cell cycle can be defined as the

duration between two events of cell division. Accordingly,

temporal changes of cell geometry and cell motion along cell

cycle progression in any given cell within the field of view can be

determined.

Finally, we applied the cell-based approach, in which cell

behavior parameters were associated with cell identities. This is in

contrast to the widely used step-based approach that analyzes data

obtained from all tracked cells between any two consecutive

Figure 3. Peripheral protrusions may not be included in the final contours. The segmentation program can capture cell bodies and some
parts of protrusion structures. However, peripheral protrusion structures with locally increased light intensity (marked by a red arrow in figure A)
connected with thin extensions would not be included in the final contours (‘‘A’’ in figure B). Similarly, thin lamellipodia of low image contrast would
not be included in the final contours (‘‘B’’ in figure B). Finally, the contour could not converge to a sharp protrusion structure due to the constraint of
internal energy of the contour (‘‘C’’ in figure B).
doi:10.1371/journal.pone.0098762.g003

Figure 4. Cell association and detection of cell division. (A) Three detected cells in frame i. (B) Four detected cells in frame i+1. Cells 19 and cell
29 are the same cells of cell 1 and cell 2 in frame i, respectively. Cell 3 in frame i is divided into cell 39 and 49 in frame i+1. The cells can be associated
based on the overlapping areas between the two consecutive frames. The two divided cells 39 and 49 in frame i+1 have large overlapping areas with
their mother cell 3 in frame i. Moreover, the sum of the two areas has large overlapping area with the mother cell. This one-to-two association
relationship is utilized to detect cell division. (C) The overlapping rate is defined as the ratio of the overlapping area to the minimum area of the two
areas under investigation. (D) A cell association matrix is constructed with the calculated overlapping rate. (E), (F) Cell segmentation results for two
consecutive frames. (G) The association matrix between two consecutive frames after calculating the overlapping rate. The x and y axes denote cell
labels for cells in Frame i+1 and Frame i, respectively. The color of each point represents the overlapping rate (range from 0 to 1.0) of a given cell
between two consecutive frames, as indicated by the color bar in the image.
doi:10.1371/journal.pone.0098762.g004
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frames regardless of cell identity information [12]. The cell-based

approach allows us to examine and compare temporal changes of

cell behavior at single cell level. Therefore, the scope of

heterogeneity in cell behaviors within an established cell-line can

be studied. In addition to construct cell lineage families for all

tracked cells, our live cell tracking program allows simultaneous

measurement of cell shape, cell area, and cell migration features

that reflect underlying intracellular tension dynamics of monitored

cells. The capability of our live cell tracking system was evaluated

using three well-characterized human breast epithelial cell lines,

MCF-10A non-transformed breast cells, MCF-7 non-invasive

breast cancer cells, and MDA-MB-231 highly metastatic breast

cancer cells, with the objective to identify cell behaviors that are

unique to malignant and/or highly metastatic breast cancer cells.

Materials and Methods

a. Cell culture
MCF-10A cells were maintained in 47.5% Dulbecco’s modified

Eagle’s medium (DMEM) and 47.5% F-12 medium supplemented

with 5% horse serum, EGF (20 ng/ml), bovine insulin (1 mg/ml),

hydrocortisone (0.5 mg/ml), cholera toxin (0.1 mg/ml), NaHCO3

(0.2 mM), and 1% penicillin/streptomycin. MCF-7 cells and

MDA-MB-231 cells were maintained in 90% RPMI 1640 medium

supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin. Cells were seeded in six-well plates for 24 hours, and

were rinsed and replaced with fresh medium to remove debris that

may interfere cell imaging. During imaging, cells were placed on a

stage-top incubator (Model: WSKM-F1, Tokai Hit, Japan) with

controlled humidity and temperature. The pH value of culture

media was maintained by connecting the stage-top incubator with

Figure 5. Illustration of temporal changes in cell area and cell shape along with cell cycle progression. After division, cell area gradually
increases with change in cell shape from time point A to time point D. Thereafter, the cell becomes rounded with decreased cell area (time point F),
marking the entry of mitotic stage. The cell is elongated with slightly increased area and subsequently a characteristic bottleneck structure appears
and cell division occurs.
doi:10.1371/journal.pone.0098762.g005

Figure 6. Cell behaviors during cell division for MCF-10A, MCF-7, and MDA-MB-231 cells. (A) MCF-10A cells divide horizontally with
smooth separation after cell division. (B) Some MCF-7 cells divide vertically and remain vertically overlapping for a long time before the cell on the
top slides down and gradually attaches to the substrate. (C) MDA-MB-231 cells are unique in that divided cells often underwent rapid motion and
irregular geometry change, as shown with green contours from the fifth to the seventh figures.
doi:10.1371/journal.pone.0098762.g006
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the pre-mixed air with 5% CO2 supplied through a CO2

controller (Model No.: DGTCO2BX, OKO Lab, Italy).
b. Time-lapse negative phase contrast microscopy
imaging
A phase contrast microscope (Model: IX51, Olympus) was used

to record time-lapse image streams of the selected cell lines. A 10X

negative phase contrast lens (Model: PLN10XPH/NH, Olympus)

was used to get negative phase contrast images. A CCD camera

Table 1. False tracking rate of selected MCF-10A, MCF-7, and MDA-MB-231 cells.

Cell lines Total tracking event a False association event b Loss of tracking event c Overall false tracking rate

MCF-10A 73672 95 (0.13%) 8 (0.01%) 103 (0.14%)

MCF-7 39795 13 (0.03%) 4(0.01%) 17 (0.04%)

MDA-MB-231 28520 22 (0.08%) 7(0.02%) 29 (0.10%)

aTotal tracking event is the sum of the all cell-tracking events over the total selected cells that underwent an entire cell cycle. bFalse association is mostly due to false
detection of cell division, rapid change of cell locations among multiple interacting cells. cLost tracking is mainly due to low image contrast, abrupt motion due to rapid
contraction of focal adhesion. Note that cells moving out the field-of-view were not counted as false tracking events.
doi:10.1371/journal.pone.0098762.t001

Figure 7. Cell lineage construction and associated cell behaviors after offline editing. (A) Cell trajectories for all tracked cells in the-field-
of-view. The color of trajectories indicates cell generations. Blue, green, red, cyan, and magenta represent trajectories from the first to the fifth
generations, respectively. (B) Cell trajectories for cells presented in the first video frame and their offspring cells. (C) Trajectories for cells from a
selected cell lineage family. (D) Cell lineage families constructed with automated cell tracking program followed by offline editing. (E) A selected cell
lineage family with cell migration speed, cell area, and cell axis ratio aligned with cell cycle progression. Note that a maximum of 5 generations and 11
cell divisions in total are observed in this family during 40 hrs of monitoring. (F) The enlarged figure for the selected area in figure (E).
doi:10.1371/journal.pone.0098762.g007
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(Model: C4742-95, Hamamatsu, Japan) was used to take images

with 2 min intervals between two consecutive frames in a period of

about 40 h, 70 h, and 75 h for MCF-10A, MCF-7, and MDA-

MB-231 cells, respectively. Note that MCF-10A cells have a higher

division rate, such that it almost achieves 100% confluence after

40 h monitoring. For each cell line, two independent experiments

were conducted and had similar observation. We, therefore, only

include data and analyses from one experimental trial.

c. Development of automated cell tracking program
The implementation of automated cell tracking is briefly

introduced below. It is divided into four phases, i.e., cell

segmentation, cell association, off-line editing, and cell lineage

construction.

c.1. Cell segmentation: contour expansion method and

separation of aggregated cells. Contour expansion method: Cell

segmentation includes cell localization and cell boundary detec-

tion. To automatically obtain cell locations and optimize cell

boundary detection for all cells in the field of view, the threshold

method is combined with a modified edge based active contour

method in this study. The threshold method is applied to acquire

cell localization and the initial contours of cell boundaries for all

cells in the field of view in each video frame. The modified edge

based active contour method is then applied to optimize the

detection of cell boundaries based on local light intensity

information for individual cells. With the traditional edge based

active contour method, the contours are initialized outside the

target objects. However, in this study, the initial contours are

obtained from the masks generated by the threshold method and

are gradually expanded driven by the field of gradient in light

intensity. Accordingly, we refer to this method as the ‘‘contour

expansion method’’.

Figure 8. Calculation of mean square displacement (MSD) and determination of motion type. (A) Schematic showing the selected pairs
of data point along a trajectory with different time interval for the calculation of MSD. (B) MSD calculation. (C) MSD as function of time interval to
determine motion type. The linear increase of the MSD with the time interval indicates the motion type of random walk. Directional motion leads to a
MSD curve deflected upward, whereas depressed motion results in a MSD curve deflected downward.
doi:10.1371/journal.pone.0098762.g008

Figure 9. Correlation between cell area and cell axis ratio in a constructed 2D geometry space. For any point in the 2D space, the x
coordinate and the y coordinate represent cell area and cell axis ratio of a given cell at each video frame, respectively. Summation of all entry data in
the 2D space for all video frames results in the overall 2D geometry distribution maps. The frequency of cells appears at each point in the 2D space is
indicated with corresponding color bar. (A) MCF-10A cells have a narrow distribution of cell area, while (B) MCF-7 cells show a wider distribution of
cell area. (C) MDA-MB-231 cells have a wider distribution of axis ratio. Moreover, the axis ratio for MDA-MB-231 cells slightly increases with increasing
cell areas.
doi:10.1371/journal.pone.0098762.g009
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For negative phase contrast cell images, light intensity is almost

linearly related to the thickness of a phase object [32]. Normally,

cells have a height profile as shown in the top graph of Fig. 1A.
The apex of the profile locates above the cell nucleus. The height

gradually decreases towards the cell boundaries. Therefore, one

can expect that the light intensity over cell surface in negative

phase contrast imaging would have similar profile with its height

profile, as illustrated in the bottom graph of Fig. 1A.

Fig. 1B shows a mesh plot of the light intensity for a negative

phase contrast cell image. One can see that light intensity has a

higher value in the central area of the cell and then gradually

decreases toward cell boundary area, which is consistent with the

Figure 10. Temporal change of cell area and cell axis ratio along cell cycle progression for MCF-10A, MCF-7, and MDA-MB-231 cells.
The cell cycle was scaled to 0–1 to facilitate comparison among different cells within the same cell-line. Values of cell area or cell axis ratio for each
cell examined (blue curves) were lined up with the scaled cell cycle and the mean value for each parameter was shown by the red curve in each
figure. (A–C) A rapid increase in mean size of cell area occurred shortly after cell division, which reflects cell attachment on the substrate after cell
division. Thereafter, mean size of cell area gradually increased. A rapid decrease in mean size of cell area occurred before the end of cell cycle, which
reflects cells becoming rounded in preparation of cell division. (D–F) The mean axis ratio was lowest before and after cell division for the three cell
lines, reflecting cells rounded up before and after cell division. Otherwise, the mean axis ratio did not change much at the interphase of cell cycle for
both MCF-10A cells and MCF-7 cells. In comparison, the mean axis ratio for MDA-MB-231 cells slightly increased with cell cycle progression.
doi:10.1371/journal.pone.0098762.g010

Figure 11. Boxplots of median cell area and median cell axis ratio for cells undergoing an entire cell cycle. (A) MCF-7 cells have highest
median value of cell area, while the median value for MDA-MB-231 cells is slightly larger than that for MCF-10A cells. The Wilcoxon rank sum test
showed that there is statistically significant difference in distribution shift of median cell areas between MCF-10A and MCF-7, and between MDA-MB-
231 and MCF-7 cells. (B) MDA-MB-231 cells have the highest median value of cell axis ratio followed by MCF-10A cells. MCF-7 cells have the lowest
median value of cell axis ratio among the three cell lines. The Wilcoxon rank rum test showed that there is statistically significant difference in
distribution shift of median cell axis ratios between MCF-10A and MCF-7, and between MDA-MB-231 and MCF-7 cells.
doi:10.1371/journal.pone.0098762.g011
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graph shown in Fig. 1A. One can obtain the field of gradient of

light intensity by taking the differentiation of the light intensity

along both x and y directions, as shown in Fig. 1C, which was

used to define the outline of cell boundary in two-dimensional (2D)

culture.

Fig. 1D demonstrates the procedure of cell contour expansion.

The first figure is the negative phase contrast image of a MCF-

10A cell. A mask was obtained after applying the threshold

method, as shown in the second figure. The boundary of the

mask is extracted to serve as the initial contour, as shown in the

third figure. The initial contour expands outward driven by the

field of gradient of light intensity as indicated by the red contours

shown in the fourth figure. The contour will stop at the cell

boundary where it achieves the minimum energy. As shown in the

fifth figure, the converged contour (red contour) had a much

better approximation of the cell boundary than the initial contour

(green contour). Note that the mask shown in the second figure can

also be generated with the region based active contour method

[13]. We tested both the region based active contour method and

the threshold method and found no difference regarding the final

result. Since the region based active contour method consumes

more computation time, we applied threshold method to obtain

masks in this study.

Separation of aggregated cells: As mentioned earlier, one major

challenge in cell segmentation is separation of aggregated cells.

Practically, a mask area initialized by the threshold method (or the

region based active contour method) may contain more than one

cell. Assuming the light intensity distribution across cell surface has

the shape shown in Fig. 1A, one could determine the ‘‘number’’

and ‘‘location(s)’’ of cell(s) in one mask area by detecting the

number of light intensity peaks in a given mask area.

Fig. 2 demonstrates the procedure of cell segmentation and

separation of aggregated cells. Fig. 2A is a negative phase contrast

image of MCF-10A cells with peaks detected for individual cells.

Then the threshold method is applied to the image and a mask

map is obtained, as shown in Fig. 2B, in which green masks are

Table 2. Unadjusted p-values of Wilcoxon rank sum test.

Comparison group Cell area Cell axis ratio Migration speed Motion range

MCF-10A vs. MCF-7 1.18161025 8.27561025 0.1522 6.54961028

MCF-10A vs. MDA-MB-231 0.4016 0.8606 2.00861025 0.8976

MDA-MB-231 vs. MCF-7 0.004102 0.00833 0.006634 2.83561026

doi:10.1371/journal.pone.0098762.t002

Figure 12. Instantaneous migration speed for cells undergoing an entire cell cycle. (A–C) Temporal change of instantaneous migration
speed along cell cycle progression for MCF-10A, MCF-7, and MDA-MB-231 cells. The cell cycle was scaled to 0–1 to facilitate comparison among
different cells within the same cell-line. Values of instantaneous migration speed for each cell examined (blue curves) were lined up with the scaled
cell cycle and the mean value of all cells examined was shown by the red curve in each figure. (D) Boxplot of median instantaneous migration speed.
MDA-MB-231 cells have highest median value, whereas MCF-10A and MCF-7 cells have comparable migration speed. The Wilcoxon rank rum test
showed that there is statistically significant difference in distribution shift of median instantaneous migration speed between MCF-10A and MDA-MB-
231, and between MDA-MB-231 and MCF-7 cells.
doi:10.1371/journal.pone.0098762.g012
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areas with multiple cells and yellow masks are areas with single

cells. For mask with single cell, cell boundary is determined by

contour expansion as described in Fig. 1D.

For mask with multiple cells, separation of the aggregated cells is

demonstrated in Fig. 2E. The first figure shows that three cells

are aggregated together with three detected peaks. After threshold

operation, one mask area containing three peaks is obtained (the

second figure). To operate contour expansion, initial contours

must be determined for each cell within the mask area. As shown

in the third figure, the mask area is separated into three subareas

based on shortest distance between pixels and the three detected

peaks. Each subarea is associated with one cell and the contour of

the subarea is taken as initial contour for each cell (the fourth
figure). By conducting contour expansion, the final contour for

each involved cell is obtained as shown in the fifth figure.

After similar operations are performed to all masks with

multiple cells, the initial contour for each cell in the field of view

is determined (Fig. 2C). After contour expansion is performed for

all cells in the field of view, the final segmentation result, shown in

Fig. 2D, demonstrates the success in separating all aggregated

cells. Note that error may occur during contour initialization.

However, most errors are automatically corrected after contour

expansion. As shown in the selected area in Fig. 2C, part of area
in cell 1 is falsely assigned to cell 2. However, during contour

convergence operation, the error was automatically corrected, as

shown in the selected area in Fig. 2D.

Our contour expansion method captures cell body area and part of peripheral

lamellipodia: Compared to the corresponding negative phase

contrast image shown in Fig 3A, the final contours of cell

segmentation shown in Fig 3B demonstrated that our contour

expansion method is quite effective in capturing most area of cell

body for each individual cell. However, the final contours failed to

capture part of the peripheral lamellipodia and filopodia, as

marked in A, B, and C in Fig. 3B. During contour expansion, the

contour stops at the positions with minimal light intensity and will

not go further. Accordingly, protrusion structures with locally

increased light intensity (marked by a red arrow in Fig. 3A)
connected with thin extensions of cell periphery would not be

included in the final contours (A in Fig 3B). Similarly, thin

lamellipodia of low image contrast would not be included in the

final contours (B in Fig 3B). In both cases, contour convergence

toward cell boundaries was terminated prematurely. Additionally,

the contour could not converge to a sharp protrusion structure due

to the constraint of internal energy of the contour (C in Fig 3B).
Taken together, cell boundaries defined by the final contours

reflect 2D geometry of each cell body with some portions of

peripheral lamellipodia.

c.2. Cell association between two consecutive video

frames and detection of cell division. Cell association, which

links cells between any two consecutive video frames, is achieved

by the overlapping area method. As illustrated in Fig. 4A and 4B,
the mask of any given cell in a video frame has the largest

Figure 13. Motion types for cells undergoing an entire cell cycle. (A–C) show mean square displacement (MSD) as a function of time interval
for a cell of MCF-10A, MCF-7, and MDA-MB-231, respectively. From left to right, the MSD curves show directional motion, depressed motion, and
random walk, respectively. The inset in each figure is cell trajectories during the entire cell cycle for the selected cell. Blue and green dots represent
the starting and ending points along cell trajectories, respectively. (D) Motion types for MCF-10A, MCF-7, and MDA-MB-231 cells undergoing an entire
cell cycle. For MCF-10A cells (N = 128), over 50% of cells examined belong to directional motion. For MCF-7 cells (N = 11), over 80% of cells examined
belong to depressed motion. For MDA-MB-231 cells (N = 11), 54.5% of cells examined are depressed motion. Fisher’s Exact test indicates that motion
types are significantly different among the three cell-lines (p-value = 0.0001413).
doi:10.1371/journal.pone.0098762.g013
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overlapping area with its own mask in the subsequent video frame,

provided that the time interval between two consecutive video

frames is very short. In this study, the overlapping area is evaluated

by overlapping rate PA, which is given as:

PA~Aol=min (Ai,Aiz1), ð1Þ

where Ai and Ai+1 are mask areas in frame i and frame i+1,
respectively, and Aol is the overlapping area of Ai and Ai+1
(Fig. 4C). For each detected cell in Frame i, the overlapping rate

PA will be calculated for masks within a selected area in Frame i+1.
The one with the overlapping rate larger than a certain value will

be linked to the cell.

For a cell undergoing division, both daughter cells in Frame i+1
will have a larger overlapping rate with their mother cell in Frame

i. Meanwhile, the sum of the two areas in Frame i+1 also has large

overlapping area with the cell in Frame i. This one-to-two

association relationship is utilized to detect cell division. After

calculating overlapping rates for all cells in Frame i, a cell

association matrix can be generated, as illustrated in Fig. 4D.

From the matrix, cell association and cell division can be

determined. Fig. 4E and 4F show cell segmentation of Frame i

and that of Frame i+1, respectively. The association matrix is

constructed by calculating the overlapping rate for each possible

pair of cells between two consecutive video frames. With this

method, cells between two consecutive video frames are associated

as shown in Fig. 4G.

As shown in Fig. 5, when two cell bodies are formed which are

detected by the emergence of two peaks of light intensity

distribution in the mask area, the moment was defined as the

completion of cell division and the beginning of the subsequent cell

cycle (see the time points H and A). This moment is most likely

Figure 14. Motion range for cells undergoing an entire cell cycle. (A–C) The starting points of cell trajectories are shifted to the origin of the
coordinate. MCF-10A and MDA-MB-231 cells show larger motion range than MCF-7 cells. (D) Boxplot of maximum displacement for the three cell-
lines. MCF-10A and MDA-MB-231 cells have comparable mean values of their maximum displacement, whereas MCF-7 cells have much smaller mean
value in maximum displacement. The Wilcoxon rank rum test showed that there is statistically significant difference in distribution shift of median
maximum displacement between MCF-10A and MCF-7, and between MDA-MB-231 and MCF-7 cells.
doi:10.1371/journal.pone.0098762.g014

Figure 15. Negative phase contrast images of MCF-10A, MCF-7, and MDA-MB-231 cells. (A) MCF-10A cells have polarized protrusion
structures of leading edge versus trailing edge. (B) MCF-7 cells have multiple protrusion structures around cell boundaries. (C) MDA-MB-231 cells have
protrusion structures at the two ends of the long axes.
doi:10.1371/journal.pone.0098762.g015
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to occur during late anaphase or early telophase of mitosis, as

nuclear division precedes cytoplasmic division (cytokinesis). The

duration of anaphase and telophase usually accounts for about 1%

and 2%of the duration of cell cycle, respectively. Cell areas at 2D

culture are usually the smallest at the beginning or by the end of

cell cycle. When cells attach to the substrate, their 2D cell areas

gradually increase with cell cycle progression (time points B, C,
and D), a duration that corresponds to interphase of cell cycle that

encompasses G1, S, and G2 phases. Thereafter, cells stop growth

and become rounded-up to enter mitotic (M) phase. Mitosis

accounts for approximately 10% of the duration of a cell cycle.

Note that the cell axis ratio approaches one when cells become

rounded up with decreasing cell area (time point F). Upon

entering the anaphase, the cells are stretched into an oval shape

with a slight increase in cell area (time point G). The

characteristic bottleneck structure appears indicating the progres-

sion of telophase (time point H), in which cytokinesis occurs at

the same time once the nuclear envelop is reforming. In this study,

the period from time point A to time point H is defined as an

entire cell cycle. Note that once one-to-two cell association is

detected, our automated cell-tracking program marked the

completion of cell division and the beginning of the subsequent

cell cycle.

c.3. Offline editing. During automated cell tracking, low

image contrast and cells moving out the field of view can result in

loss of tracking. Additionally, false detection of cell division is one

of the leading error sources that contribute to false cell tracking.

Differences in cell behaviors during cell division among MCF-

10A, MCF-7, and MDA-MB-231 cells were observed. For MCF-

10A cells, all cells divided horizontally and the two daughter cells

move away in opposite direction from the original location of the

mother cells (Fig. 6A). The separation process between two

daughter cells occurs smoothly. Hence, cell division for MCF-10A

cells can be detected at a relative high accuracy. For MCF-7 cells,

some cells divided vertically and remained vertically overlapped

for some time before the cell on the top sliding down and gradually

attached to the substrate (red arrows in the fourth figure of

Fig. 6B). In some MCF-7 cells, horizontal divided cells became

vertically overlapping before their attachment on substrate (green
arrows in the fourth figure of Fig. 6B). Accordingly, the time

point of the occurrence of cell division was delayed and the false

two-to-one cell association was interpreted as loss of tracking,

respectively. The challenges seen in MCF-7 cells also occur in

MDA-MB-231 cells. MDA-MB-231 cells are unique in that

divided cells often underwent rapid motion and irregular geometry

change as shown with green contours in Fig 6C. Furthermore,

MDA-MB-231 cells often ‘‘dance’’ around with their adjacent cells

that lead to abrupt interchange of spatial locations among

interacting cells. The abrupt motion due to rapid contraction of

focal adhesions can lead to loss of tracking. Taken together, rapid

and dynamic MDA-MB-231 cell behaviors represent the utmost

challenge in live cell tracking.

To construct cell lineage trees, only cells with their offspring

cells remaining in the field of view were selected for analysis. To

identify and correct false cell tracking for all monitored cells, a

program was developed to display tracking trajectories of specified

Figure 16. Correlation between direction of cell migration and cell long axis for MCF-10A and MDA-MB-231 cells. The direction of cell
long axis along cell trajectories is shown with green arrows. (A) For the MCF-10A cell, the direction of cell long axis is mostly perpendicular to the
direction of the cell trajectory. (B) For the MDA-MB-231 cell, the direction of cell long axis is mostly parallel to that of the cell trajectory. As shown in
the inset of figure A, we used the unit vector v1 and v2 to indicate the direction of cell long axis and the direction of migration, respectively. (C, D) The
histograms of the angle between the two unit vectors are shown for MCF-10A and MDA-MB-231 cells, respectively. The majority of data points for the
MDA-MB-231 cell are close to zero degree, while the data points for the MCF-10A cell are distributed between 0 and 90 degree.
doi:10.1371/journal.pone.0098762.g016
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cells frame by frame. The program allows us to manually but

effectively check the accuracy of cell tracking for each individual

cell. The occurrence of false cell-association and false loss-of-cell-

tracking as well as their corresponding frame numbers are

identified and recorded for subsequent off-line editing. For cells

with false loss-of-tracking, the offline-editing program links the

same cell and reconstructs the database. For cells with false cell-

association, the program relinks the correct cells and reconstructs

the database. For cells divided vertically and remained vertically

overlapped, the exact time when cell division occurred can not be

certain even after off-line editing. Thus, cells overlapped vertically

for extensive period of time were abandoned for further analysis.

By doing so, all the data included for analysis in this study are of

high accuracy.

After off-line editing, only cells remaining in the field-of-view

and without uncorrectable false tracking are included for data

analysis. The total number of cells analyzed includes selected cells

in the first generation as well as their offspring cells from different

generations. The performance of our automated cell-tracking

program was evaluated and summarized in Table 1. The false

tracking rates over all tracking events for selected MCF-10A,

MCF-7, and MDA-MB-231 cells are 0.14%, 0.04%, and 0.10%,

respectively. All MCF-10A cells were selected for analysis as all

false tracking events could be corrected easily. However, one cell

lineage of MCF-7 cells and three cell lineages of MDA-MB-231

cells were excluded for analysis due to their uncorrectable false

tracking events. Moreover, false tracking events of MCF-10A cells

increased considerably at high cell density due to its higher

proliferation rate (Fig. S1). At comparable cell density, the overall

false tracking rate of MCF-10A cells was similar to MCF-7 cells,

and was lower than MDA-MB-231 cells. MCF-10A cell-tracking

movies before and after off-line editing are included in (see Video
S1, Video S2, and Video S3).

c.4. Cell lineage construction with quantitative

measurement of change in cell behavior along cell cycle

progression. With correct cell segmentation, cell association,

and detection of cell division, cell behavior information such as cell

body geometry and cell motion can be readily extracted and

aligned with cell cycle progression. Cell area was obtained by

calculating the calibrated pixel size in the area enclosed by the

final contour of a given cell. In this study, cell shape was evaluated

by cell axis ratio. For axis ratio measurement, the detected cell

contours were mathematically fitted as ellipses, and the ratio of

long axis to short axis of the fitted ellipses is defined as the axis

ratio. During cell tracking, the centroids of the detected cell

contours were taken as cell locations and to construct cell

migration trajectories. Based on the cell centroids, the displace-

ment between any two successive frames for a cell can be

determined. The instantaneous migration speed can then be

calculated by dividing the displacement of a cell between two

consecutive frames by the time interval of the frames, i.e. 2 min, in

this study.

In addition to quantitative measurement of temporal change in

cell behaviors, cell lineage for all tracked cells can be constructed.

Fig. 7 shows the cell-tracking result of MCF-10A cells during 40 h

monitoring. Fig. 7A shows cell trajectories for all the cells in the-

field-of-view during cell tracking, including cells moving in or

moving out of the field-of-view during the experiment. Different

colors indicate different generations. Fig. 7B shows the trajecto-

ries of the original cells present in the first video frame and their

offspring cells that stayed in the field-of-view after correction of

false tracking with the off-line editing program. Those cells moving

into the-field-of-view at later time are excluded. The corrected cell

lineage families are shown in Fig. 7D. One cell lineage family was

selected (marked with a green box) and the trajectories of 23 cells

in the family are shown in Fig. 7C. From the corresponding cell

lineage tree shown in Fig 7E, there are 11 divisions detected and

totally five generations in this selected family within 40 h of

monitoring. Cell behavior parameters were aligned with cell

lineage trees. Fig. 7F, which showed the synchronized plot of

instantaneous migration speed, cell area, and cell axis ratio along a

complete cell cycle, is an enlarged plot of the selected area in

Fig. 7E. Taken together, our live cell tracking system allows us to

examine and correlate cell area, cell axis ratio, and cell migration

speed along with cell cycle progression at single cell level within

the context of its cell lineage.

d. Determination of cell motion type
The theory of particle movement was applied to further

characterize cell migration [12]. Based on motion trajectory,

mean squared displacement (MSD) can be calculated and be used

to differentiate cell motion type [33,34]. MSD is a measure of the

average distance a cell travels over a specified time interval, t.
Since cell motion trajectory is recorded at a constant sampling

time, dt, the time interval is specified as an integer multiple of dt,
i.e., t~ndt. Therefore, when considering a cell motion trajectory

having N data points (numbered from 1 to N), the number of data

pairs separated by the specified time interval is N{n. The MSD

over all data pairs separated by the specified time interval is given

as

�rrA,n~
1

N{n

XN{n

i~1

l2i,izn, n~1,2:::, ð2Þ

where li,izn is the displacement between the two data points, i.e.,

point i and point i+n.
Fig. 8 illustrates MSD calculation and motion type determi-

nation. Since the number of data pairs decreases as the specified

time interval (t~ndt) increases, the uncertainty of the MSD

calculation associated with large n increases. Therefore, n is usually

limited to below one-quarter of the total number of data points

[34]. For the trajectory of 13 data points shown in Fig. 8A, the
maximum n was set to be 3. As shown in Fig. 8B, only three

MSDs are to be calculated. Fig. 8C illustrates three MSD curves

versus the time interval, t, which are indicative of three distinct

motion types. Each time interval in the figure is integer multiples

of the sampling time, which is dictated by the frame rate specified

for image capturing during cell monitoring. The linear increase of

the MSD with the time interval indicates the motion type of

random walk. Directional motion leads to a MSD curve deflected

upward, whereas depressed motion results in a MSD curve

deflected downward.

e. Statistical analysis
Median values of multiple measurements of cell area, cell axis

ratio, cell instantaneous migration speed, and cell migration range

from each single cell that underwent an entire cell cycle were

calculated. Nonparametric Wilcoxon rank sum test was then

applied to test distribution shift of these median values among cell

lines investigated (MCF-10A, MCF-7, and MDA-MB-231). The p

values of all 12 comparisons were adjusted by Holm’s method. If

the adjusted p value of a particular comparison is smaller than the

significance level 0.05, one can conclude that two cell lines are

different for the feature tested. Fisher’s exact test was used to

compare differences in motion types for MCF-10A, MCF-7, and

MDA-MB-231 cells that underwent an entire cell cycle.
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Results and Discussion

The capability of our live cell tracking system is applied to three

well-characterized human breast cell lines, MCF-10A, MCF-7 and

MDA-MB-231. In addition to investigate variations in cell body

geometry and cell motion for monitored cells, we also conduct

quantitative measurements of temporal change in cell behaviors

along cell cycle progression for cells that underwent an entire cell

cycle. For cell geometry, cell area and cell axis ratio were studied.

For cell motion, instantaneous migration speed, motion type,

motion range, and migration direction related to the long axis of

cells were analyzed.

a. Cell geometry
a.1. Two-dimensional geometry distribution map. To

examine the correlation between cell area and cell axis ratio for

each cell-line, a 2D geometry distribution map was constructed.

The value of cell area A and axis ratio R for each given cell in each

video frame are integrated as a single point [A, R] in the 2D space.

The [A, R]s for all selected cells in each video frame are displayed

in the 2D space. Summation of all video frames results in the

overall distribution of cell area and axis ratio for all tracked cells,

which we refer to as 2D geometry distribution map. The 2D

geometry distribution maps for MCF-10A, MCF-7, and MDA-

MB-231 cells are shown in Fig. 9A, 9B, and 9C, respectively.

MCF-10A cells had a relative narrow distribution in cell area.

Note that cells with higher axis ratios did not appear to have larger

cell areas. MCF-7 cells have the widest distribution in cell area yet

had the narrowest distribution of axis ratio, indicating that most

MCF-7 cells had round cell body geometry yet with various sizes

of cell area. MDA-MB-231 cells had the widest distribution of axis

ratio and relative wide distribution of cell area. Moreover, for cells

with increased axis ratio, the cell area tends to increase as well.

MCF-10A and MDA-MB-231 cells have similar cell area

distribution and cell axis ratio distribution, however their 2D

geometry distribution map appeared to be quite different. The axis

ratio of cell body for MCF-10A cells was less dependent on the

change of cell area, whereas the axis ratio of cell body in MDA-

MB-231 cells increased with increased sizes of cell area. In general,

MDA-MB-231 cells had a greater extent of heterogeneity in cell

shape compared to MCF-10A and MCF-7 cells.

a.2. Cell geometry and cell cycles. The construction of cell

lineage as well as the measurement of cell behaviors along cell

cycle progression makes it possible to study temporal changes in

cell geometry along cell cycle progression. To compare temporal

changes of cell behaviors along cell cycle progression among

individual cells that underwent the entire cell cycle, cells with

different cell cycle lengths are normalized to the same scale

ranging from 0 to 1. The quantitative values of cell behaviors were

then lined up with the scaled cell cycle for each cell. Fig. 10A-C
and 10D-F show the temporal change of cell area and cell axis

ratio along progression of cell cycle in the three cell lines,

respectively. In each figure, the blue curves are collective data for

individual cells that underwent an entire cell cycle in each cell line.

The red curve is the mean value of collective data, which offers to

evaluate the overall trend of cell behavior along with cell cycle

progression for each cell line. The extent and the occurrence of

heterogeneity among individual cells from the mean value along

cell cycle progression could be assessed in the plots generated.

Fig. 10A-C shows the change of the cell area along the scaled

cell cycle for the three cell lines. A rapid increase in mean size of

cell area occurred shortly after cell division, which reflects cell

attachment on the substrate after cell division. Thereafter, mean

size of cell area gradually increased. A rapid decrease in mean size

of cell area occurred before the end of cell cycle, which reflects

cells becoming rounded in preparation of cell division. Shortly

after, cell area slightly increased, reflecting the cells were entering

anaphase and telophase before cytokinesis (see Fig. 5 for

corresponding time points). Note that most cell division detection

in our program occurs briefly before the actual event of

cytokinesis, as detection of two daughter cells is dictated by the

emerging of two cell bodies rather than their separation.

Fig. 10D-F shows the change of axis ratio along the scaled cell

cycle for the three cell lines. The mean axis ratio was lowest before

and after cell division for all cell lines, reflecting cells rounded up

before and after cell division. Otherwise, the mean axis ratio did

not change much at the interphase of cell cycle for both MCF-10A

cells and MCF-7 cells. In comparison, the mean axis ratio for

MDA-MB-231 cells slightly increased with cell cycle progression.

Taken together, most cells become rounded up before mitosis,

which is consistent with our data showing that the smallest size of

cell area with lowest axis ratio occurred at the end or at the

beginning of cell cycle.

The median values of cell area and cell axis ratio for each cell

that underwent an entire cell cycle were determined and statistical

analysis was applied to test the distribution shift of the median

values of cell area and axis ratio among the three cell lines.

Fig. 11A shows the boxplots of median cell areas for MCF-10A,

MCF-7, MDA-MB-231 cell replicates. Among the three cell-lines,

MCF-7 cells had the largest median cell area of 670.7 mm2. The

median cell areas of MCF-10A cells and MDA-MB-231 cells are

515.8 mm2 and 527.3 mm2, respectively. Nonparametric Wilcoxon

rank sum test showed a statistically significant difference in

distribution shift of median cell areas between MCF-10A and

MCF-7 cells, and between MDA-MB-231 and MCF-7 cells

(Table 2). Fig. 11B shows the boxplots of median cell axis ratios

for MCF-10A, MCF-7, MDA-MB-231 cell replicates. The median

cell axis ratios are 1.51, 1.35, and 1.50 for MCF-10A, MCF-7, and

MDA-MB-231 cells, respectively. Nonparametric Wilcoxon rank

sum test indicated a statistically significant difference in distribu-

tion shift of median cell axis ratios between MCF-10A and MCF-7

cells, and between MDA-MB-231 and MCF-7 cells (Table 2).

b. Cell motion
b.1. Instantaneous migration speed. Temporal change in

instantaneous migration speed along with the scaled cell cycle as

well as the distribution of the median instantaneous migration

speed for the three cell lines are shown in Fig. 12. For MCF-10A

cells (Fig. 12A), a peak of mean value in instantaneous migration

speed occurred before cell division, which reflects a rapid motion

during the process of cell rounding before cell division. An increase

in the mean value of instantaneous migration speed also occurred

at the beginning of cell cycle, which marks the event of cytokinesis

as the detection of cell division by our program occurred at

telophase when cell bodies of two daughter cells became evident.

Otherwise, mean values of instantaneous migration speed did not

change much during interphase of cell cycle. For MCF-7 cells

(Fig. 12B), the rapid increase of migration speed before cell

division was less certain. The peak before cell division was mainly

contributed by one outlier data with a small sample number

investigated (N= 11). For MDA-MB-231 cells (Fig. 12C), the

instantaneous migration speed increased modestly along cell cycle

progression and the peak of migration speed appeared to occur at

cell division. In reviewing the video, MDA-MB-231 cells indeed

had unique abrupt motion during cell division.

The boxplots in Fig. 12D show the distribution of median

values of the instantaneous migration speed for MCF-10A, MCF-

7, MDA-MB-231 cell replicates. Note that MDA-MB-231 cells
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had the highest median value of instantaneous migration speed,

0.57 mm/min. The median values of instantaneous migration

speed for MCF-10A and MCF-7 cells are 0.38 and 0.32 mm/min,

respectively. Nonparametric Wilcoxon rank sum test indicated a

statistically significant difference in distribution shift of median

migration speed between MCF-10A and MDA-MB-231 cells, and

between MDA-MB-231 and MCF-7 cells (Table 2).
b.2. Cell motion type. Fig. 13A-C shows three examples of

MSD as a function of time interval for MCF-10A, MCF-7 and

MDA-MB-231 cells, respectively. The insets are cell trajectories

along their entire cell cycle. As defined in Fig. 8C, the three

selected trajectories belong to directional motion, depressed

motion, and random walk, respectively. A comparison of the

motion type among the three cell-lines in the form of percentage is

shown in Fig. 13D. More than 50% of MCF-10A cells had

directional motion, 21% had random walk, and 26% had

depressed motion. The depressed motion dominates the motion

type for MCF-7 cells, as over 80% MCF-7 cells had depressed

motion type. Similar to MCF-7 cells, less than 10% of MDA-MB-

231 cells had directional motion. However, 36.3% of MDA-MB-

231 cells had random walk and 54.5% had depressed motion type.

Accordingly, both malignant human breast cancer cell lines rarely

migrate with directional motion.

b.3. Cell motion range. Cell motion range is another

parameter in evaluating cell migration. For a given trajectory,

the maximum displacement between a point along a cell trajectory

and the starting point of the trajectory is used to study cell motion

range. In previous studies, motion range is mostly studied for all

tracked cells, regardless of the variations in the length of tracking

time period or different phases of cell cycle. In this study, the

successful construction of cell lineage families makes it possible to

compare cell motion range only for cells that underwent an entire

cell cycle.

Fig. 14A, 14B, and 14C show cell trajectories of cells that

underwent an entire cell cycle for MCF-10A, MCF-7, and MDA-

MB-231 cells, respectively. The starting point of each trajectory

was shifted to the origin of the coordinate. One can see that MCF-

7 cells had the smallest motion range and the motion range of

MCF-10A cells was similar to that of MDA-MB-231 cells. The

maximum displacement was calculated for each cell trajectory,

and the boxplots of the median maximum displacement of cell

trajectory for replicates of the three cell lines are shown in

Fig. 14D. The medians of the maximum displacement for MCF-

10A and MDA-MB-231 cells are 104 mm and 106 mm, respec-

tively. The median of the maximum displacement for MCF-7 cells

is much smaller, just 23 mm. The p value of Wilcoxon rank sum

test for distribution shift of median maximum displacement

between MCF-10A and MDA-MB-231 was 0.8976, indicating

that these two cell-lines have similar distribution of their median

maximum displacement. In comparison, the p values for MCF-7

versus MCF-10A cells and for MCF-7 versus MDA-MB-231 cells

are 6.54961028 and 2.83561026, respectively (Table 2). Thus,
distribution of median maximum displacement in MCF-7 cells was

significantly different from those in MCF-10A cells and MDA-

MB-231 cells.

b.4. Migration direction related to the long axis of

cells. The different behaviors in cell migration of MCF-10A,

MCF-7, and MDA-MB-231 cells can be related to cell shape and

cell protrusion structures. As shown in Fig. 15, MCF-10A cells

have well defined lamellipodial structures in the leading edge and

minimum protrusion in the trailing edge, indicating less resistance

from the trailing edge. Therefore, the leading edge dominates the

cell migration direction and cells can achieve high migration

speed. Note that lamellipodial structures for MCF-10A cells are

generally along their long axis. MCF-7 cells have multiple

protrusion structures around cell boundaries, such that these

protrusion structures experience rapid retraction and extension

without a dominant direction in cell migration. As a result, MCF-7

cells have limited migration range. MDA-MB-231 cells have the

highest axis ratio among the three cell lines, and normally have

protrusion structures at the two ends of the long axis. The leading

and trailing edges may switch during migration, which results in

back and forth locomotion.

Since the direction of protrusion structure determines direction

of cell motion, one could predict that the migration direction

would be perpendicular to the long axis for MCF-10A cells, yet

would be parallel to the long axis of MDA-MB-231 cells. Since

neighboring cells can influence cell behavior, the correlation

between direction of cell migration and cell long axis was

investigated in an individual cell that was far apart from other

cells. One MCF-10A and one MDA-MB-231 cell were selected for

analysis when cell density in the field-of-the-view was low.

Fig. 16A and 16B show the trajectories of the selected MCF-

10A and MDA-MB-231 cell, respectively. The cell long axis

direction along cell trajectories is shown with green arrows. For the

MCF-10A cell (Fig. 16A), the direction of cell long axis is mostly

perpendicular to the direction of the cell trajectory. For the MDA-

MB-231 cell (Fig. 16B), the direction of cell long axis is mostly

parallel to that of the cell trajectory. As shown in the inset of

Fig 16A, we used the unit vector v1 and v2 to indicate the

direction of cell long axis and the direction of migration,

respectively. The correlation between direction of cell migration

and cell long axis can be quantitatively studied by calculating the

angle between the two unit vectors. Fig. 16C and 16D show the

histograms of the angle between the two unit vectors for the

selected MCF-10A cell and MDA-MB-231 cell, respectively. The

majority of data points for the MDA-MB-231 cell are close to zero

degree, while the data points for the MCF-10A cell are distributed

between 0 and 90 degree. Similar results obtained from all MCF-

10A and MDA-MB-231 cells undergoing an entire cell cycle are

shown in Fig. S2. Although MCF-10A and MDA-MB-231 cells

had comparable motion range, their migration directions,

dictating by protrusion structures, are quite different.

Conclusion

We have established a platform of automated live cell tracking

system that includes a program to display tracking trajectories of

specified cells frame by frame as well as a program for off-line

editing to ensure high accuracy of cell tracking. This platform

allows us to examine distributions of cell behaviors as well as

temporal variations of cell body geometry and cell motion along

with cell cycle progression for each individual cell that underwent

an entire cell cycle. Examining cell behaviors of MCF-10A, MCF-

7, and MDA-MB-231 cells with our established platform showed

that (a) the highly metastatic MDA-MB-231 breast cancer cells

had the greatest extent of heterogeneity in a 2D geometry

distribution map and the highest median migration speed; (b) the

non-invasive MCF-7 breast cancer cells had the largest median of

cell body area and the smallest median of cell axis ratio. The large

adhesion area to the 2D substrate along with the absence of

polarization in cell body geometry are in agreement with low

migration speed, predominant depressed motion type, and limited

motion range found in MCF-7 cells; and (c) the non-malignant

MCF-10A cells had similar median values in cell body area, cell

axis ratio, and motion ranges with MDA-MB-231 cells. However,

the median instantaneous migration speed of MCF-10A cells was

significantly lower than that of MDA-MB-231 cells despite of its
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predominant directional motion type. Our finding that multiple

cellular features are required to signify malignancy and metastatic

potential for breast cancer cells are in agreement with a recent

study reported that migration speed, migration directionality,

together with spatiotemporal motion pattern are better indicative

of metastatic potential of breast cancer cells [17]. Overall, the cell

body geometry along with peripheral protrusion structures is

closely associated with cell motion features.

To our knowledge, this is the first study to examine and

compare temporal changes in cell geometry and migration speed

along cell cycle progression among MCF-10A, MCF-7, and

MDA-MB-231 cells. The false tracking rate of all data analyzed

was greatly reduced by off-line editing. We noticed that the

differences in cell geometry and cell motion among the three cell-

lines studied were most evident during the mitosis phase (see

Fig 6). Cells dividing or overlapping vertically were unique to both
MCF-7 and MDA-MB-231 cancer cells but not found in MCF-

10A cells, indicating this feature may be unique to malignant

cancer cells. Abrupt changes in cell body geometry and cell motion

were unique to MDA-MB-231 cells, indicating this feature may be

indicative of metastatic potential. These novel observations will

need to be verified in other breast cancer cells and further

investigated in cancers of other tissue types.

The above phenomenon can be explained by (a) cytoskeleton

dynamic plays an important role in cancer transformation and

progression; and (b) cytoskeleton remodeling is most evident

during mitosis. Accordingly, quantitative measurement of changes

in cell geometry and cell motion during mitosis may be more

sensitive to indicate cell malignancy and metastatic potential. It is

now well established that physical and chemical inputs from

microenvironment are jointly processed with intrinsic genetic

lesions in tumor cells for invasion and metastasis [35]. Our

automatic live cell tracking system can be applied to various cell

culture systems with variations in extracellular matrix of desired

chemical and physical properties, in micro fabrication of desired

physical confinement, and in the presence or absence of cancer-

associated fibroblasts, etc. to further uncover plasticity in cell

geometry and cell motion that are unique to highly metastatic

cancer cells.

Finally, cell-based live cell tracking with quantitative measure-

ment of temporal variations in cell geometry and cell motion along

with cell cycle progression will allow investigators to identify

cellular features that are unique to distinct phase of cell cycle.

Construction of cell lineage will allow investigators to identify

cellular features that are passed from mother cells to daughter

cells. Accordingly, our live cell tracking system will provide an

invaluable tool to extract a wealth of information to better our

understanding of many fundamental biological processes beyond

cancer biology.

Supporting Information

Figure S1 False tracking event with time or number of
cells in MCF-10A cells. (A) The number of MCF-10A cells in

the field-of-view increased with the time of tracking. (B) The

number of false tracking event was negligible and sporadic before

tracking time of 1500 min but was increased after tracking time of

1500 min. (C) The number of false tracking event was increased

when the number of cells in the field-of-view went beyond 150.

(TIF)

Figure S2 Angle between direction of cell migration and
cell long axis for all cells undergoing an entire cell cycle.
(A) MCF-10 A cells (N= 128). (B) MDA-MB-231 cells (N= 11).

(TIF)

Video S1 MCF-10A cells raw video without tracking.

(AVI)

Video S2 MCF-10A cells tracking video before offline
editing correction.

(AVI)

Video S3 MCF-10A cells tracking video after offline
editing.

(AVI)
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