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Abstract: The integration of biopolymers with antimicrobial inorganic materials has
emerged as a promising strategy for developing eco-friendly and biocompatible func-
tional materials for food packaging and biomedical applications. However, the impact of
biopolymer matrix composition on the antimicrobial efficacy of inorganic fillers remains
underexplored. This study addresses this critical gap by investigating the effects of chitin
or chitosan oligosaccharides (NACOS or COS) on the antimicrobial properties of sodium
alginate (SA)/cuprous oxide (Cu2O) composite gels. The composite gels were synthesized
through a physical blending of the components, followed by calcium-induced crosslinking
of SA. Characterization using UV-vis, FTIR, and EDX confirmed the successful incorpora-
tion of Cu2O, while a SEM analysis revealed its uniform dispersion. Antibacterial assays
demonstrated that SA-Cu2O exhibited the highest inhibition rates, with a 67.4 ± 11.9%
growth suppression of Staphylococcus aureus (MRSA), 33.7 ± 5.1% against Escherichia coli,
and 39.1 ± 14.8% against Pseudomonas aeruginosa. However, incorporating NACOS and
COS reduced inhibition, as oligosaccharides served as bacterial carbon sources. Swelling
and contact angle measurements indicate that antimicrobial effectiveness was independent
of surface hydrophilicity. These findings underscore the importance of rational composite
design to balance bioactivity and material stability for antimicrobial applications.

Keywords: chitin oligosaccharides; chitosan oligosaccharides; sodium alginate hydrogels;
cuprous oxide; antimicrobial properties; polysaccharide composites

1. Introduction
Bacterial contamination poses a significant challenge in food safety, leading to product

spoilage, foodborne illness, and economic losses in the food industry. Pathogenic bacteria
such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are among the
most prevalent foodborne contaminants, contributing to severe health risks and regulatory
concerns [1,2]. The emergence of antimicrobial-resistant strains further exacerbates these
risks, necessitating the development of effective antimicrobial packaging materials to
enhance food preservation and safety [3].
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Biopolymers, which are naturally occurring macromolecules, have attracted consid-
erable interest owing to their applications in diverse fields, such as biomedicine, pharma-
ceuticals, food preservation, agriculture, chemical processes, energy, and environmental
remediation [4–11]. Among these, polysaccharides such as cellulose, chitin/chitosan,
sodium alginate (SA), and starch, as well as proteins such as collagen/gelatin and whey
protein, have been extensively investigated for their utility in hydrogel/aerogel devel-
opment. These biopolymer-based gels feature a three-dimensional crosslinked network
capable of swelling in aqueous environments while retaining structural integrity, rendering
them highly suitable for a broad range of applications [12]. Particularly, SA can form a
robust 3D crosslinked network through ionic linkages mediated by multivalent cations,
such as Ca2+ [9,10]. When combined with antimicrobial agents, SA-based materials can
serve as active packaging solutions that extend shelf life and inhibit microbial growth on
food surfaces [9,10,13]. Recent advancements in incorporating metal inorganic compounds,
such as cuprous oxide (Cu2O), into SA matrices have demonstrated enhanced antibacte-
rial efficacy [14]. Cu2O is known for its broad-spectrum antibacterial activity, primarily
through mechanisms involving bacterial membrane disruption, oxidative stress induction,
and metabolic interference [15].

Chitin and its derivatives, including chitin oligosaccharides (NACOS) and chitosan
oligosaccharides (COS), have been widely explored for their antimicrobial and functional
properties in therapeutic applications [16]. These oligosaccharides exhibit intrinsic antimi-
crobial activity, promote wound healing, and enhance the physicochemical properties of
biopolymer films [17,18]. Recent studies [19] have demonstrated that SA/COS gel beads
exhibit antibacterial effects against S. aureus and E. coli, with their physicochemical proper-
ties being influenced by the calcium ion concentration and molecular weight variations.
The study highlighted that incorporating COS led to improved antibacterial effects and
denser cross-sectional structures, making these materials promising candidates for food
industry applications. However, recent studies have highlighted the dual role of these
oligosaccharides in antimicrobial systems. While COS has been reported to disrupt bac-
terial membranes and inhibit biofilm formation [20], its low molecular mass and high
solubility may allow bacterial metabolism, potentially reducing the antimicrobial efficacy
of composite materials [21].

Despite advancements in biopolymer–inorganic antimicrobial composites, the inter-
play between oligosaccharides and inorganic metal in sodium alginate matrices remains
underexplored. Most existing studies focus on the individual antimicrobial effects of Cu2O
or oligosaccharides but do not address their combined impact in composite systems.

This study investigates composite materials comprising SA and Cu2O particles, further
added with COS or NACOS, to evaluate their antibacterial properties. The primary objec-
tive is to elucidate how varying polysaccharide matrices influence the antimicrobial efficacy
of Cu2O. These composite hydrogels were designed to harness the biocompatibility and
gel-forming ability of SA, which serves both as a dispersant and carrier of Cu2O particles,
alongside the bioactive functionalities of COS and NACOS. Antimicrobial efficacy was
assessed against Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) bac-
terial strains. A key focus was to determine whether the polysaccharide/oligosaccharide
components in the matrix could act as carbon sources for bacterial growth, potentially
counteracting the antimicrobial effects of Cu2O particles, or provide additional antimicro-
bial effects. This study advances our understanding of the role of polysaccharides and
their derivatives in antibacterial activity, offering valuable insights into the rational design
of biopolymer-based materials with antibacterial properties in applications such as food
packaging and biomedicine. The findings contribute to the growing body of knowledge
on sustainable antimicrobial materials by addressing the potential trade-offs between the
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bioactive benefits and nutrient-like behavior of oligosaccharides. This research aims to
optimize the formulation of biopolymer-based composites for targeted applications.

2. Materials and Methods
2.1. Materials and Chemicals

The materials used in this work include sodium alginate (CP, 200 ± 20 mpa.s, Shanghai
Macklin Biochemical Co., Ltd., Shanghai, China), N-acetyl chitooligosaccharides (NACOS,
or chitin oligosaccharides, Tokyo Chemical Industry Co., Ltd., Oxford, UK), chitosan
oligosaccharides (COSn = 2–6, Tokyo Chemical Industry Co., Ltd., Oxford, UK), copper(I)
oxide power (Cu2O, Cat. No. 197425000, Thermo Fisher Scientific, Cramlington, UK;
particle size up to a few microns, as characterized by scanning electron microscopy (SEM)),
calcium chloride (CaCl2, 110.99, Sigma Aldrich (Merck, Gillingham, UK), ethanol absolute
(analytical reagent grade, Fisher Scientific, Cramlington, UK), tryptic soy broth (Thermo
Fischer Scientific, Cramlington, UK), and sodium hydroxide (Thermo Fisher Scientific,
Cramlington, UK).

2.2. Preparation of SA-Based Hydrogel Beads

For preparing the SA-NACOS-Cu2O beads, 1 g of SA, 1 g of NACOS, and 2 g of
Cu2O were mixed in 100 mL of DI water using a stirrer until a homogeneous solution was
achieved. The resulting solution was then dropped into 0.1 M calcium chloride (CaCl2)
using a 10 mL syringe to form hydrogel beads. These beads were soaked in CaCl2 for 18 h
and subsequently washed in DI water. Additionally, the beads were rinsed several times
with ethanol (100%) before being dried in a supercritical drier (Polaron, E3000 Critical Point
Drying Apparatus, Sussex, UK), with the temperature and pressure set to be 34 ◦C and
1100 psi (7.58 MPa), respectively. After drying, the samples were stored in desiccators. The
same procedure was followed to prepare SA-NACOS beads without Cu2O.

To prepare the SA-COS and SA-COS-Cu2O beads, 1 g of COS was dissolved in 10 mL
of 1 M sodium hydroxide (Thermo Fisher Scientific, UK), while 1 g of SA was separately
dissolved in 90 mL of deionized water, making a final volume of 100 mL. The two solutions
were combined and mixed thoroughly until a homogeneous solution was obtained. The
subsequent bead formation, crosslinking, washing, and drying steps followed the same
procedure as described above for the SA-NACOS-Cu2O beads.

Table 1 presents the details of the different samples involved in this work.

Table 1. Different samples involved in this work, including their codes and compositions.

Code Composition

SA SA
SA-Cu2O SA/Cu2O = 1:2 (w/w)

SA-NACOS-Cu2O SA/chitin oligosaccharide/Cu2O = 1:1:2 (w/w)
SA-COS-Cu2O SA/chitosan oligosaccharide/Cu2O = 1:1:2 (w/w)

SA-NACOS SA/chitin oligosaccharide = 1:1 (w/w)
SA-COS SA/chitosan oligosaccharide = 1:1 (w/w)

2.3. Material Characterization
2.3.1. UV-Vis Spectroscopy

For UV-vis spectroscopy analysis, 5 mg of the sample were immersed in 5 mL of
deionized water in a clean glass vial and allowed to equilibrate for 24 h at room temper-
ature. The presence of Cu2O in the composites was confirmed using a Jenway Model
7315 UV/visible single-beam spectrophotometer (Bibby Scientific Limited, Stone, UK) with
the measurements conducted across a wavelength range of 190–800 nm. The instrument
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was pre-warmed and baseline-corrected using a blank (deionized water) in a clean quartz
cuvette. The hydrogel solution was then carefully transferred into a cuvette using a pipette.
The spectra were analyzed to identify the characteristic absorption peaks and plotted using
GraphPad Prism software v5.01.

2.3.2. Morphological Analysis

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy
were performed using an Oxford Instruments AZtec EDX system (Oxford Instruments
Nanoanalysis Buckinghamshire, UK) equipped with an X-act thin-window detector, featur-
ing an energy resolution of 129 eV at the Mn Kα line (5.9 keV). The system was operated
using AZtecLive software (v6.1) for real-time elemental mapping and spectral acquisi-
tion. Prior to analysis, the samples were carbon-coated to facilitate accurate chemical
composition assessment.

2.3.3. Fourier-Transform Infrared (FTIR) Spectroscopy

The chemical functional groups in the composite were characterized using attenuated
total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, performed with a
Cary 630 spectrometer (Agilent Technologies, Santa Clara, CA, USA). Measurements were
conducted over a spectral range from 400 to 4000 cm−1 with a resolution of 4 cm−1.

2.3.4. Swelling Assay

The water absorption capacity of the developed beads was evaluated following previ-
ously established methods [22]. Briefly, 0.1 g of beads were weighed and immersed in a
petri dish containing 10 mL of deionized water. At predetermined time intervals, the beads
were removed, excess water was blotted using tissue paper, and their weight was recorded.

The swelling ratio of the beads was calculated using Equation (1):

Swelling ratio (%) =
Wt − W0

W0
× 100 (1)

where W0 represents the initial weight of the beads, and Wt denotes the weight of the beads
at time t.

2.3.5. Water Contact Angle (WCA) Analysis

To evaluate surface wettability, a homogeneous solution of each composite formulation
was cast into a Petri dish and dried at 50 ◦C in an oven. After drying, the composite film was
sectioned into smaller pieces and mounted on the stage of an Ossila contact angle goniometer
(Ossila Ltd., Sheffield, UK). A 16 µL water droplet was deposited onto the film surface, and
the contact angle was measured using the instrument’s integrated software (v4.1.5).

2.3.6. Antibacterial Assay

The antibacterial activity was evaluated using E. coli DH5α, P. aeruginosa PAO1 Not-
tingham subline [23], and methicillin-resistant Staphylococcus aureus (MRSA) USA300. E.
coli and P. aeruginosa were cultured in Luria broth, while MRSA was grown in tryptic soy
broth at 37 ◦C with shaking at 200 rpm overnight. Polymer composites were sterilized by
autoclaving at 121 ◦C with a pressure of 15 pounds per square inch for 15 min. Sterilized
polymer beads (5 mg·mL−1) were introduced into the media inoculated with diluted MRSA,
P. aeruginosa, and E. coli (optical density at 600 nm wavelength, OD600 = 0.01) from overnight
cultures. The cultures were incubated for 18 h at 37 ◦C with shaking at 200 rpm. Negative
controls consisted of cultures without polymer addition. Each experiment was performed
in triplicate (n = 3) to ensure statistical reliability. Bacterial growth was monitored by
measuring the optical density at 600 nm (OD600). Growth inhibition was calculated and
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plotted using GraphPad Prism software v5.01. A two-way analysis of variance (ANNOVA)
was conducted to evaluate which composite was inhibited more and the bacterial strain on
inhibition. Statistical significance was set at p < 0.05.

The percentage of inhibition was determined using Equation (2):

% inhibition =
1 − Abs o f sample

Abs o f control
× 100 (2)

2.3.7. Microbial Activity Under Different Carbon Sources

To investigate the influence of SA, NACOS, COS, and N,N-diacetylchitobiose
[(GlcNAc)2] on MRSA growth, bacteria were inoculated into minimal media (M9) de-
void of these substrates. M9 media was prepared using M9 salts (5×), magnesium sulfate
(1 M), calcium chloride (1 M), and water to make a final volume of 100 mL. Magnesium
sulfate was filter sterilized, while the remaining components were autoclaved before use.
Bacterial growth was monitored by measuring the optical density at 600 nm (OD600), with
glucose serving as the control.

3. Result and Discussion
3.1. Morphology and Composition Characterization

Figure 1 presents the FTIR spectra of the composites. The SA spectrum exhibits
a broad characteristic absorption band in the range of 3600-3000 cm−1, corresponding
to O–H stretching, indicative of the polysaccharide’s extensive hydrogen bonding. The
peaks at 3000-2800 cm−1 correspond to C–H stretching vibrations, while the asymmetric
and symmetric stretching of carboxylate (COO−) groups are represented by the peaks at
approximately 1600 cm−1 and 1400 cm−1, respectively, confirming the presence of alginate’s
carboxyl functionalities.

Foods 2025, 14, x FOR PEER REVIEW 5 of 15 
 

 

MRSA, P. aeruginosa, and E. coli (optical density at 600 nm wavelength, OD600 = 0.01) from 
overnight cultures. The cultures were incubated for 18 h at 37 °C with shaking at 200 rpm. 
Negative controls consisted of cultures without polymer addition. Each experiment was 
performed in triplicate (n = 3) to ensure statistical reliability. Bacterial growth was moni-
tored by measuring the optical density at 600 nm (OD600). Growth inhibition was calcu-
lated and plotted using GraphPad Prism software v5.01. A two-way analysis of variance 
(ANNOVA) was conducted to evaluate which composite was inhibited more and the bac-
terial strain on inhibition. Statistical significance was set at p < 0.05. 

The percentage of inhibition was determined using Equation (2): % 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 1 − 𝐴𝑏𝑠 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝐴𝑏𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 100 (2) 

2.3.7. Microbial Activity Under Different Carbon Sources 

To investigate the influence of SA, NACOS, COS, and N,N-diacetylchitobiose [(Glc-
NAc)2] on MRSA growth, bacteria were inoculated into minimal media (M9) devoid of 
these substrates. M9 media was prepared using M9 salts (5×), magnesium sulfate (1 M), 
calcium chloride (1 M), and water to make a final volume of 100 mL. Magnesium sulfate 
was filter sterilized, while the remaining components were autoclaved before use. Bacte-
rial growth was monitored by measuring the optical density at 600 nm (OD600), with glu-
cose serving as the control. 

3. Result and Discussion 
3.1. Morphology and Composition Characterization 

Figure 1 presents the FTIR spectra of the composites. The SA spectrum exhibits a 
broad characteristic absorption band in the range of 3600-3000 cm−1, corresponding to O–
H stretching, indicative of the polysaccharide’s extensive hydrogen bonding. The peaks 
at 3000-2800 cm−1 correspond to C–H stretching vibrations, while the asymmetric and 
symmetric stretching of carboxylate (COO−) groups are represented by the peaks at ap-
proximately 1600 cm−1 and 1400 cm−1, respectively, confirming the presence of alginate’s 
carboxyl functionalities. 

 
Figure 1. FTIR spectrum of sodium alginate (SA), sodium alginate-cuprous oxide (SA-Cu2O),
sodium alginate-chitin oligosaccharides-cuprous oxide (SA-NACOS-Cu2O), sodium alginate-
chitosan oligosaccharides-cuprous oxide (SA-COS-Cu2O), sodium alginate–chitin oligosaccharides
(SA-NACOS), and sodium alginate–chitosan oligosaccharides (SA-COS).
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Upon the introduction of chitosan (SA-COS) and N-acetyl glucosamine (SA-NACOS),
additional amide-related bands emerge. The amide I band, attributed to C=O stretching,
is observed around 1650 cm−1, while the amide II band, associated with N–H bending,
appears at ~1550 cm−1. In N-acetyl glucosamine composites, an amide III band at ap-
proximately 1312 cm−1 indicates C–N stretching, further distinguishing these materials
from pure SA. These spectral shifts suggest interactions between alginate and the amine-
functionalized oligosaccharides, potentially through hydrogen bonding and electrostatic
interactions, modifying the composite structure.

The incorporation of Cu2O in SA-Cu2O, SA-COS-Cu2O, and SA-NACOS-Cu2O results
in additional spectral features, particularly in the range of 550–670 cm−1, corresponding to
Cu–O vibrations. Additionally, Cu2O-containing samples exhibit changes in the intensities
and positions of hydroxyl and amide peaks, suggesting interactions between Cu2O and the
polymeric components.

Figure 2 presents the UV-vis spectra of the composites, revealing a Cu2O peak at a
wavelength of 600 nm, while peaks corresponding to NACOS and COS were observed near
300 nm. These results demonstrate the successful incorporation of Cu2O particles into the
SA matrix.
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The surface morphology of the composite beads, analyzed using SEM, is depicted in
Figure 3. The pure sodium alginate (SA) sample exhibited an exceptionally smooth and
dense surface with minimal discernible features. The incorporation of NACOS into SA
did not significantly alter the surface morphology, suggesting the formation of a relatively
homogeneous phase structure between NACOS and SA. In contrast, the SA-COS sample
displayed a rough, granular surface characterized by a loose microstructure.
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Theoretically, the interaction between SA and COS is expected to be stronger than
that between SA and NACOS. This is attributed to the presence of amine groups in COS,
which carry a positive charge under mild acidic conditions, while alginate, with its carboxyl
groups, is negatively charged. Consequently, electrostatic interactions and hydrogen
bonding can occur between SA and COS. In contrast, NACOS, due to its acetyl groups,
does not facilitate such electrostatic interactions with SA. Additionally, the polarity of
the acetyl groups is likely to be lower than that of the amine groups, resulting in weaker
hydrogen bonding between SA and NACOS compared to that between SA and COS.
Therefore, the compatibility between SA and COS is expected to be greater than that
between SA and NACOS. However, it is important to note that the granules observed on
the surface of the SA-COS film may represent coacervates formed within the SA matrix due
to the electrostatic interactions between SA and COS, leading to the coarse and less-dense
microstructure of SA-COS observed under SEM.

The incorporation of Cu2O into SA or SA-NACOS yielded a morphology characterized
by uniformly dispersed small particles, likely corresponding to Cu2O particles. These
observations indicate that the SA matrix served as an effective dispersant for Cu2O particles,
potentially mediated by ionic interactions between Cu2O and SA. Furthermore, the SA-
COS-Cu2O composite displayed a surface morphology similar in coarseness to that of the
SA-COS sample.

The EDX spectra presented in Figure 4 confirmed the presence of carbon, oxygen,
copper, and calcium. The addition of Cu2O into the SA-NACOS and SA-COS results in a
slight reduction in copper ions. This is probably due to the incorporation into the structure,
thereby reducing the availability in the system.
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3.2. Swelling Behavior

Swelling quantifies the extent to which a material expands or increases in volume
upon exposure to specific liquid environments. Investigating water swelling behavior
is critical for assessing a material’s hygroscopicity and predicting its stability or water
absorption capacity in water or under high-moisture conditions. The swelling properties
of the developed composites, namely SA-Cu2O, SA-NACOS, SA-NACOS-Cu2O, SA-COS,
and SA-COS-Cu2O in the form of dried beads, were evaluated in water at intervals of
5 min, 30 min, 2 h, 4 h, and 6 h (see Figure 5).

Upon water exposure, the swelling order of the composites was as follows: SA-NACOS
> SA > SA-COS > SA-NACOS-Cu2O > SA-Cu2O > SA-COS-Cu2O (see Table 2). Among
the composites, SA-NACOS exhibited the highest water absorption capacity, reaching
approximately 203.9 ± 17.3% at 6 h upon achieving swelling equilibrium, which is at-
tributed to its pronounced hydrophilic nature. This was followed by the pure SA composite
(160.4 ± 12.2% at 6 h) and the SA-COS composite (116.1 ± 10.3% at 6 h). These findings in-
dicate that NACOS possesses greater hydrophilic properties than SA, while the interaction
between SA and COS rendered the SA-COS beads less prone to swelling in water.
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Table 2. Summary of key properties of the different samples.

Sample Swelling Ratio
(%) at 6 h

Contact Angle
(◦)

Antibacterial Activity
(Inhibition % Against

MRSA)

SA 160.4 ± 12.2 56.6 ± 1.6 –
SA-Cu2O 18.6 ± 6.0 72.7 ± 8.8 Highest (67.4 ± 11.9%)

SA-NACOS 203.9 ± 17.3 33.3 ± 9.2 –
SA-NACOS-Cu2O 90.1 ± 4.9 72.4 ± 6.8 High (51.6 ± 7.7%)

SA-COS 116.1 ± 10.3 N/A a –
SA-COS-Cu2O 16.1 ± 3.9 N/A a Low (10 ± 16.3%)

Note: a Contact angle could not be measured due to the samples being too hydrophilic.

The inclusion of Cu2O into the SA, SA-COS, and SA-NACOS samples (i.e., SA-Cu2O,
SA-COS-Cu2O, and SA-NACOS-Cu2O) significantly reduced swelling, yielding capacities
of 18.6 ±6.0%, 16.1 ±3.9%, and 90.1 ± 4.9% at 6 h, respectively. This reduction is attributed
to the hydrophobic nature of Cu2O, which diminishes the overall hygroscopicity of the
SA-based composites. The decreased water swelling in the Cu2O-contained SA samples is
particularly advantageous for applications such as food packaging and marine coatings,
where materials must perform underwater or in highly moistened conditions. The swelling
behavior of these composites highlights the balance between the hydrophilic properties of
biopolymers (SA, NACOS, and COS) and the hydrophobic influence of Cu2O particles.

3.3. Surface Hydrophilicity

Contact angle is a fundamental parameter for evaluating the wettability of a solid
surface by a liquid, defined as the angle between the tangent line to the liquid’s surface and
the solid surface at the point of contact. A WCA greater than 90◦ signified hydrophobicity,
while a value below 90◦ indicates hydrophilicity [24].

As illustrated in Figure 6 and Table 2, the pure SA film exhibited a WCA of about
56.6 ± 1.6◦, confirming its hydrophilic surface. The inclusion of Cu2O (i.e., SA-Cu2O)
increased the WCA to 72.7 ± 8.8◦, suggesting a modest enhancement in hydrophobicity
due to the hydrophobic properties of Cu2O. In contrast, the SA-NACOS composite exhibited
a lower WCA than pure SA, indicating increased hydrophilicity. Notably, the addition of
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Cu2O to the SA-NACOS composite (i.e., SA-NACOS-Cu2O) raised the WCA to 72.4 ± 6.8◦,
a value comparable to that of SA-Cu2O. This demonstrates that Cu2O predominantly
governs the surface hydrophilicity of SA-based composites, irrespective of the presence
of NACOS. Due to the inherently high hydrophilicity of chitosan oligosaccharides (COS),
measuring their contact angle was not feasible.
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different composite (SA-Cu2O, SA-NACOS-Cu2O, and SA-COS-Cu2O) films: (a) WCA values;
(b) image (three replicates) of a water drop on the composite surface for WCA testing.

3.4. Antibacterial Activity

All Cu2O-containing composites—SA-Cu2O, SA-NACOS-C2O, and SA-COS-Cu2O—
demonstrated inhibitory effects against all the tested bacterial strains (S. aureus, E. coli,
and P. aeruginosa) (see Figure 7a and Table 2). The SA-Cu2O composite, devoid of chitin-
derived oligosaccharides, exhibited the highest inhibition against the Gram-positive strain
S. aureus, followed by the Gram-negative strains E. coli and P. aeruginosa. These findings
align with the previous research by Safaei and Taran (2018) [14], who reported a significant
antimicrobial activity of SA-CuO composites against S. aureus and E. coli.
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Figure 7. Antimicrobial activity assay results: (a) % inhibition calculated for the different composites
(SA-Cu2O, SA-NACOS-Cu2O, and SA-COS-Cu2O) against MRSA, E. coli, and PAO1. Statistical
significance was determined using a two-way ANNOVA. Asterisks indicate significance levels, with
p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***), as determined by the statistical test; (b) % inhibition
against varying concentrations of SA-Cu2O (mg·mL−1); (c) growth rate of MRSA (OD600) at dif-
ferent carbon sources, including glucose, SA, NACOS, COS, and chitobiose. Error bars represent
standard deviations.
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SA-Cu2O demonstrated the highest antibacterial activity against MRSA (67.4 ± 11.9%
inhibition), E. coli (33.7 ± 5.1% inhibition), and PAO1.N (39.2 ± 15% inhibition). Compared
to SA-Cu2O, SA-COS-Cu2O exhibited significantly reduced activity, with a 97.5% inhibition
loss for MRSA (1.7 ± 5.94%, p < 0.001, ***), a 69.2% reduction for E. coli (10.4 ± 2.7%,
p < 0.05, *), and a 74.5% reduction for PAO1.N (9.997 ± 16.3%, p < 0.01, **). These findings
suggest that SA-COS-Cu2O is significantly less effective than SA-Cu2O against all bacterial
strains, particularly S. aureus (MRSA). On the other hand, SA-NACOS-Cu2O showed
antibacterial effectiveness (51.6 ± 7.7% against MRSA, 22.5 ± 5.5% against E. coli, and
40.6 ± 11.3% against PAO1.N) comparable to SA-Cu2O, with no significant differences
(p > 0.05).

The percentage of inhibition was assessed at varying concentrations of SA-Cu2O, as
shown in Figure 7b, with the maximum inhibition observed at 10 mg/mL. No further
enhancement in inhibition was detected at higher concentrations.

Furthermore, SA, NACOS, COS, and N-N diacetylchitobiose [(GlcNAc)2] were ob-
served to serve as carbon sources for bacterial growth under minimal conditions, as de-
picted in Figure 7c. These findings are consistent with the work of Asadpoor et al. [25], who
demonstrated that COS could be utilized as a carbon source for the growth of Staphylococcus.
This contrasts with earlier studies by Abidin et al. [26,27] that reported the antibacterial
activity of (GlcNAc)2 against Listeria monocytogenes and E. coli. Notably, chitosan oligosac-
charides and N,N-diacetylchitobiose did not exhibit significant antibacterial effects, despite
chitosan’s well-documented antimicrobial properties under mild acidic conditions, which
are attributed to its protonated amine groups. The limited antimicrobial efficacy of these
compounds may stem from several factors, including reduced molecular mass hindering ef-
fective interaction with microbial cell membranes, the presence of uncharged acetyl groups
in N,N-diacetylchitobiose diminishing electrostatic interactions with negatively charged mi-
crobial surfaces, and the degree of deacetylation influencing the cationic nature of chitosan
derivatives. Additionally, antimicrobial sensitivities to chitosan-based compounds vary
across species. Intriguingly, the ability of bacteria to utilize diverse carbon sources under
minimal conditions suggests a potential metabolic adaptation mechanism, with bacterial
self-inhibition possibly occurring upon carbon source depletion.

The above results demonstrate that Cu2O serves as the primary antimicrobial agent
responsible for bacterial suppression, leading to effective bacterial membrane disruption
and reactive oxygen species (ROS) generation. The uniform dispersion of Cu2O in the SA
matrix, as confirmed by SEM and EDX analyses, likely enhanced the overall antimicrobial
activity by maximizing the surface interaction between Cu2O and bacterial cells. However,
the incorporation of chitin-derived oligosaccharides (especially COS) may attenuate the
antimicrobial efficacy of the composites. This reduction arises because these oligosaccha-
rides can function as carbon sources, partially counteracting the antimicrobial effects of
Cu2O. This underscores the necessity of balancing biofunctionality, potentially conferred
by polysaccharides and oligosaccharides, with antimicrobial activity and biodegradability
in polysaccharide/inorganic material composites. Interestingly, although all oligosac-
charides can effectively support bacterial growth, with NACOS being the most effective
(see Figure 7c), only COS exhibited a statistically significant offsetting effect (Figure 7a).
The mechanism underlying this phenomenon is worth further investigation.

While enhanced hygroscopicity or surface hydrophilicity of a polymer material generally
promotes microbial activity, the observed reduction in the antimicrobial properties of the
composites due to chitin-derived oligosaccharides does not correlate with their effects on
hygroscopicity or surface hydrophilicity, as previously discussed. This suggests that the
variations in antimicrobial activity among the composite samples are predominantly attributed
to the distinct capacities of chitin-derived oligosaccharides to function as carbon sources.
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Compared to the existing antimicrobial materials used in food packaging and biomed-
ical applications, SA-Cu2O composites offer several advantages. Traditional antimicrobial
packaging materials often rely on synthetic polymers such as polyethylene and polypropy-
lene embedded with antimicrobial agents like silver nanoparticles, titanium dioxide, or zinc
oxide [10]. While these materials provide effective microbial inhibition, their environmental
impact, cost, and potential toxicity raise concerns. Biopolymer-based antimicrobial films
have emerged as sustainable alternatives [28]. Chitosan, in particular, has been widely
used for its inherent antibacterial properties due to its cationic nature, which interacts
with bacterial cell membranes. However, its antimicrobial efficacy varies depending on
environmental conditions, such as pH and moisture content. In contrast, the Cu2O-loaded
SA composite provides a stable antimicrobial effect under diverse conditions due to the
sustained release of Cu2O and its ability to generate ROS that damage bacterial membranes.

In biomedical applications, hydrogels incorporating antimicrobial agents, such as
silver, iodine, or antibiotics, have been used for wound healing and infection prevention.
While these materials exhibit strong antibacterial properties, concerns over antibiotic
resistance and cytotoxicity have spurred interest in metal-based antimicrobial systems like
Cu2O [29]. Compared to nanosilver-containing hydrogels, Cu2O-loaded SA composites
present a cost-effective and biocompatible alternative with comparable broad-spectrum
antimicrobial activity. Moreover, the hydrophilic nature of SA allows for controlled swelling
and moisture retention, making these materials suitable for wound dressings and tissue-
engineering applications.

Despite their advantages, SA-Cu2O composites face challenges in optimizing antibac-
terial performance when oligosaccharides (which are usually biofunctional) are included.
The reduction in antimicrobial activity observed in NACOS- and COS-containing formula-
tions suggests that these oligosaccharides serve as additional nutrient sources for bacteria.
Future studies should explore strategies such as surface modifications or controlled release
mechanisms to mitigate this effect. Additionally, comparative studies evaluating the long-
term stability, antimicrobial persistence, and mechanical properties of SA-Cu2O composites
against commercially available antimicrobial materials will be essential for their practical
implementation in the food packaging and biomedical fields.

4. Conclusions
This study demonstrates the potential of sodium alginate/cuprous oxide (SA-Cu2O)

composite materials as effective antimicrobial agents. A structural analysis using UV-
vis, FTIR, and EDX confirmed the successful incorporation of Cu2O, with SEM revealing
uniform dispersion within the SA matrix. Antibacterial assays showed that all Cu2O-
containing composites exhibited strong inhibitory effects against both Gram-positive (S.
aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria. Compared to SA-Cu2O, the
addition of chitin-derived oligosaccharides, particularly COS, significantly reduced the
antimicrobial performance, likely due to their function as carbon sources that promoted
bacterial growth. However, this reduction was insignificant when NACOS was incorpo-
rated. Swelling and water contact angle measurements indicated that the antimicrobial
effectiveness of the composites was independent of their hydrophilicity. These findings
underscore the importance of carefully designing biopolymer–inorganic antimicrobial
composites, as certain matrix components, particularly oligosaccharides, may counteract
antibacterial effects.

Future work should prioritize optimizing the composition of these composites to
enhance antimicrobial efficacy while minimizing the nutrient-like characteristics of polysac-
charide additives. Additionally, comprehensive studies are needed to assess the application-
related properties and stability of these materials under real-world conditions, including
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exposure to temperature fluctuations, humidity, and UV radiation, particularly in food-
packaging applications. Moreover, a rigorous evaluation of the environmental and health
impacts—encompassing biodegradability, toxicity, and biocompatibility—is essential to
ensure the safety and sustainability of these composites.
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