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Abstract

Approaches that integrate molecular network information and tumor genome data could 

complement gene-based statistical tests to identify likely new cancer genes, but are challenging to 

validate at scale and their predictive value remains unclear. We developed a robust statistic 

(NetSig) that integrates protein interaction networks and data from 4,742 tumor exomes and used 

it to accurately classify known driver genes in 60% of tested tumor types and to predict 62 new 

candidates. We designed a quantitative experimental framework to compare the in vivo 
tumorigenic potential of NetSig candidates, known oncogenes and random genes in mice showing 

that NetSig candidates induce tumors at rates comparable to known oncogenes and 10-fold higher 

than random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with 

oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly 

amplified. Overall, we illustrate a scalable integrated computational and experimental workflow to 

expand discovery from cancer genomes.
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Introduction

Cancers are initiated when somatic mutations, copy number alterations, or genomic fusion 

events of specific genes (hereafter, we will refer to these as driver genes or cancer genes) 

confer a selective advantage to the corresponding cell thus promoting tumorigenesis. 

Identifying the driver genes in tumors of individual cancer patients provides key diagnostic 

and therapeutic insight. Therefore, it is a central aim of oncology to provide a complete 

catalogue of genes underlying human cancers1–6.

The recent revolution of cancer genome analyses has enabled the statistical identification of 

cancer genes in an unbiased manner based on somatic mutations or copy number changes 

using gene-based statistical tests such as MutSig, Oncodrive, GISTIC and RAE7–10. These 

methods have identified many genes mutated or amplified at high frequencies (>20%) in 

tens of tumor types11. However, for many tumor types, insufficient sample numbers, 

compounded by high background mutation and copy number rates11 render it challenging to 

confidently pinpoint driver genes at intermediate (2–20%) or low (<2%) frequencies. For 

this reason, a large number of putative driver genes don't meet established statistical cutoffs, 

and a large number of biologically or clinically relevant driver genes remain to be 

discovered.

Many existing methods have been used to highlight network modules (based on functional 

genomics data) that are significantly mutated in tumors12–18. These analyses have been 

valuable for illuminating the biological processes and pathways involved in cancers 

(reviewed in Creixall et al.19). However, the evidence from network-based approaches 

comes from aggregating weak genetic signals in a set of genes connected into a network and 

not from an overwhelming mutation signal in any individual gene itself. This means that 

there is no strong direct link between specific genes in a significantly mutated module and 

the cancer in question. Additionally, since most network-based methods are only 

retrospectively evaluated through benchmarks, or by rigorously following up on only a few 

new genes, it is impossible determine how much ‘knowledge contamination’ (i.e., the notion 

that genes are more studied because they are cancer genes) introduces circularity and biases 

the outcomes towards more well established, or classic, cancer networks. These issues could 

be addressed by executing a systematic large-scale comparison of the tumorigenic potential 

of tens of genes embedded in a significantly mutated network versus a large number of 

known cancer genes (positive controls) and random genes (random controls), but such an 

analysis is lacking. Together this means that, if the aim is specifically to expand cancer gene 

discovery amongst genes with inconclusive mutations in existing cancer genomes, the real 

predictive value of network-based approaches remains unclear.

Towards this aim, we developed a statistic (NetSig) that combines cancer mutation data and 

molecular network information to expand cancer gene discovery from tumor genomes. With 

NetSig we had a particular focus on addressing the effects of ‘knowledge contamination’ 

and on designing a method that is independent of gene-based statistical tests like MutSig, 

Oncodrive, GISTIC and RAE so that it can seamlessly complement these approaches in any 

tumor genome analysis pipeline. To test the predictive power of NetSig, we developed an in 
vivo quantitative experimental framework that enabled us to compare the tumorigenic 
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potential of 23 genes with a significant NetSig score to that of 25 known cancer genes and 

79 random genes in mouse experiments. Based on the network analysis and in vivo 
experiments nine candidates were particularly relevant to lung adenocarcinoma. We 

reanalyzed copy number data derived from 660 patients with lung adenocarcinoma to 

discover higher rates of amplification of TFDP2 and AKT2 in patients without established 

genomic driver events compared to patients with mutations and amplifications in known 

oncogenes. The code is available from www.lagelab.org/resources and the algorithm has 

been implemented in FireCloud (https://software.broadinstitute.org/firecloud/).

Results

Design and properties of the NetSig statistic

NetSig, combines data from existing cancer genomes (spanning 21 tumor types and 4,742 

tumor genomes) and InWeb (a human protein-protein interaction network that has been used 

in the 1000 Genomes Project20) to calculate the mutation signal in a genes’ functional 

protein-protein interaction network. Since we specifically wanted to test the predictive 

power of mutations in a gene’s network, we excluded mutation information on the gene 

itself in the calculation of the NetSig statistic (for all details see Methods).

To benchmark NetSig and to understand the effect of ‘knowledge contamination’ on the 

statistic, we defined a set of ‘Cosmic classic’ (i.e., very well established) cancer genes from 

the Cosmic database (http://cancer.sanger.ac.uk/cosmic) and a set of ‘recently emerging 

cancer genes’ from recent sequencing studies (Methods, Supplementary Table 1). To test for 

cryptic confounders we also defined a set of random genes (Methods, Supplementary Table 

1). We confirmed that the ‘Cosmic classic’ and ‘recently emerging’ sets can be classified 

based on their NetSig score with an area under the receiver operating characteristics curve 

(AUC) of 0.86, and 0.75, respectively (Fig. 1a, adj. P < 0.05 for each of these AUCs, using 

permuted networks, Supplementary Figure 1). As expected the random control genes fit the 

null hypothesis and cannot be distinguished from other genes represented in InWeb (Fig. 1a, 

AUC 0.49, P = 0.8). We further show that NetSig can accurately classify cancer genes in ~ 

60% of the tumor types for which we have data (Methods and Supplementary Note 1, 

Supplementary Figure 2), illustrating the potential of our statistic to inform many different 

individual tumor types.

The majority of genes scored by NetSig fit the null hypothesis and lie on the diagonal in a 

quantile-quantile plot, but there is an overall genomic inflation (lambda = 1.29) of the 

significances assigned to genes (Supplementary Figure 3). This could be due to ‘knowledge 

contamination’, the inherent polygenic nature of cancers, or a combination. To dissect this 

phenomenon, we removed the effect of well-studied cancer genes from our analysis 

(Methods, Supplementary Note 2). The ability to predict ‘Cosmic classic’ cancer genes is 

reduced (Fig. 1b, from an AUC of 0.86 to 0.79) indicating some ‘knowledge contamination’ 

of this set, but effect on ‘recently emerging’ cancer genes is much less pronounced (Fig. 1b, 

from an AUC of 0.75 to 0.73). Consistent with these observations, we see that removing the 

effect of the ‘Cosmic classic’ gene set reduces the lambda from 1.29 to 1.09 in the quantile-

quantile plot and that it only changes slightly to 1.07 when the impact of the ‘recently 

emerging’ set is also removed (Supplementary Figure 3). Furthermore, running NetSig on 
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random networks results in a non-inflated quantile-quantile plot as expected (Supplementary 

Figure 3). We also show that NetSig adequately normalizes for the amount of interactions a 

gene has at the protein level (Supplementary Figure 4).

Together, these analyses show that there is some ‘knowledge contamination’ in the protein-

protein interaction data specifically of the ‘Cosmic classic’ set and that this leads to a 

significantly inflated AUC in the benchmark if it is not taken into consideration. Conversely, 

there is almost no ‘knowledge contamination’ of genes emerging from recent sequencing 

studies. This means that when predicting new cancer genes from existing cancer genomes, 

‘knowledge contamination’ should not confound the NetSig method when applied to 

protein-protein interaction data from InWeb.

Predicting NetSig candidates from 4,742 tumor genomes

To test if NetSig can predict new likely driver genes from existing cancer genome data we 

calculated NetSig scores of all genes that had at least one high-confidence protein 

interaction in InWeb and adjusted the result of this analysis for multiple hypothesis testing. 

We calculated NetSig scores both using the pan-cancer cohort of 4,742 tumors and using 

mutation data from each of the individual 21 tumor types represented in11 (Methods). We 

declared genes with a false discovery rate (FDR) Q ≤ 0.1 using the pan-cancer data 

significant (Fig. 1c) and also declared genes with a Q ≤ 0.1 in each of the individual 21 

tumor types significant.

The pooled set (named NetSig5000, Supplementary Table 2) contains all unique genes that 

were significant in the pan-cancer analysis or in at least one of the 21 tumor types. Our 

NetSig5000 set comprises 62 genes, of which we divided into five groups based on their 

known connection to cancer. Groups 1 (n = 12) and 2 (n = 9) contain genes already known to 

be involved in cancers based on significant point mutations or gene fusion events, 

respectively. These groups serve as a positive control that NetSig can identify known cancer 

genes. Groups 3 (n = 24) and 4 (n = 13) contain genes that have been speculated to be causal 

in cancers based on evidence from model systems or from gene expression analyses. Group 

5 (n = 4) have never been linked to cancer (see Supplementary Table 3 and Supplementary 

Note 3 for more information about genes in the NetSig5000 set and Supplementary Figure 5 

for examples of NetSig networks). All results can be accessed and visualized at http://

www.lagelab.org/resources/.

Comparing the tumorigenic potential of 23 NetSig candidates, 25 oncogenes, and 79 
random controls

To confirm whether NetSig nominates candidate genes with bona fide tumorigenic potential, 

we tested the tumorigenic potential of 23 genes from the NetSig5000 set (Supplementary 

Table 4, for selection criteria of these 23 genes see Methods), 79 different patient-derived 

mutations of 25 known driver genes (positive control, Supplementary Table 5) and 79 

random genes (random control, Supplementary Table 6) using a massively parallel in vivo 
tumorigenesis assays (Fig. 2a and Methods). The assay transduces and overexpresses 

barcoded cDNA constructs of candidate genes (and alleles representing patient-derived 

mutations) into activated small-airway epithelial cells [SALE-Y cells21] or activated 
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immortalized kidney epithelial cells [HA1E-M cells21–24]. For each cell model (SALE-Y or 

HA1E-M) all genes (or alleles) to be tested are pooled, grown, and injected subcutaneously 

into immunocompromised animals at three injection sites per animal. In animals that 

develop tumors, driver genes can be identified by homogenizing tumors in the animals and 

by sequencing the barcodes found in the tumor cells (Methods).

To compare the tumorigenic potential of the three gene sets across multiple cell models we 

developed a quantitative analytical framework that defines a gene as tumorigenic based on 

both in vivo proliferation rate of the tumor cells and the significance of the relative growth of 

the tumors (Methods, Supplementary Software and Data). Our analysis showed that many 

of the tested NetSig5000 genes (11/23 or 48%) are indeed capable of driving tumorigenesis 

(Fig. 2b and c, Supplementary Table 7). Specifically, these pooled screening results support 

the putative tumorigenic potential of AKT2, BLK, BMX, FER, FRK, MOS, PIK3CG, 
PTK6, RASGRP1, RASGRP3, and TFDP2),for a comprehensive literature review of these 

genes see Supplementary Notes 4). In comparison, the proportion of known driver genes 

from the positive control set that induced tumors was 9/25 or 36%, providing an estimate of 

assay sensitivity, (Fig. 2d, see Methods for details) and the proportion of random genes that 

induced tumors was 4/79 or 5%, providing an estimate of the assays false positive rate (Fig. 

2d). We note that the two random genes that induced tumors are NTRK1 (encoding a 

tyrosine kinase with established tumorigenic properties) and STRADA (an interactor of the 

STK11 tumor suppressor at the protein level), suggesting that these could be real driver 

genes that remain to be discovered, that the assay has false positive rate well below 5%, 

meaning that the specificity of the assay is likely to be above 95%.

Significant copy number gains of TFDP2 and AKT2 in lung adenocarcinoma patients

Nine NetSig5000 genes (AKT2, FER, FRK, MOS, PIK3CG, PTK6, RASGRP1, RASGRP3, 

and TFDP2) validated with high confidence in a cell model (SALE-Y) that is particularly 

relevant for exploring genes that can induce lung adenocarcinomas21. Based on this 

observation we hypothesized that a subset of these nine genes may be responsible for driving 

lung adenocarcinomas in oncogene negative patients [meaning patients that do not have a 

known oncogenic driver event in the RAS/RAF/receptor tyrosine kinase (RTK) pathway as 

previously described25].

To test these hypotheses we used a dataset of 660 lung adenocarcinomas from TCGA and 

related studies25–27. We first tested for copy number differences between the oncogene 

negative (n = 242) and the oncogene positive patients (n = 418), showing that the nine genes 

as a set have a significantly higher copy number in the former group (P = 7.0e-3, using 

Fisher’s exact test, Fig. 3a). We also show that TFDP2 and AKT2 are individually found at 

higher copy numbers in the oncogene negative group (FDR < 0.1 for each gene, Fig. 3a).

Through an in-depth analysis of the surrounding genomic regions, we ruled out that adjacent 

potential oncogenes are underlying the signal we see (Figs 3b and c and Supplementary 

Note 5) and we also confirmed that there is no overall difference in copy numbers between 

the two patient groups (Supplementary Figure 6). The genomic events observed for AKT2 
and TFDP2 are not high-level amplifications. Rather, 3 and 4% percent of the oncogene 

negative patients have two extra copies of AKT2 and TFDP2, respectively; and 4 and 14% 
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have one extra copy of AKT2 and TFDP2, respectively (Figs 3d and e). In the nine genes we 

also tested whether there is evidence for increased rates of gain-of-function single nucleotide 

variants (SSNVs) or insertions or deletions (indels) in the oncogene negative versus positive 

group, which is not the case.

Given the dominating effect of the RAS/RAF/RTK pathway in lung adenocarcinoma, a more 

straightforward approach to gene discovery would be to make a targeted analysis of 

mutations or copy number gains in genes in the extended RAS/RAF/RTK pathway (defined 

here as genes that have at least one protein interaction to a RAS/RAF/RTK pathway member 

in InWeb). We compared the degree of copy number gains, and activating SSNVs / indels, in 

our set of nine genes to 100 matched sets of nine RAS-affiliated genes, showing that the set 

of nine genes identified through our approach are significantly more enriched for oncogenic 

copy number gains (P = 0.04, using permutation tests, Supplementary Figure 7). This 

analysis confirms that combining NetSig with tumorigenicity experiments is a better 

approach to identifying driver genes and events in lung adenocarcinomas than naïvely 

choosing genes in the extended RAS/RAF/RTK pathway.

To allow further exploration of pathway relationships relevant to lung adenocarcinomas the 

NetSig networks of AKT2 and TFDP2 are plotted in Figs 3f and g.

Discussion

Overall our integrated computational and experimental analyses firmly establish network-

based approaches can contribute to expanding gene discovery from existing cancer genomes. 

Not only do the genes in the NetSig5000 set point to new genes in well-established 

oncogenic pathways (e.g., AKT2, PIK3CB, PIK3CG, RASGRP1, RASGRP3, 

Supplementary Note 6 and Supplementary Figure 8), but our results also point to potential 

new cancer pathways (e.g., TFDP2 and MYO7A, Supplementary Note 7, Supplementary 

Figures 9 and 10, Supplementary Tables 8 and 9). For details about the differences between 

NetSig and other network-based methods, see Supplementary Note 8, Supplementary Figure 

11 and Supplementary Table 10.

An important feature of NetSig is that it is explicitly designed to disregard any mutation 

information on the gene being tested so that the signal comes from the genes network alone. 

This ensures that NetSig P values are fully independent of those from existing gene-based 

statistical test such as MutSig, Oncodrive, GISTIC and RAE (in fact, the MutSig and NetSig 

P values of the same genes are only modestly correlated, Pearson correlation coefficient = 

0.05, data not shown). This design choice means that NetSig can be seamlessly combined 

with (and thus complement) gene-based statistical tests in any computational cancer genome 

analysis workflow (Supplementary Note 9 and Supplementary Figure 12). The NetSig code 

is available from www.lagelab.org/resources and the algorithm has been implemented in the 

FireCloud cancer genome analysis platform (https://software.broadinstitute.org/firecloud/)

NetSig is flexible and can work with many different types of functional genomics network 

data (Supplementary Note 9 and Supplementary Figure 13). Interestingly, the average 

genomic inflation when NetSig is run on different sets of transcriptional networks29 (i.e., 
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based on data that cannot be effected by ‘knowledge contamination’) is 1.14 and 1.11, 

respectively (Supplementary Figures 14 and 15). This is comparable to the lambda in the 

protein-protein interaction data when the effect of ‘Cosmic classic’ genes are removed from 

the analysis (1.09), suggesting that our approach to removing ‘knowledge contamination’ is 

efficient in canceling out that effect. This strongly suggests that the remaining inflation is 

due to polygenicity of cancers and not due to any bias or confounders of the NetSig statistic 

or network data.

While we did not observe any evidence for gain-of-function single nucleotide variants 

(SSNVs) or insertions or deletions (indels) across TFDP2 and AKT2, it is our expectation 

that with more samples in the future these genes will be enriched for such events. This is 

consistent with the observation that NetSig5000 set overall is enriched for genes with lower 

MutSig P values in the Lawrence et al, 2014 set (P = 0.04 using a nonparametric two-sample 

Kolmogorov-Smirnov test). Together, our results strongly suggest that many genes in the 

NetSig5000 set are likely real intermediate or low frequency driver genes that will reach 

significance in gene-based statistical tests with more tumor genomes in the future. For a 

discussion of the study’s limitations, an estimate of how well the NetSig statistic predicts 

real cancer genes, and information on the benefit of including several cell models and 

genetic backgrounds in the validation workflow, see the extended discussion in 

Supplementary Note 10.

We expect that with more data in the future the approach we describe here will become 

increasingly powerful for biological discovery in cancers. We make all results and 

algorithms available from www.lagelab.org/resources as a resource for the community.

Methods

Calculating the network mutation burden

For a given index gene, NetSig statistic is formalized into a probabilistic score that reflects 

the index-gene-specific composite mutation burden [i.e. the aggregate of single-gene MutSig 

suite Q values from11] across its first order biological network and is calculated via a three-

step process: First, we identify all genes it interacts with directly at the level of proteins, 

only including high-confidence quality-controlled data from the functional human network 

InWeb30,31 (where the vast majority of connections stem from direct physical interaction 

experiments at the level of proteins). Second, the composite mutation burden across 

members of the resulting network is quantified by aggregating single-gene MutSig suite Q 

values from11 into one value ϕ using an approach inspired by Fisher’s method for combining 

p-values:

ϕ − 2 ∑
i = 0

k
ln(qi)

Where pi is the MutSig suite Q value for gene i, and k is the amount of genes in the first 

order network of the index gene (i.e. the index gene’s degree). Third, by permuting the 

InWeb network using a node permutation scheme, we compare the aggregated burden of 
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mutations ϕ to a random expectation. In this step, the degree of the index gene, as well as the 

degrees of all genes in the index gene’s network is taken into careful consideration. The final 

NetSig score of an index gene is therefore an empirical P value that reflects the probability 

of observing a particular composite mutation burden across its first order physical 

interaction partners (at the level of proteins) normalized for the degree of the index gene as 

well as the degrees of all of its first order interaction partners. Because we are interested in 

estimating the mutation burden independent of the index gene (so that the NetSig results are 

fully independent of gene-based statistical tests such as MutSig, Oncodrive, GISTIC and 

RAE), this gene is not included in the analysis and it does not affect the NetSig calculation. 

This also means that for any given gene MutSig suite significances are independent of 

NetSig significances (i.e., the Cancer5000 gene set and the NetSig5000 gene set are 

independently predicted).

Classifying cancer genes

For each gene represented in InWeb (12,507 or 67% of the estimated genes in the genome), 

we used the gene-specific NetSig probability to classify it as a cancer candidate gene or not. 

True positive genes were a set of ‘Cosmic classic’ genes and a set of ‘recently emerging 

cancer genes’. Specifically, the Cosmic classic set consists of 38 established (or classic) 

cancer genes from the Catalogue of Somatic Mutations in Cancer (Cosmic, http://

cancer.sanger.ac.uk/cosmic, e.g., TP53, BRCA1, and BRAF, Supplementary Table 1). The 

‘recently emerge cancer genes’ contains 61 genes that have been recently identified as 

cancer genes from the Sanger Gene Census dataset (http://cancer.sanger.ac.uk/census/, e.g., 

MLL2, CDK12, and GATA2, Supplementary Table 1). The gene set for the purposes of the 

benchmarking analysis is a set of 87 random genes (Supplementary Table 1). True negatives 

were defined as all genes in InWeb that were not in these three sets which is likely 

conservative as many of these might be yet undetected cancer genes. We used the NetSig 

probability as the classifier and calculated the AUC for each gene set. For estimating AUC 

significances, we generated AUCs for 100 random networks (from Rossin et al., 2011) and 

calculated the empirical P value.

Using NetSig to classifying driver genes across 21 tumor types

For each tumor type we calculated tumor-type-specific NetSig scores and classified the 

corresponding tumor-specific driver genes. For example, we assembled a set of driver genes 

from breast tumors (BRCA) by identifying genes significantly mutated in this tumor type 

in11. We used mutation data from this tumor type to derive NetSigBRCA scores and measured 

their classification performance on the BRCA driver genes, which they could accurately 

distinguish with an AUC = 0.76. We compared this result to the results using NetSig scores 

derived using the pan-cancer dataset. The pan-cancer NetSig score increased the ability to 

accurately classify BRCA driver genes slightly to an AUC of 0.77 (for more information see 

Supplementary Note 1, Supplementary Figure 2).

Testing the robustness of the NetSig approach

To test the robustness of the NetSig approach, we tried several alternative permutation 

methods and calculated the composite mutation burdens of gene networks using both Q and 

P values from the Lawrence et al. 2014 paper. Specifically, to generate the null distribution 
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of network mutation burdens used to assess the significance of observations in the actual 

data, we both used a node permutation scheme and a full network permutation scheme. 

Where the node permutation scheme permutes nodes that have similar degree has the 

advantage of being much faster than the network permutation scheme [explained in detail 

in32], the architecture of the original network is more precisely mirrored in the random 

networks using the latter method. We ran the full analysis using both approaches and 

compared the quantile-quantile plots (not shown), and classification of Tiers 1–5 genes. This 

analysis confirmed that the choice of permutation scheme does not have a major influence 

on the overall results (Supplementary Figure 1). In addition to using q values from11 for step 

2 in the NetSig calculation (above), we also tried using unadjusted P values. For this latter 

approach the quantile-quantile plots (not shown) as well as the classification of ‘Classic’ and 

‘Recently emerging’ cancer genes similar to the results we report in the main text 

(Supplementary Figure 1).

Generating the NetSig5000 set

We used a node permutation scheme to create 106 permuted networks. NetSig probabilities 

were determined for every gene in InWeb that was covered by interaction data. The FDR Q 

values were calculated as described by Benjamini and Hochberg33 based on the nominal P 
values controlled for 12,507 hypotheses. We performed NetSig analyses with the pan-cancer 

Q values, as well as Q values from each of the 21 tumor types for which they were available. 

As it is a technical limitation of the NetSig approach that it is currently not possible to make 

5.5 × 106 network permutations we could not create a dataset where we correct for all 

12,500 × 22 hypotheses tested in the NetSig5000 set. For that reason our work does not have 

the equivalent of the Cancer5000-S (the stringent) set from Lawrence et al.11, where the 

authors control for all hypotheses is carried out simultaneously.

A multiplexed in vivo tumor formation screen in mice

We used the SALE-Y cell model previously described in (Berger et al., 2016) and the 

HA1E-M cell model previously described in (Kim et al., 2016). Specifically, our earlier 

work revealed that immortalized small-airway epithelial cells harboring an activating YAP1 
variant are rendered tumorigenic via activation of the EGFR/MAPK pathways [SALE-Y 

cells21] and immortalized kidney epithelial cells harboring an activating MAPK1 variant are 

rendered tumorigenic via activation of the PI3K/YAP/NFKB pathways [HA1E-M 

cells21–24]. Briefly, we inserted each gene into barcoded cDNA clones and these clones were 

transduced into SALE-Y and HA1E-M cells in 96 well plates in arrayed format. The cells 

were selected with puromycin, expanded, and pooled. Two million cells per pool per site 

were injected subcutaneously into immunocompromised mice in three sites (interscapular 

area and left and right flanks) per mouse and tumor formation monitored. The experimental 

endpoint was reached when any tumor length exceeded 1 cm. Tumors were homogenized 

and genomic DNA was extracted and sequenced to determine the relative proportion of each 

inserted DNA barcode. The relative proportions of each barcode serves as a proxy indicating 

the gene driving a tumor. To deal with data from deploying multiple cell models in parallel 

on a large set of positive controls, random controls and NetSig candidates we developed a 

new quantitative analytical framework (below).
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A quantitative analytical framework to compare the tumorigenic potential of NetSig5000 
genes to known oncogenes and random genes

We measured the reproducibility and magnitude of the oncogenic signal of the individual 

gene sets by developing and calculating two complementary metrics: maximum in vivo 
proliferation rate and significance of relative growth:

Calculating max proliferation rates—To determine a metric for growth doubling time 

of cells injected with NetSig5000 genes in the in vivo tumors, we calculated the proportion 

of reads in a tumor normalized to tumor volume and compared to the proportion of reads in 

the pre injection cell pool where volume for all pooled cells was set to 1 cubic mm (which 

roughly corresponds to 2 million cells). This was done for all tumors and for each tumor we 

divided the growth rate with the day the tumor was harvested to normalize for tumor age. 

This leads to an estimate of the doubling time of the in vivo tumor growth for cells driven by 

overexpression of a particular NetSig candidate. We call this metric max proliferation rate 

per gene, which is plotted on the x-axis of Fig. 2b.

Calculating the significance of relative growth—To calculate the significance of 

relative growth of cells in each cell type (SALE-Y and HA1E-M, respectively) transduced 

with a particular cDNA clone we plotted the distribution of relative reads in the tumors and 

compared to the pre injection value. Significances were calculated using a one sided t-test 

and reported as false discovery rates. We call this metric significance of proliferation rate 

and plotted the maximum significance (after iterative removal of dominant effects - see 

below) on the y-axis of Fig. 2b.

Computational detection of dominant and subjugated oncogenic clones in 
tumors—When many oncogenic clones are pooled and injected into mice, a single clone 

often outcompetes other oncogenic clones to dominate the tumor through a highly stochastic 

process. We refer to outcompeted, but real, oncogenic clones in the tumors as ‘subjugated 

oncogenic clones’. It is possible to detect subjugated oncogenic clones by iteratively 

removing dominant clones from the cell pools and repeating the experiments. However, this 

is very labor intensive. We developed a computational approach where we iteratively 

removed genes that accounted for more than 50% of the reads in a tumor and repeated the 

significance of relative growth analysis described above. In Fig. 2b we report the best FDR 

after zero, one or two iterations. We confirmed that the subjugated oncogenic clones 

detected computationally were indeed driver clones by comparing the results from our 

computational approach to results from the iterative experimental removal of dominant 

clones and repetition of the injection of experimentally reduced cell pools into mice from the 

Berger et al., paper21. This analysis showed that genes determined to be significant through 

our computational iterations also became dominant clones when other dominant clones were 

first removed from the experimental assay.

Calculating the sensitivity and specificity of the experimental tumorigenesis assay

Sensitivity—We determined how many of the 25 positive control genes were correctly 

classified as tumor inducing at z-scores of one and two, in both the HA1E-M and SALE-Y 

model. In the HA1E-M model, 6 genes were classified as tumor inducing at a z score of one 
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and 2 at a z score of two (see Supplementary Table 7 for details). As we tested a total of 25 

genes this gives a sensitivity of 6/25 = 0.24 and 2/25 = 0.08, respectively (Fig. 2b). In the 

SALE-Y model, 7 genes were classified as tumor inducing at a z score of one and 6 at a z 

score of two giving a sensitivity of 7/25 = 0.28 and 6/25 = 0.24, respectively (Fig. 2b). When 

combining the two assays together the sensitivity increases to 9/25 = 0.36, which is likely 

because we are testing the tumorigenic potential of genes across several genetic 

backgrounds. Analogous calculations can be seen for constructs in Supplementary Table 7.

Specificity—We determined how many of the random genes constructs were correctly 

classified as non-tumor-inducing at z-scores of one or two (see above), in both the HA1E-M 

and SALE-Y model. In the HA1E-M model, three genes (STRADA, ZNF346, and DRD4) 

were classified as tumor inducing at a z score of 1, and one gene (STRADA) was classified 

as tumor inducing at a z score of two. As we tested a total of 79 genes this gives a specificity 

of 76/79 = 0.96, and 78/79 = 0.99, respectively (Fig. 2b). In the HA1E-M model, one gene 

(NTRK1) was classified as tumor inducing at a z score of 1 and z score of 2, respectively. As 

we tested a total of 79 genes this gives a specificity of 78/79 = 0.99% at both thresholds 

(Fig. 2b). Analogous calculations can be seen for constructs in Supplementary Table 7.

Choosing 25 genes for the validation experiment

We selected the genes based on a number of biological (not being known cancer genes) and 

technical (available high quality reagents) criteria: First, we selected a set of genes that were 

either in group 3,4 or 5 of our literature curation groups (meaning they have not already been 

shown to be cancer genes in humans). Second, we chose the subset of genes for which there 

were already reagents (meaning open reading frame [ORF] constructs) available from the 

Genetic Perturbation Platform at the Broad Institute. Third, we chose the set of genes where 

the ORF constructs had been sequenced and i) did not have any mutations [i.e., that the 

sequence of the cDNA corresponded to the wild type] and ii) where the sequence of the ORF 

passed a high quality sequence cutoff to avoid testing ORFs where the sequence of the clone 

was ambiguous and could have unknown mutations. Fourth, the cell models are optimized 

for perturbations in certain pathways (i.e., the SALE-Y cells are rendered tumorigenic via 

activation of the EGFR/MAPK pathways and the HA1E-M cells are rendered tumorigenic 

via activation of the PI3K/YAP/NFKB pathways). We hypothesized that choosing a set of 

genes that linked to the pathways activated in each cell model would likely increase the 

chance to induce tumors in these models. We tested this hypothesis by choosing the 25 genes 

so, when possible, they interacted directly with members of the pathway activated in the 

HA1E-M model, but not in the SALE-Y model. However, we see similar validation rates in 

the two models so it does not seem to have an effect that we are ‘fitting’ the candidates 

specifically to the HA1E-M model (Supplementary Note 10). It is likely that the higher 

validation rates observed for Netsig candidates (138% of the theoretical expectation, 

Discussion) when using both cell models in parallel is due to a combination of these 

selection criteria (available reagents and connection to known cancer pathways in the HA1E-

M model) and underestimates of the sensitivity of the assay because there is an upper limit 

to how many true positive oncogenes in a cell pool can induce tumors based on the issues 

with subjugated clones mentioned above).
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Analysis of oncogene negative lung adenocarcinoma patients

Segmentation was performed using the Circular Binary Segmentation algorithm followed by 

Ziggurat Deconstruction to infer the length and amplitude of each segment. Recurrent peaks 

for focal somatic copy number alteration were identified using GISTIC 2.08. A peak was 

considered to be focally amplified or deleted within a tumor if the GISTIC 2.0–estimated 

focal copy number ratio was greater than 0.1 or less than −0.1, respectively. Purity and 

ploidy were estimated using ABSOLUTE34. Two peaks were considered the same across 

tumor types if (i) the known target gene of each peak was the same or (ii) the genomic 

location of the peaks overlapped after adding 1 mega base to the start and end locations of 

each gene. For the second criterion, only peaks that contained fewer than 25 genes and were 

smaller than 10 Mb were considered [for more details see Campbell et al., 2016)]. Because 

we are executing a case-control analysis of the copy numbers of genes that induce tumors in 

the SALE-Y model relevant for lung adenocarcinoma our analysis normalizes out any 

potential effects of, for example gene size, amount of protein-protein interactions a gene has 

and so forth).

Data availability

NetSig code, results, and visualizations are available from www.lagelab.org/resources. The 

protein network data (InWeb version 3.0) is available from www.lagelab.org/resources. 

Tumor genome data is publicly available from the Lawrence et al, 2014. Lung cancer 

datasets are available from Campbell et al, 201625. Further data that supports the findings of 

this study is available from the corresponding author upon request. NetSig is implemented in 

FireCloud (https://software.broadinstitute.org/firecloud/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NetSig predicts true cancer genes
a) Areas under the receiver operating characteristics curve (AUCs) for genes in the ‘Cosmic 

classic’ and ‘recently emerging’ sets are 0.86 and 0.75, respectively (adj. P < 0.05). Genes 

from the random set fit the null hypothesis (AUC 0.49, nominal P = 0.75). b) AUCs when 

removing the effect of very well established cancer genes is 0.79, 0.73, and 0.5, for the 

“Cosmic classic”, “recently emerging”, and random sets, respectively. c) Visualizing the 

NetSig500 set. Genes are represented as individual dots and plotted along the x-axis by the 

NetSig Q value from the most significant of 21 tumor types, and on the y-axis by the NetSig 

Q value when 4,724 tumors are analyzed as a combined pan-cancer cohort. Significance at 

FDR Q <= 0.1 is indicated on each axis by grey lines.
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Figure 2. In vivo tumor formation of NetSig5000 and control sets
a) Experimental design. b) Tumorigenic potential of 23 NetSig5000 genes (NetSig 

candidates), 25 known oncogenes (Positive control), and 79 random genes (Random 

controls) in in vivo mouse tumorigenesis experiments. X-axis indicates maximum 

proliferation rate and y-axis maximum significance of enrichment in tumors relative to pre-

injection samples. Dark grey boxes indicate one standard deviation from the median (lower 

confidence) and light grey boxes two standard deviations from the mean (higher confidence). 

c) Candidates that induce tumors at the higher and lower confidence threshold stratified by 

cell model. d) Proportion of the NetSig5000 candidates, positive control set, and random set, 

respectively, that induced tumors in mice. Left panel indicate the results at the level of 

cDNA constructs. Right panel indicate results at the gene level.
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Figure 3. Targeted re-analysis of oncogene negative lung adenocarcinoma patients
a) Amplification of the nine genes that induce tumors in the lung adenocarcinoma-relevant 

cell model. As a group the genes are significantly amplified (P = 7.0e-3) and AKT2 and 

TFDP2 are individually significantly amplified (FDR Q < 0.1). b), c) In depth view of the 

amplified regions surrounding AKT2 and TFDP2, respectively. d), e) The proportion of 

oncogene positive or negative patients with −1, 0, 1, or 2 copy number changes of AKT2 or 

TFDP2. f), g) NetSig networks of AKT2 and TFDP2. Nodes other than AKT2 and TFDP2 
are colored by the significance of the pan-cancer Q value of the corresponding gene, where 

light grey represents Q close to 1 and red Q << 1, with darker red representing more 

significant Q values as indicated below the relevant node.
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