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Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer
(CRC) generally characterized by clinical symptoms, including malabsorption, intestinal
dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal
disease complications, continue to be serious public health problems worldwide. The role
of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition
to its role in blood coagulation and bone health, several investigations continue to explore
the role of VK as an emerging novel biological compound with the potential function of
improving intestinal health. This study aims to present a thorough review on the bacterial
sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal
diseases, with emphasis on the effect of VK supplementation on immunity, anti-
inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation,
and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are
another crucial mechanism for VK to exert a gastroprotection role for their functions of
anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published
studies preliminarily show that VK presents a beneficial effect on intestinal health and may
be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific
mechanism of VK in intestinal health has yet to be elucidated.
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INTRODUCTION

Vitamin K (VK), a fat-soluble factor, is a generic term for a series of structurally related compounds
(1), which shares a common ring structure of 2-methyl-1,4-naphthoquinone. However, forms of VK
differ in the degree of saturation and the varying lengths of the aliphatic side chain attached to the 3-
position (Figure 1). VK is an essential lipid-soluble vitamin that functions as a cofactor for g-
glutamyl carboxylase (GGCX) which is an integral membrane protein and catalyzes the conversion
of glutamate (Glu) residues into g-carboxyglutamate (Gla) essentially and enables VKDPs to
perform their biological functions (2). This biological process is inhibited by warfarin (Figure 2). In
addition to the well-known biological function of blood coagulation and bone metabolism,
emerging studies support VK involved in multiple cellular and physiological processes such as
oxidative stress (3, 4), immune response and anti-inflammation (5, 6), and cancer progression (7, 8)
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and associated with protective and promoting roles in diverse
organs or tissues, such as testis (9), brain (10–14), intestine (15–
17), muscle (18, 19), bone (20–22), liver (7, 23), kidney (24, 25),
pancreas (26, 27), fat tissues (28–30), and cardiovascular system
(31–34) (Figure 3).
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The intestinal tract is the primary organ responsible for the
digestion and absorption of nutrients. Also, the intestinal system
combats invasive compounds with the help of defense
mechanisms such as detoxification activities and the immune
system. Factors, such as nutrition, gut environment, physiological
A

B

C

FIGURE 1 | Chemical structures of VK compounds: (A) 2-methyl-1,4-naphthoquinone (menadione, K3), (B) 2-methyl-3-phytyl-1,4-naphthoquinone (phylloquinone,
K1), and (C) when n = 4 and 7, 2-methyl-3-geranyl-geranyl-1,4-naphthoquinone (menaquinone-4, MK-4) and 2-methyl-3-all-trans-farnesyldigeranyl-1,4-
naphthoquinone (menaquinone-7, MK-7) are the two common forms of menaquinones (VK2). The figure is in non-editable format.
FIGURE 2 | VK is essential for the formation of Gla. Gla, a unique amino acid, is produced by a VK-dependent posttranslational modification of Glu in all Gla-
containing proteins. This carboxylation process can be inhibited by warfarin.
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status, and the microbial compositions, are likely to modulate the
functionalities of the intestine. Therefore, any impairment in gut
integrity may lead to enteritis, for example, inflammatory bowel
diseases (IBDs). IBDs, comprising both ulcerative colitis (UC) and
Crohn’s disease (CD), are lifelong, chronic, immunologically
inflammatory disorders of the gastrointestinal tract. It occurs as
a result of altered interactions between the mucosal immune
system and gut bacteria (35). The incidence of IBDs is about 1-3
in 1,000 individuals (36). Typical symptoms of IBDs include
diarrhea, abdominal pain, and rectal bleeding (37), which are
common worldwide, especially in western countries (38). Besides,
IBDs can increase the risk of colorectal cancer (CRC), which is the
third leading cause of malignant tumors (39). The aberrant
immune response to gut microbes is thought to result in IBDs
in genetically susceptible individuals. The host is susceptible to
colonization by pathobionts resulting from functional and
compositional dysbiosis of the gut microbiome. In addition,
oxidative stress exerts a critical effect on the initiation and
occurrence of relapses in UC (40). Therapeutic approaches, such
as the regulation of interactions between the gut bacteria and the
immune system, are used to restore intestinal homeostasis or
reduce inflammation. In addition, when UC is in the active stage
and on remission of the disease, malnutrition accounts for about
85% of patients with IBD (41). Micronutrient deficiencies, such as
deficiency in VK, vitamin D, iron, selenium, zinc, folic acid, and
Frontiers in Immunology | www.frontiersin.org 3
vitamin B1, B6, or B12, have also been recorded in more than half
of patients with IBD (41). Administration of micronutrients
therefore seems to be a novel therapeutic approach to alleviate
intestinal diseases, particularly those that can relieve
inflammation, reduce oxidation, and inhibit invasion of
pathogenic bacteria. As a micronutrient, emerging evidence on
the immunoregulatory effect of VK in intestinal health suggests
novel roles for VK in gut disease health and beyond the VK typical
function in hemostasis (13, 32, 42, 43).

Previous studies demonstrated that VK reduced interleukin
(IL)-6 in a murine model of colitis (44); improved the
antioxidant capabilities (45); improved intestinal bacteria flora
(15); improved intestinal alkaline phosphatase (IAP) (46), and
adiponectin (ADPN), the nuclear receptor vitamin D receptor
(VDR), and the adenosine 5′-monophosphate (AMP)-activated
protein kinase (AMPK) activity (15); contributed to blood
coagulation in gastrointestinal bleeding (GIB) (47); and
alleviated IBD (16, 44) and CRC (15). Thus, gathering and
summarizing the latest findings on VK actions in the intestine
other than coagulation is important and should be summarized
and elucidated by studies from laboratories. The present study
focuses on the relationship between VK, intestinal health, and
the mechanisms through which VK modulates intestinal
microbes, exerts anti-inflammatory and antioxidant effects, and
improves intestinal function.
FIGURE 3 | Functions of VK in multiple-organ systems, such as testis (9), brain (10–14), intestine (15–17), muscle (18, 19), bone (20–22), liver (7, 23), kidney (24,
25), pancreas (26, 27), fat tissues (28–30), and cardiovascular system (31–34), and biological processes involved in anti-oxidation (3, 4), immune response and anti-
inflammation (5, 6), and cancer progression (7, 8), and associated with protective and promoting roles in diverse organs or tissues throughout the human body are
summarized above. The figure is in a non-editable format.
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VARIOUS SOURCES OF VK

VK comes from natural sources and chemical synthesis
(menadione, also known as VK3). Natural VK exists mainly in
two biologically active forms: vitamin K1 (phylloquinone, also
called K1) is present in plant margarine and vegetables (48)
which is the major dietary source of VK in the US diet (49).
Vitamin K2 (K2) consists of a group of menaquinones (MK-n,
varies from MK-4 to MK-13) is present in natto, egg yolk, meat,
liver, cheese, curd cheese, and butter (48) and biosynthesized by
gut bacteria (50). Among all menaquinones, MK-4 andMK-7 are
the most well-studied. Information on a detailed content and
adequate intake of VK in natural sources was provided in a
recent review (51, 52). The total VK dietary intake comprises K1,
MK-4, and MK-7 (more than 60%, 24%, and 7%, respectively)
(53). In animals and human beings, MK-4 is catabolized from K1

with K3 as an intermediate with UbiA prenyltransferase domain-
containing 1 (UBIAD1) (54), and partially from long-chain MKs
in extrahepatic tissues, for example, salivary gland, brain,
pancreas, reproductive organs, kidney, and fat (1). However,
when K1 isoprenoids are derived from mevalonate, merely 5%–
25% of K1 intake is converted into MK-4, followed by the
synthesis of other MKs in some but not all tissues via
prenylation (55). The prenylation process seems to happen
independently from intestinal bacteria (56, 57).

Apart from the dietary intake sources, MKs are mainly
synthesized by gut microbiota, predominantly in the ileum
(58). MKs are abundant in the human gut, and the
concentrations of different MK forms within the intestine show
considerable intraindividual and interindividual variations
related to heterogeneity in the intestinal microbiome
composition (59). Bacteria can release MKs in lipid-soluble
(60) or other forms of complexes, such as short-chain
quinones (61). The major forms of MK-6 are synthesized by
Eubacterium lentum, MK-7 by Veillonella, MK-8 by Escherichia
coli, and MK-10 and MK-11 by Bacteroides species (50, 62).
However, the disparity in fecal VK content is not owing to
differences in the principal dietary VK forms (i.e., K1 and MK-4),
but it is based on discrepancies in the fecal content of some
bacterially derived MKs (63). The intestinal bacteria are capable
of producing MKs, yet information on the bioavailability of this
intestinal MK supply is limited. Majority of these MKs are bound
to bacterial membranes present in the gut (1). Previous studies
showed that bioactivity and bioavailability differed across
vitamers (64–66), with evidence approving superior
bioavailability, higher bioactivity, and probably unique
functions of some bacterially synthesized MK forms rather
than K1 (67–69). Even though gut bacteria synthesize a great
deal of MKs, the bioavailability of bacterial menaquinone is bad
in general, and diet is the principal source of functionally
available K2 (55, 70). There are studies showing that a short-
term decrease in dietary VK intake is not compensated by gut
bacteria synthesized MKs (71, 72). Actually, inadequate dietary
intake (73), restorative proctocolectomy (74), IBD (75), liver
dysfunction (76). chronic kidney disease (CKD) (77, 78), and
antibiotic administration (79) could cause a VK-deficient state.
Frontiers in Immunology | www.frontiersin.org 4
INTESTINAL ABSORPTION AND
METABOLISM OF VK

Intestinal absorption of VK involves bile salt- and pancreatic-
dependent solubilization. Once the dietary VK reaches the
intestinal lumen, it is absorbed into a mixture of bile salts,
pancreatic lipolysis products, and other dietary lipids (80).
Mixed micelles are absorbed by small-intestinal enterocytes
and incorporated into nascent chylomicron (CM). At the same
time, they are secreted from gut villi by exocytosis into the
lymphatic capillaries (lacteals) through the proximal intestine
(81) and then join the larger lymphatic vessels where they are
released through the thoracic duct into the bloodstream (80).
CM enters the capillary layer of peripheral tissues in the
bloodstream, where it loses much of its triglyceride (TG)-
producing chylomicron remnant (CR) through the action of
lipoprotein lipase. The formed CR has a centralized lipid core,
and only a small quantity eventually reenters the circulatory
system (80) (Figure 4).

The Niemann–Pick C1-like 1 (NPCIL1) protein, the scavenger
receptor class B-type I (SR-BI), and the cluster-determinant 36
(CD 36) are thought important for intestinal VK absorption (82).
NPCIL1 is a primary importer for K1 in the gut, while the
physiological role and significance of SR-BI and CD 36 as
importers for K1 in the small bowel need further studies (82).
The absorption of dietary VK is slower than that of pure K1 due to
different matrices (serum peak values at 6 vs. 4 h after ingestion)
(83). Different forms of VK are transported by different carriers.
TG-rich lipoproteins transport K1 predominantly, while low-
density lipoproteins transport long-chain MKs primarily in the
postprandial state (55). In terms of K2, MK-4, MK-5, and MK-6
may be most effective in nature (65). MK-7 to MK-13, which are
synthesized by gut bacteria, are not efficiently absorbed with
relatively increasing longer isoprene units (65).

The distribution of VK in the body organ tissue is
inconsistent; K1 was found mainly distributed in the liver,
while K2 was present in the extrahepatic tissues at higher levels
(84). Besides, the concentrations of K1, MK-4, and some long-
chain MKs presented sex-specific differences in rat tissues (liver,
kidney, brain, mesenteric adipose tissue, and pancreas) in
response to the dietary K1 levels (85).

The dietary K1 was converted into K3 in the gut, delivered to
tissues, and subsequently converted into MK-4 with UBIAD1 (54,
86). In vitro, both K1 and K2 were rapidly metabolized into a
mixture of quinone, hydroquinone, and epoxide (87). In humans,
K1 and MKs are catabolized in the liver and excreted sharing a
common degradative pathway. Initially, the polyisoprenoid side
chain of VK is catabolized into two major carboxylic acid
metabolites of 7-carbon [2-methyl-3-(5-carboxy-3′-methyl-2′-
pentenyl)-1,4-naphthoquinone] and 5-carbon side chains [2-
methyl-3-(3′-3′-carboxymethylpropyl)-1,4-naphthoquinone].
Then, after glucuronic acid conjugation, it is finally excreted as
glucuronides in the bile and urine primarily (55, 88, 89).

The metabolism of VK, also known as the VK epoxide cycle,
occurs in a cellular pathway, involving GGCX and VK epoxide
reductase (VKOR) (55, 90). In addition, the metabolism time of
January 2022 | Volume 12 | Article 791565
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different forms of VK is different. Schurgers et al. (64) found that
the half-life of MK-7 was 68 h longer than 1–2 h of K1, leading to
a higher steady serum concentration and storage of MK-7
(sevenfold to eightfold) during long-term intake. The change
in the carboxylated osteocalcin/undercarboxylated osteocalcin
ratio (cOC/ucOC) for MK-7 was three times greater than that for
K1, suggesting that the higher serum concentrations of MK-7
indicated higher tissue concentrations and better utilization of
MK-7 (64). As a potent antidote of oral anticoagulation, MK-7 is
three to four times more effective than K1 (64).
VK IN INTESTINAL HEALTH AND DISEASE

Gastrointestinal Disease Results in VK
Deficiency and Will Be Further
Exacerbated by VK Deficiency
VK deficiency happens in patients with fat malabsorption of any
cause, attributable to intestinal injury (75), cholestatic liver
disease (91), or genetic disorders (92), and the use of
antibiotics (79) and anticoagulants (93). VK deficiency in the
Frontiers in Immunology | www.frontiersin.org 5
appearance of abnormal prothrombin, deficient in gamma-
carboxyglutamic acid (94), may lead to serious bleeding and
death (95–97). In IBD patients, VK deficiency occurs for the
malabsorption resulting from intestinal damage (98). VK
deficiency has also been reported in chronic gastrointestinal
disorders (94), including IBDs (98–100) and short bowel
syndrome (101). Actually, the levels of fat-soluble vitamins
including A, D, E, and K are generally lower in patients with
IBD (102). The prevalence of VK deficiency was 43.7% in UC
and 54.0% in CD (75). UC and CD, as the major forms of
idiopathic IBDs, are chronic inflammatory disorders of the
gastrointestinal tract (103) caused by altered interactions
between gut microbiome and the mucosal immune system
(35). Compared with normal controls, serum VK levels of CD
patients were significantly decreased (104). VK deficiency was
more common in patients with higher CD activity, in CD
patients with higher mass Z-scores, and less common among
children with CD treated with infliximab (75). In murine models
of colitis, mice fed a K-deficient diet showed more severe body
weight loss, shorter colon length, and higher histological scores
than those patients with IBDs fed a K-supplemented diet often
FIGURE 4 | Absorption, distribution, and catabolism of VK. Once the dietary VK reaches the intestinal lumen, it is absorbed into mixed micelles through the NPCIL1
protein, SR-BI, and CD 36. Mixed micelles are absorbed by small-intestinal enterocytes, incorporated into CM, and secreted from gut villi into lacteals. Then, they join
the larger lymphatic vessels where they are released through the thoracic duct into the bloodstream. K1 is converted into K3 in the gut, delivered to tissues, and
subsequently converted into MK-4 with UBIAD1. K1 is retained in the liver, while K2 is redistributed to the circulation and (extra-)hepatic tissues (51). VK epoxide
cycle involving GGCX and VKOR, which is responsible for VK regeneration by converting into VK, VKH2, and VKO. In humans, the polyisoprenoid side chain of VK is
catabolized into two major carboxylic acid metabolites of 7- and 5-carbon side chains. Then, after glucuronic acid conjugation, it is finally excreted as glucuronides in
the bile and urine primarily. The figure is in a non-editable format.
January 2022 | Volume 12 | Article 791565
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exhibit VK deficiency (16). In another rat model, VK deficiency
also resulted in exacerbation of murine dextran sulfate sodium
(DSS)-induced colitis by IL-6 production from B cells (44). There
is adequate evidence to support that VK may play a key role in
the progression of CD (14), and lack of VK will exacerbate
inflammatory disease.

Osteoporosis is one complication resulting from the chronic
character of IBD, manifested by low bone mineral density, which
leads to an increased risk of fractures (105). Malabsorption of VK
is one possible factor that contributes to decreased bone mineral
density (BMD), a frequent complication in gastrointestinal
disease (106, 107). There is an association between VK
deficiency with bone metabolism and clinical disease activity in
IBD, showing that VK status and bone mineral density (BMD)
are low in CD and UC patients (104). VK deficiency and
decreased BMD are highly prevalent in IBD-induced
osteoporosis patients, especially CD (98). VK status in patients
with CD was lower than that of healthy controls, which might be
an etiological factor for CD-related osteopenia (13). Lower
plasma VK (K1 or MK-7) levels correlate with lower BMD in
patients with CD and those with UC (98). Modulating the VK
status may have implications for the prevention and treatment of
osteoporosis in IBD (104).

VK Has Anti-Inflammation and
Immunosuppressive Function
in the Intestine
The observation that high VK status was associated with lower
concentrations of inflammatory markers suggests that a possible
protective role by VK in inflammation merits further
investigation (108). VK deficiency is seen in gut diseases, and
VK-deficient conditions exacerbate gastrointestinal diseases (16,
44). Supplementation of VK showed different efficacy levels of
immunosuppressive and anti-inflammation effects in in vitro and
in vivo experiments of different patients and animals. On top of
that, according to several safety assessments of K2 and K1 on
animals and clinical and non-clinical studies together with the
results of investigations conducted by reputable bodies (i.e., the
EFSA, WHO the UK EVM, and the IOM), no negative effects of
high-dose VK (K1 and K2) intake on animals and human beings
have been found yet according to the current studies (109–113).
In 2006, Ohsaki et al. (114) revealed that VK inhibited the
production of IL-6 in human macrophagic THP-1 cells and
that die tary supplementat ion of K1 inhib i ted the
lipopolysaccharide (LPS)-induced inflammatory process in rats.
In another in vivo and in vitro study, Ohsaki et al. further
demonstrated that MK-4 exerts its effect of anti-inflammation
via inhibiting the activation of NFkB by repressing IKKa/b
phosphorylation (115). In 2016, Shiraishi et al. (16) reported
that VK-deficient conditions exacerbated murine DSS colitis and
that supplementation of MK-4 played an immunosuppressive
role by inhibiting inflammatory cytokine production in CD19
(+) cells, for example, IL-6 and IL-10, ameliorating shorter colon
length, body weight loss, and histological scores. On the other
hand, a recent in vitro study revealed that synthetic VK (K3 and
K4) rather than K1 and K2 inhibits NLRP3 inflammasome
Frontiers in Immunology | www.frontiersin.org 6
activation induced by LPS independent of the coenzyme
activity and targets to block interaction between NLRP3 and
ASC, hence inhibiting inflammation (116). However, the role of
synthetic VK as NLRP3 inhibitor had not been verified in vivo,
and questions on how VK blocks the NLRPS-ASC interaction
and why K2 which could be converted from K3 showed no effect
on activation NLRP3 inflammasome need further investigation.
Although these results preliminarily demonstrated that VK had
anti-inflammatory properties, huge knowledge gaps remain
regarding the immunopathological effect of VK in IBD.

In vitro and in vivo experiments revealed that VK inhibited
the production of pro-inflammatory cytokines, especially IL-6
and tumor necrosis factor-alpha (TNF-a) (114, 117).
Administration of MK-7 showed preventive effects by
suppressing CRC-risk microorganisms and metabolites (short-
chain fatty acids, SCFAs), promoting serum adiponectin level,
stimulating the VDR expression to trigger different anti-
inflammatory and anti-tumorigenic pathways (15). K3, rather
than K1 and K2, was reported to induce DNA damage in HT-29
human CRC cells (118). Another report showed that K2, K3, and
K5 had efficient antitumor roles in CRC in vivo and in vitro by
causing caspase-dependent apoptotic death of tumor cells (17).
Supplemented VK played a safeguarding role against DSS-
induced colitis and improved gut injury by suppressing
inflammatory cytokine production, which could be a
promising treatment target for IBDs (16). VK, as described
earlier, was found to repress CRC in intensive preclinical
studies. VK supplementation or deficiency, and even different
sources of VK, deeply affects the intestinal status in humans and
animals in vivo and in vitro (Table 1). Nevertheless, further
studies are still required, for example, to elucidate the most
effective form of VK and verify the clinical antitumor function
of VK.

Interaction Between VK and
Intestinal Microbiota as well
as Microbial Metabolites
Accumulating evidence links the altered microbiota composition
with the pathophysiology of IBDs (123, 124). Bacteria exert
critical effects on the onset and perpetuation of gut
inflammation in IBDs (125). The intestinal microorganism or
bacteria present in food may produce bacterially synthesized
menaquinones which contribute to K2 requirements in human
(126). Small-intestinal bacterial overgrowth (SIBO), associated
with low circulating levels of K2 (127), is involved in increased
plasma levels of inactive MGP and results in alteration of K2

metabolism (128). SIBO may not increase bacterial K2

biosynthesis in the intestine but enhance dietary K1 absorption
through the potentially damaged intestinal mucosa (127).The
diversity of the gut microbiota was notably lower, and
Lachnospiraceae and Ruminococcaceae greatly reduced in the
VK-deficient group compared with the VK-normal group in a
previous study (129). Compared with the VK-deficient group,
supplemented with MK-4 and MK-9, reduced the relative
abundance of cecal Bacteroides and Ruminococcus_1 while
increased that of Lactobacillus at the genus level (130).
January 2022 | Volume 12 | Article 791565
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TABLE 1 | Effects of different sources of VK on intestinal homeostasis (without bacteria information) of patients or animals in vivo and in vitro.

VK resources Supplemented
dosage

Subjects Results Effects References

In vivo
MK-4 75 mg kg-1 diet C57BL/6 J mice

of the DSS model
Body weight loss ↓
Colon length ↑
Histological scores ↓
IL-6 ↓

VK protects against DSS colitis via
downregulating IL-6

Shiraishi
et al. (16)

MK-7 50 mg kg-1 diet C57BL/6J mice
with DSS

Colon carcinogenesis ↓
Expression of CLCN4, p-AMVK1, and
VDR ↑
The secretion of caecum butyric acid
and acetic acid ↑

K2 can inhibit gut-risk microbes and increase
beneficial microbial metabolites to reduce colonic
tumor development in mice

Zhang et al.
(15)

K1 or MK-4 600 mg kg-1 diet Sprague–Dawley
rats

IAP activity in five intestinal segments
in both K1 and
MK-4 increased ↑

Both K1 and K2 can enhance IAP activity Sogabe
et al. (119)

K1 and K2 3 mg kg-1 mouse ICR strain mice In the MK groups, the levels of ALP
activity in the jejunum ↑
IAP mRNA expression in the jejunum
in both K1 and K2 groups↑
The expression of pregnane X
receptor mRNA ↑

Oral administration of VK enhanced IAP mRNA
expression

Haraikawa
et al. (120)

VK 3.02 mg kg-1 diet Juvenile Jian carp Malondialdehyde and protein
carbonyl contents ↓
AHR, ASA, SOD, CAT, GST, GSH-Px,
GR, activities and GSH contents in
the hepatopancreas and intestine↑

VK improved fish growth, digestive and
absorptive ability, and antioxidant capacity.

Yuan et al.
(45)

Intravenous
administration
of K2, K3, and
K5

100 mM 80-week-old male
BALB/c mice

Tumor growth ↓
The number of apoptotic tumor cells ↑

K2, K3, and K5 played effective antitumor effects
on CRC by inducing caspase-dependent
apoptotic death of tumor cells.

Ogawa
et al. (17)

Low K1 52 (control), 16, 28,
36, 49 mg kg-1 diet

Wistar rat Liver K1 increased with the increasing
K1 content in diet. ↑
Concentration of coagulation factors
(factor II, factor V, factor VII, factor IX,
factor X) in plasma. ↑
Prothrombin clotting time (s) ↓
Cecal pH ↓
Cecal wt (g), content DM (g kg-1) ↑
Butyrate ↑
Propionate, isobutyrate, isovalerate

The potential VK supply from enteric bacterial
menaquinones may be altered by modifying diet
via altering the density of menaquinone-producing
microflora in large intestine.

Mathers
et al. (121)

In vitro
K2, K3, K5 10 mM Colon 26,

metastatic murine
CRC cell line

Enzymatic activity of caspase-3 ↑ K2, K3, and K5 induced apoptotic death of colon
26 cells

Ogawa
et al. (17)

K1, K2 200, 400, 600, 700,
800 mM K2; 250, 300,
400, 500, 600 mM K1

HT-29, human
colon carcinoma
cells

K3 caused significant DNA damage at
low concentrations (25–200 mM) with
a linear correlation of r 0.95

K3, but not K2 and K1, induced DNA damage in
HT-29 human CRC cells

D’Odorico
et al. (118)

MK-4 0, 1.0, 5.0, and 10.0
mM

Caco-2 cells The ALP activities ↑
Expressions of human intestinal ALP
and SI ↑

K2 enhanced the level of ALP mRNA expression
in human Caco-2 cells

Noda et al.
(46)

K1 10, 50, 100 and 200
mM

Human colon
cancer cells
(Caco-2, HT-29,
SW480)

Caused inhibition of proliferation
Induced apoptosis and the cell cycle
arrest
Enhanced the probiotic anti-
proliferative effect in a dose-
dependent manner ↑

K1 has enhanced anti-proliferative efficacy to
inhibit cancer growth

Orlando
et al. (122)

K1, K2, K3 and
K4

5, 10 mM for K1 and
K2; 1-5 mM for K3 and
K4

Bone marrow-
derived
macrophages

IL-1b ↓
TNF-a ↓
NLRP3 inflammasome activation ↓

Zheng et al.
(116)

K3 and K4 inhibit inflammation by
inactivating the NLRP3 inflammasome
Frontiers in Immu
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AHR, anti-hydroxyl radical; ASA, anti-superoxide anion; CAT, catalase; DSS dextran sodium sulfate; IL, interleukin; CLCN4, chloride channel-4; GR, glutathione reductase; GST,
glutathione-S-transferase; GSH-Px, glutathione peroxidase; GSH, glutathione; LPS, lipopolysaccharide; SI, sucrase-isomaltase; SOD, superoxide dismutase.
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Warfarin induced intestinal dysbiosis involving VK-expressing
bacteria, which was related to the expression of VKOR (131).
Lactobacilli exerted a pivotal part in modulating microorganisms
and maintaining a microecological balance in the intestine,
producing bacteriocin-like substances to suppress the overgrowth
of potentially pathogenic bacteria (132). E. coli in the gut was known
as a pathogenic bacterium with the possibility of causing enteric
infection (133), while another pathogenic bacterium Aeromonas
was associated with gastroenteritis (134). In fish, increasing levels of
VK up to 3.02 mg/kg diet could enhance Lactobacillus (LB) but
decrease Aeromonas and E. coli replications (45). The potency of
VK has been proven to optimize the gut microorganisms by
increasing the numbers of LB and lowering the number of
Aeromonas and E. coli. In another study on rat gut, a low K1 level
reduced the counts of health-promoting bacteria, such as
Bacteroides fragilis and B. vulgatus, and enhanced the counts of
pathogenic bacteria, such as Fusobacterium, Bifidobacterium, and
Enterococci, in rat feces (121). In vitro, VK ameliorated the growth
of the probiotics, for example, Bifidobacterium (135). Previous
studies demonstrated that MK-7 (50 mg/kg diet) supplementation
alleviated colon cancer in mice by reducing representative colonic
polyps and the number of large colon tumors. The VK
supplementation was effective in the enrichment of Proteobacteria
counts, such as promoting the relative abundance of C. lanceolatus,
P. phenylpyruvicus, and Parasutterella excrementihominis and
reducing CRC-risk microbes, such as H. mesocricetorum and H.
apodemus (15). Nonetheless, debates on whether all types of VK
have the same beneficial effect on intestinal microbiota are ongoing
(Table 2). Regarding the beneficial effect of VK on intestinal
microflora, Ponziani et al. (128) proposed that K2 intake could be
prescribed in clinical practice as additional preventive measures for
screening SIBO and intestinal decontamination.
Frontiers in Immunology | www.frontiersin.org 8
Gut microbe has a variety of intestinal functions such as
improving the mucosal immune system, defending against
pathogens, synthesizing amino acids/vitamins, and absorbing
complex macromolecules (136). Speculation on the possible
underlying mechanism by which VK affects the intestinal
microbiome is based on the fact that anaerobically growing
bacteria, the facultatively aerobic bacteria, and most Gram-
positive bacteria use MK as the sole quinone in their oxidative
and photosynthetic electron transport system (137). MK
inhibitors showed selective toxicity to these bacteria without
any side effects due to its exclusiveness. Although VK has a toxic
effect on some bacteria unrelated to the gut, the underlying
mechanism of VK in the gut microflora has not been elucidated.
Hence, further in vitro and in vivo investigations in the intestine
are essential.

What is more, VK can alleviate IBDs by regulating microbial
metabolite (SCFA) production. Microbial MK-7 could enhance
the secretion of cecum acetic acid and butyric acid (15). With the
increase in the K1 level in diet, concentrations of butyrate are
enhanced and propionate, isobutyrate, and isovalerate are
reduced (121). Except being used preferentially as an energy
source by the enterocytes (138), microbial butyrate has the
potential function to the restoration of the barrier function in
IBD (139), imprint an antimicrobial program of macrophages
(140), attenuate pathobiont-induced hyperinflammation (141).
Propionate, capable of histone deacetylase (HDAC) inhibition,
can potentiate de novo Treg-cell generation in the periphery
(142). Acetate could promote intestinal IgA responses (143).
Alterations in SCFA metabolism, particularly butyrate, occur in
IBD (144). UC patients and healthy individuals have different
compositions of the fecal microbiota, showing that butyrate-
producing bacteria, R hominis and F prausnitzii, are reduced in
TABLE 2 | Profile of gut microbiota after supplementation or deficiency of VK in vivo and effect of VK on microflora in vitro.

VK resources Content of VK Subjects Microorganisms References

In vivo
VK-deficient Deficient CD patients Ruminococcaceae, Lachnospiraceae ↓ Wagatsuma

et al. (129)
VK-deficient or
supplemented

VK-deficient or supplemented with 5
mmol kg-1 PK, MK-4, MK-7, or an
equimolar combination of PK, MK-4,
MK-7

Female mice of C57
BL 6J

The VK-deficient group had the lowest relative abundance of
Lactobacillus, and the greatest relative abundances of
Bacteroides and a Ruminococcus genus group
(Ruminococcus_1).

Ellis et al.
(130)

VK 3.02 mg kg-1 Juvenile Jian carp LB ↑
Aeromonas, E. coli ↓

Yuan et al.
(45)

Low K1 52 (control), 16, 28, 36, 49 mg kg-1 diet Wistar rat Bacteroides fragilis, Bacteroides vulgatus ↓
Fusobacterium, Bifidobacterium, Enterococci ↑

Mathers
et al. (121)

MK-7 50 mg kg-1 diet Mouse C. lanceolatus, P. phenylpyruvicus, and Parasutterella
excrementihominis ↑
H. mesocricetorum and H. apodemus ↓

Zhang et al.
(15)

Diet supplemented
with black-eye
beans or white rice

Black-eye beans (108 mg kg-1 K1) vs.
white rice (2 mg kg-1 K1)

Rat Total Bacteroides, Bacteroides fragilis, Bacteroides vulgatus,
Veilonella sp. ↑
Fusobacterium sp., Anaerobic Gram-positive rods ↓

Mathers
et al. (121)

In vitro
MK-4 or MK-7 5 mg ml-1 Bacteria were

isolated from
periodontally healthy
subjects.

Bifidobacterium, Porphyromonas gingiva ↑ Hojo et al.
(135)
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UC (145). Moreover, UC has less obvious reduced butyrate-
synthetic capacity of the microbiota than UC (144), while the
clear relationship among VK, butyrate-producing bacteria, and
butyrate remains unknown. Also, further studies trying to
explain this detai led mechanism wil l be necessary
and interesting.

VK Against Oxidation
IBDs are associated with a disequilibrium between reactive
oxygen species (ROS) and antioxidant response, giving rise to
oxidative stress (146). Oxidative stress is a crucial cause in the
pathophysiological process of certain chronic diseases, resulting
from an imbalance between pro- and antioxidant substances
(147), resulting in potential cellular damage and dysfunction
(148). Several studies demonstrated oxidative stress as an
important factor in the pathogenesis, progression, and severity
of IBDs (146) and showed that the use of prophylactics to inhibit
oxidative stress improved the health status of patients (149, 150).
VK showed its ability to alleviate intestinal oxidative stress via
regulating the expression of pro-oxidant and antioxidant
enzymes (45, 151, 152).

Yuan et al. (45) conducted in vivo studies using dietary VK
(3.13 mg/kg diet) to improve the antioxidant capabilities of
digestive organs by decreasing the contents of protein carbonyl
and malondialdehyde (MDA) and improving anti-hydroxyl
radical (AHR), anti-superoxide anion (ASA), superoxide
dismutase (SOD), glutathione (GSH), glutathione peroxidase
(GSH-Px), glutathione-S-transferase (GST), catalase (CAT),
and glutathione reductase (GR) activities and contents in the
intestine. Nevertheless, this was a study conducted on the carp,
which could not be simply extrapolated to mammals. More
investigations in mammals should be performed in the future
to verify the effect and mechanism of VK on related
oxidoreductase activity in the intestine.

In in vitro studies, VK has antecedently been reported to possess
free radical-scavenging activity when assayed in non-aqueous
solvents (153). Studies of cell lines outside of the intestinal cells
showed that the biological activity of MK-4 dose-dependently
suppressed the upregulation in the expression of iNOS, COX-2,
p38 activation, NF-kB, ROS, and caspase-1 activation (4) and
prevented ROS from inducing oxidative damage via inactivating
the p38 MAP kinase pathway (3, 154, 155). The disproportionate
accumulation of ROS might, however, alter several cellular proteins
and upregulate pro-inflammatory cytokines, further
downregulating the expression of TJ proteins and triggering the
deterioration of the intestinal permeability (156). It was speculated
that VKmight exert the same ability to prevent oxidative damage in
intestinal cells in vivo, which needs empirical studies for validation.
However, the mechanism underlying the VK protective function
remains unclear to date. Thus, further analysis of its antioxidant
functions in the intestine is necessary.

VK Contributes to Blood Coagulation in
Gastrointestinal Disease
GIB, due to peptic ulcer, colitis, hemorrhoids, cancer,
malignancy, esophageal varices, or other conditions, occurs
from upper and lower GIB (157). VK deficiency in newborns
Frontiers in Immunology | www.frontiersin.org 9
also results in massive GIB (158). Besides, GIB is a frequent and
potentially serious complication of oral anticoagulant (159). The
risk of GIB and subsequent complications is considerably lower
for patients on non-VK antagonist oral anticoagulants (NOACs)
than for patients on warfarin (160). The case fatality proportion
is nearly 10% and 3% for hemorrhage of the upper and lower
gastrointestinal tracts, respectively (161, 162). The rapid onset of
VK deficiency in patients occurs may be due to a combination of
major abdominal surgery in patients who are receiving
antibiotics and poor food intake (163). GIB due to VK
deficiency in patients on antibiotics usually stopped by timely
injections of VK (47).

VK and Gut Epithelial Development
Nutrient availability is closely involved in digestive and
absorptive ability, which depends on the growth and
development of the pancreas and intestine, and the activities of
digestive enzymes such as amylase, lipase, and protease, and gut
enzymes, such as IAP and sucrase-isomaltase (SI) (164). IAP, a
brush-border protein, is a defense factor in the gut mucosa (165)
and an intestinal crypt-villus differentiation marker at the brush
border of gut epithelial cells that can detoxify LPS by
dephosphorylation (46, 166). SI is a brush border enzyme of
small bowel to metabolize sucrose, whose deficient condition
causes symptoms of maldigestion syndromes including diarrhea,
bloating, abdominal pain, and gas (167). In vitro, K2 enhances
IAP and the expression of SI and may enhance the cellular
differentiation and functions of Caco-2 cells (46). In vivo, dietary
K1 or K2 (3 mg/kg mouse) supplementation enhances the activity
and mRNA expression of IAP in rats and mice (119, 120). Both
K1 and K2 (600 mg/kg diet) exhibited increased IAP activity in
each segment of the small intestine when the small intestine of
Sprague-Dawley rats was divided into five segments (119). A
study proved that VK increased the IAP activity (119) by the
steroid and xenobiotic receptor (SXR) in a rat model (168). MK-
4 is a ligand for SXR (known as its murine ortholog, pregnane X
receptor, PXR) (168–170), and PXR is abundantly expressed in
the intestine and liver in mammals (171); its activation
suppresses the NFkB signal pathway and relieves the severity
of IBD, indicating the fundamental role for PXR in IBD
treatment (172, 173). It could be speculated that VK may exert
a positive role in gut via PXR.

VDR, regulating 1a, 25-dihydroxy vitamin D3 [1,25(OH)
2D3], is richly expressed in the small bowel and colon (174),
while its expression decreases in both UC and CD patients (175)
and downregulated by TNF-a associated with IBD (176). VDR
deficiency in the gut leads to abnormal paneth cells and impaired
autophagy function, imbalance of autophagy and apoptosis in
the intestinal epithelium (177), change in the function of
microbiome (178), enhancement of Wnt/b-catenin signaling,
and tumor burden (179). Gut VDR exerts significantly
regulatory effects on immunity, anti-inflammation, cell
proliferation, autophagy activation, differentiation, barrier
function and permeability, and host-microbial interactions
(180, 181). VK deficiency significantly increases the VDR
binding to DNA and that binding was sharply reduced when
gut endogenous containing VDR undergo VK-dependent
January 2022 | Volume 12 | Article 791565
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gamma-carboxylation (182). In the presence of K1, VDR can
undergo g-carboxylation in vitro and that 15%-25% of Glu
residues in the VDR are carboxylated in vivo (183). AMPK is
also known to improve epithelial differentiation and barrier
function, integrity, and ultrastructure of tight junction in the
gut (184, 185). Vitamin D3 and the AMPK agonist metformin
were observed to play synergistic preventive roles against colon
cancer (186). MK-7 was found to stimulate VDR and AMPK
expression effectively (15). MK-7 may have indirect potential
clinical application in preventing and treating IBD by vitamin D/
VDR and AMPK signaling.

ADPN is an adipocytokine, exerting anti-carcinogenic roles
in colon tumorigenesis (187, 188), confirmed as a potential and
promising target for CRC therapy for its anti-tumorigenic effects
(189, 190). However, MK-7 interventions can elevate the
expression of ADPN in rats with CRC (15). To date, emerging
studies suggested substantial beneficial effects of VK on intestinal
growth and function by mediating the activity and mRNA
expression of IAP, ADPN, VDR, and AMPK signaling.

Even though a few studies showed promoting roles of gut
epithelial development of VK, indicating potential preventive
and therapeutic effects of CRC, a body of animal experiments
and cell tests is in urgent need.

VK Exerts Gastroprotection Role via
Related VKDPs
VK is an essential cofactor of GGCX for the posttranslational
conversion of peptide-bound Glu to Gla (54). VKDPs are known
to be a functional protein family with Gla residues, which result
from a g-carboxylation of Glu residues and a posttranslation
modification dependent of VK, and catalyzed by g-
glutamylcarboxylase (191–193) (Figure 4). After carboxylation,
the propeptide which is essential for Gla proteins binding to the
vitamin-K-dependent carboxylase is removed and the mature
protein is secreted (42, 194). Among 17 kinds of recognized g-
carboxylated proteins, the biofunction of VKDPs in the intestine,
such as protein C (195), protein S (196), Gas 6 (197), and MGP
(198), is another speculated mechanism through which VK
might relieve symptoms of gastrointestinal disease.

Thromboembolism is caused by an imbalance of procoagulant,
anticoagulant, and fibrinolytic factors (199). It is an extra-intestinal
manifestation and a crucial cause of morbidity and mortality in IBD
(200). IBD in hypercoagulability is mainly manifested as
microthrombus formation and microcirculation disorder (201),
and the thrombus formation rate is between 1.2% and 7.1%
(202). Protein C (PC), synthesized by the liver, is a vitamin-K-
dependent glycoprotein and a natural anticoagulant protein. The
PC system, playing crucial roles in anticoagulation and
inflammation, is a novel participant in the pathogenesis of acute
and chronic inflammatory diseases, such as IBDs (203). The
defective PC pathway in both inactive and non-active diseases
may result in hypercoagulability in IBD, which is associated with
both the inflammatory process and disturbances in the
anticoagulant system (204). In the UC mouse, the PC system is
inhibited via the secretion of cytokines from macrophages,
subsequently influencing the function of endothelial cells (195),
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while it could be reversed by blocking CXCR4 (205). In addition to
its anticoagulant activity, the PC pathway, acting on the endothelial
compartment and controlling gut homeostasis by reducing cytokine
production and inhibiting leukocyte adhesion (206, 207), exerts
cytoprotective effects in the gut (207, 208). Consequently, activated
PC treatment can diminish weight loss (206, 207), reduce the
disease activity index (207), relieve the pathological lesions (206),
and reduce histological colitis scores (207). However, functionally
inactive molecules of VKDPs are produced at their site of synthesis
and released into the bloodstream when the supply of VK is
deficient or abnormal (209). VK supplementation therapy might
become a new direction in the pathogenesis and treatment of IBD
via the activated PC pathway, and this speculation needs scientific
experimental verification.

Protein S, a well-defined VK-dependent cofactor for activated
protein C, exists in a free anticoagulantly active form and in an
inactive form complexed to C4b-binding protein in normal adult
plasma (210). Protein S can activate TAM receptors (Tyro3, Axl,
and Mer) which have important effects on hemostasis and
inflammation (211). It is found that the impairment of the
protein S/protein C/thrombomodulin system in CD patients
contributes to coagulation and might be vital for both the
development of CD and its thromboembolic complications
(196), while CD is mediated by multifocal gastrointestinal
infarction (212) which is due to thrombosis in small vessels
(196). Free plasma protein S levels are slightly but significantly
decreased in IBD patients (213). Consequently, low Protein S
levels are considered as a potential etiologic factor in patients
with IBD and recurrent deep venous thrombosis (DVT) (214).

Gas 6 is a g-carboxyglutamic acid domain-containing protein
and a VK-dependent growth factor for mesangial and epithelial
cells (215), which shares 43% amino acid identity with protein S.
Gas6 is another VKDP activator of TAM receptors (211). It
suppresses the production of TNF-a which is an inflammatory
cytokine induced by TLR 3, 4, and 9 via activating TAM
receptors (216). In patients with advanced colorectal cancer,
the immunoreactivity of Gas6 in cancer tissues was positively
associated with prognosis (197). Gas6 suppresses the progression
of intestinal tumors induced by DSS correlated with inhibition of
stromal immune reactions in vivo (197). In a great scale of
human gastric cancer tissue and cell lines, there is a high
expression of mRNA and protein of Gas6 (217). With
recombinant Gas6 and a decoy receptor of Axl in vitro, the
Gas6-Axl signaling pathway improved invasion and inhibited
apoptosis via the Akt signaling pathway (217).

MGP is a kind of secreted protein, also a small Gla VKDP, and
acts as a powerful naturally occurring inhibitor of calcification and
has strong affinity for calcium ions (218). Its inactive form,
dephosphorylated-uncarboxylated MGP (dp-ucMGP), has been
regarded as one of the best markers representing low K2 status
(219). MGP has to undergo VK-dependent carboxylation and
phosphorylation to become biologically active (220).
Consequently, VK deficiency leads to the inactive dp-ucMGP
(220). Experimental data of a cross-sectional study in UC and CD
patients support the immunomodulatory effect of MGP in IBD and
involvement in the pathophysiology of the disease (221). Compared
January 2022 | Volume 12 | Article 791565
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to the healthy control group, plasma levels of dp-ucMGP were
significantly higher in IBD patients and positively correlated with
high sensitivity C-reactive protein (hsCRP) levels (221). The
expression of MGP, which can be upregulated by a conserved
binding site for Egr-1 in the upstream region of the human MGP
gene, was positively correlated with disease severity of UC patients
and DSS-induced colitis rats (222). MGP was upregulated in
different stages of colon cancer and associated with a worse
prognosis (223). Endogenous MGP promotes the growth and
proliferation of colon cancer cells by increasing the intracellular
calcium level and activating the NF-kB pathway (223), while
supplementation of exogenous mesenchymal stromal cell (MSC)-
derived MGP might be a novel important mediator of MSC-
mediated immunomodulation in treating CD by alleviating the
clinical and histopathological severity of colonic inflammation in
mouse experimental colitis models to a remarkable degree (198).
Moreover, MSC-derived MGP alleviated the clinical and
histopathological severity of colonic inflammation in mouse
experimental colitis models to a remarkable degree (198).
Frontiers in Immunology | www.frontiersin.org 11
In another report, SIBO is associated with reduced matrix Gla-
protein activation (128). In vitro, MSC-derived MGP was observed
to suppress cell proliferation and cytokine production in T cells
obviously (198), and it could serve as a potential prognostic
biomarker in colon cancer patients (223).

Studies analyzed above examining the association between
related VKDPs and intestinal diseases do not differentiate
between the total and undercarboxylated forms or take into
consideration VK intake. Consequently, a great deal of studies
need to investigate the relationship between VK and the
responding effects of VKDPs on the intestine.
CONCLUSIONS AND FUTURE
PERSPECTIVE

Coagulation has been the canonical function of VK since its
discovery in 1936. The research and development studies during
FIGURE 5 | Mechanism underlying IBD and role of VK. IBD occurs as a result of altered interactions between the mucosal immune system and gut bacteria,
resulting in bleeding, an imbalance between pro- and antioxidant substances, and barrier dysfunction. Toxins released by pathogenic bacteria; oxidative stress
caused by oxidizers, that is, MDA, PC, and ROS; and pro-inflammatory factors induce barrier dysfunction. (A) VK in the body, coming from dietary resources and
bacterial sources, is absorbed into the intestinal lumen; it is absorbed by small-intestinal enterocytes through the NPCIL1 protein, SR-BI, and CD 36. VK exerts a
gut-protective role by alleviating intestinal inflammation and oxidation, optimizing intestinal microflora, and improving key biological enzymes in the intestine. (B) It may
achieve an immunosuppressive function by inhibiting NLRP3 activation, thereby decreasing the inflammatory cytokine production, for example, IL-6, IL-10, and TNF-
a. (C) VK modulates the profile of gut bacteria by inhibiting pathogenic bacteria and upregulating beneficial bacteria, thus reducing the production of toxins and
regulating microbial metabolites. (D) VK is reported to alleviate oxidative stress and cellular damage by decreasing the levels of MDA and PC and increasing the
levels of SOD, GSH, AHR, CAT, ASA, GST, GR, and GSH-Px in vivo, while studies of preventing ROS, iNOS, COX-2, and caspase-1 in vitro of cell lines outside of
the intestinal cells need verification in enterocytes. (E) VK deficiency results in GIB and VK administration can stop GIB. (F) VK enhances the biological function of the
intestinal epithelial cells by increasing the expression of AMPK and VDR, and intestinal enzymes, such as IAP, SI, and ADPN. (G) VK is essential for the activation of
VKDPs and exerts indirect roles of immunomodulation, anti-inflammation, and anti-carcinogenic effects via VKDPs. The figure is in a non-editable format.
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an over 80-year span further enhanced the benefits derived from
VK. In recent years, VK has been well recognized in health and
disease conditions such as type 2 diabetes mellitus, osteoporosis,
CKD, cardiovascular disease, and certain cancers. Based on the
present studies and publications, the direct and indirect
gastrointestinal protection effects of vitamin are summarized in
Figure 5. Novel direct functions of VK are associated with
alleviating intestinal inflammation and oxidation, improving
intestinal microbiota, regulating microbial metabolites, and
improving epithelial development in the intestine. Indirect roles of
VK are involved in anti-inflammation, immunomodulation, and
anti-tumorigenesis in the gut based on the presence of certain
related VKDPs. In summary, the role of VK in the improvement of
gut integrity has made it a potentially useful prophylactic
compound for the prevention and clinical treatment of intestinal
diseases, especially for IBD. Although VK may be a potential and
promising treatment target for IBD, the mechanism underlying the
influence of VK on the microbial community, immunity, intestinal
Frontiers in Immunology | www.frontiersin.org 12
barrier, and antioxidation remains unknown. Scientific research on
the dose–response effects of VK may be a way forward, and long-
term clinical trials are necessary for confirmation in future studies.
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GLOSSARY

AHR anti-hydroxyl radical
AMP adenosine 5&prime;-monophosphate
AMPK the AMP-activated protein kinase
APDN adiponectin
ASA anti-superoxide anion
BMD bone mineral density
CAT catalase
CD Crohn&rsquo;s disease
CD 36 the cluster-determinant 36
CKD chronic kidney disease
CLCN4 chloride channel-4
CM chylomicron
cOC/ucOC the carboxylated osteocalcin/undercarboxylated osteocalcin

ratio
CR chylomicron remnant
CRC colorectal cancer
dp-ucMGP dephosphorylated-uncarboxylated
DSS dextran sodium sulfate
DVT venous thrombosis
GAS6 growth arrest-specific protein 6
GGCX g-glutamyl carboxylase
GIB gastrointestinal bleeding
Gla g-carboxyglutamate
Glu glutamate
GSH glutathione
GSH-Px glutathione peroxidase
GR glutathione reductase
GST glutathione-S-transferase
HDAC histone deacetylase
hsCRP high sensitivity C-reactive protein
IAP intestinal alkaline phosphatase
IBDs inflammatory bowel diseases
K1 vitamin K1

K2 vitamin K2

LB Lactobacillus
LPS lipopolysaccharide
MDA malondialdehyde
MGP matrix Gla protein
MK menaquinones
MSCs Mesenchymal stromal cells
NPCIL1 the Niemann–Pick C1-like 1
NOACs non-VK antagonist oral anticoagulants
PC protein C
PRGP proline-rich Gla proteins
1,25(OH)
2D31a

25-dihydroxyvitamin D3

ROS reactive oxygen species
SI sucrase-isomaltase
SIBO small-intestinal bacterial overgrowth
SCFAs short-chain fatty acids
SOD superoxide dismutase
SR-BI the scavenger receptor class B-type I
TG triglyceride
TMG transmembrane Gla proteins
TNF-a tumor necrosis factor-alpha
UBIAD1 the UbiA prenyltransferase domain-containing protein 1
UC ulcerative colitis
VK vitamin K
VDR the nuclear receptor vitamin D receptor
VKDPs VK-dependent proteins
VKO VK epoxide
VKOR VK epoxide reductase
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