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There is no question about the value that digital signal processing brings to the area of biomedical research. DSP processors are
used to sample and process the analog inputs that are received from a human organ. These inputs come from the organ itself. DSP
processors, because of their multidimensional data processing nature, are the electrical components that take up the greatest space
and use the most power. In this age of digital technology and electronic gizmos, portable biomedical devices represent an essential
step forward in technological advancement. Electrocardiogram (ECG) units are among the most common types of biomedical
equipment, and their functions are absolutely necessary to the process of saving human life. In the latter part of the 1990s, portable
electrocardiogram (ECG) devices began to appear on the market, and research into their signal processing and electronics design
capabilities continues today. System-on-chip (SoC) design refers to the process through which the separate computing com-
ponents of a DSP unit are combined onto a single chip in order to achieve greater power and space efficiency. In the design of
biomedical DSP devices, this body of research presents a number of different solutions for reducing power consumption and space
requirements. Using serial or parallel data buses, which are often the region that consumes the most power, it is possible to send
data between the system-on-chip (SoC) and other components. To cut down on the number of needless switching operations that
take place during data transmission, a hybrid solution that makes use of the shift invert bus encoding scheme has been developed.
Using a phase-encoded shift invert bus encoding approach, which embeds the two-bit indication lines into a single-bit encoded
line, is one way to solve the issue of having two distinct indicator bits. This method reduces the problem. The PESHINV approach
is compared to the SHINV method that already exists, and the comparison reveals that the suggested PESHINV method reduces
the total power consumption of the encoding circuit by around 30 percent. The computing unit of the DSP processor is the target
of further optimization efforts. Virtually, all signal processing methods need memory and multiplier circuits to function properly.

1. Introduction

It should come as no surprise that video-based heart rate
monitoring is becoming more popular [1], given the tre-
mendous expansion of remote medical monitoring in recent
years. In most instances, the signals for photoplethysmography

and ballistocardiography are calculated by utilizing video
pictures that were recorded during the process. These images
were captured on a video camera. In order for them to work
properly, they need to estimate either tiny color changes or
stiff head and facial movements [2]. In the field of bio-
medical engineering, remote health monitoring is a notion
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that is still very new. When physiological indicators could
be assessed using a digital camera, a major acceleration in
the development of remote sensing technologies occurred
[3]. The researchers were able to extract BCG signals by
taking advantage of the involuntary head movement that
was brought on by an increase in cerebral blood flow. As a
direct consequence of this, the BCG signals were retrieved
from the video of the face of a person. As a result of the
contraction of the left ventricle, blood is forced across the
aortic arch at a high rate. At the conclusion of each cycle of
circulation, the carotid arteries transport blood back to the
brain and the spinal column [4] because of their compact
size, portability, comfort, and reasonable price. In addition,
photoplethysmographic (PPG) signals are used in a large
number of other applications outside those mentioned
above. The results of some early study suggest that it would
be able to use PPG signals to determine the rates of res-
piration, heart rate, and blood pressure. PPG signals re-
ceived from the wrist are often utilized in athletic
competition to monitor a variety of vital indicators, in-
cluding heart rate (HR). The PPG device is advantageous
for usage in home-based healthcare systems because of its
user-friendliness, portability, comfort, and cost-efficiency.
The PPG signal that is derived from pulse oximetry is one of
the most promising possibilities in terms of physiological
monitoring and omnipresent healthcare [5]. In this par-
ticular application, photoplethysmography, often known as
PPG, has been shown to be quite successful [6]. Changes in
the microvascular blood volume may be determined by the
use of the optical approach. The ability of a tissue to reflect
and transmit light, as stated by Beer’s law, is what deter-
mines a tissue’s capacity to draw blood, according to
Lambert’s law. This phenomena can be photographed with
the commercial camera that is present on the majority of
recent smartphones [7], despite the fact that it is difficult to
notice with the human eye. The development of nonin-
vasive cardiac monitoring techniques that utilize methods
for detecting the PPG signal in both transmitted and re-
flected modes is approaching completion and will soon be
used in many applications. PPG signal measurement is now
concentrated on the transmission method, which detects
signals at the fingertip. This mode is considered the state of
the art in the field.

2. Literature Survey

Yu Rong et al. developed a technique for measuring distant
plethysmographic signals that makes use of an inexpensive
camera and the light that is already present in the envi-
ronment [8]. When compared to the other two channels, the
green channel (which includes red, green, and blue infor-
mation) contains the greatest plethysmographic data (red,
green, and blue). Heart rate was determined by Chunlei Wu
and colleagues with the use of digital color footage that was
acquired through a camera [9]. Utilizing a time-varying
intensity signal generator makes it feasible to create a time-
varying intensity signal from the intensity variance of face
pixels. This may be done in a number of ways. The Viola-
—Jones face detector was used to successfully determine the
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identity of the suspect [10]. This method was used in order to
get the face’s pixel data. Throughout the whole of the ex-
periment, it monitored the subject’s face and recorded its
movements. By performing a spatial average on the face
pixels and then comparing these new signals to the original
signals, the scientists were able to derive temporal signals
with red, green, and blue intensity variations [11]. They were
able to perfect their technique by applying temporal filtering
to the PPG signal, which is what Chen Wang and his col-
leagues did. In order to make it easier to pick the region of
interest (ROI), the authors shrunk the full face ROI to 60
percent of its original width and therefore limited the
number of options available [12]. They were able to ac-
complish this feat because they were able to disregard pixels
that were unrelated to the face [13]. Ningqi Luo et al.
suggested a PPG-based heart rate measuring system that
measures heart rate by using the green spectrum of an RGB
camera [14]. Face detection was accomplished by applying a
discriminative response map to the skin area below a per-
son’s eyes on the lower half of their face [15]. This region is
situated on the bottom half of a person’s face. As a con-
sequence of this, we made use of KLT feature monitoring in
order to monitor the return on investment over the course of
time [16]. We were able to successfully eliminate motion
artifacts from the green spectrum data by using a neural
network. Because of this, we were able to totally automate
the process of measuring the heart rate of patients. They were
able to get the results they wanted by combining a nonrigid
motion removal technique with a normalized least mean
square adaptive filter. This allowed them to account for the
effects of motion. According to the findings of their in-
vestigation, Lam et al. discovered that achieving equivalent
results utilizing green spectrum data from an RGB camera
was possible. The authors of this research used BSS to gather
data after separating numerous green spectrum signals from
random patches and merging them. The signals were ob-
tained separately. PPGs were computed by Na Hye Kim et al.
by conducting an analysis of the red and green spectra,
respectively, of the red and green filters of the RGB camera
[17]. The PPG signal was computed by the authors using an
adaptive green and red differentiation function that they had
designed themselves. The idea that chrominance charac-
teristics on the face may be utilized to determine heart rate
was recently introduced by researchers Jeremy Speth et al.
[18]. An adaptive matrix calculation approach was devel-
oped by the authors of this work [19] in order to estimate the
PPG signal from the chrominance aspects of the data used in
this investigation. This method was put to the test in this
work.

The PPG signal is modulated in a number of different
ways by the breathing process. Modulations such as pulse
frequency modulation, pulse amplitude modulation, and
baseline modulation are included in this category. Cheng-
long Ye et al. assessed the respiratory rate by using a three-
way average of three different respiratory rates (RRs) that
were generated from three different changes in PPG that
were caused by breathing [20]. In order to calculate the
patient’s respiration rate, they created the Lazaro algorithm.
In addition, the RR and HR were created by Nakajima and
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his colleagues with the support of the PPG. Estimates of RR
are susceptible to error if they take place outside of the
previously determined frequency spectrum. Wavelet func-
tions, an innovative method, are used to calculate the relative
risk (RR) derived from PPG by the authors of the study [21].
Recent studies have shown that the Hilbert vibration de-
composition (HVD) is an effective method for analyzing
nonstationary signals [22]. HVD has been used in a broad
number of applications relating to the processing of biological
signals, one of which is the processing of cardiovascular
signals. The elimination of baseline wander from electro-
cardiograms (ECGs) and the determination of respiratory rate
from ECGs are both included in this category of procedures.

A prior study found that artifacts and modest perfusion
changes have a substantial influence on the accuracy of HR
estimate when PPG signals are filtered in a certain frequency
band [23]. This finding was made by the researchers of the
previous study. PPG epochs that were at least 30 seconds
long were utilized in a number of validation procedures;
nonetheless, shorter recordings are preferable for utilization
in clinical applications [24]. In the future, further study will
be required since the data length of the PPG signal is so
short. In order to accomplish precise and trustworthy HR
calculation, this will be necessary. In the field of signal
processing, the processing of nonstationary signals is ac-
complished by the use of a nonrecursive approach known as
“variational mode decomposition” (VMD) [25]. The VMD
algorithm is an intrinsic nonrecursive procedure that does
not create any output whatsoever. This decomposition ap-
proach has a wide range of potential applications; some
examples include monitoring for sleep apnea and seismo-
logical time-frequency analysis, as well as voice signal
identification. In the empirical wavelet transform, some
examples of limitations include recursive shifting, an in-
ability to cope with noise, hard band constraints (wavelet
approaches), and specified filter bank borders [26]. An at-
tempt is made to analyze the robustness of different test
signals with cryptographic techniques. To resist various
attacks, Empirical Mode Decomposition (EMD) is used.
Performance evaluation for image watermarking includes
robustness, imperceptibility, watermark capacity, and se-
curity. The nonrecursive VMD approach was presented by
Dragomiretskiy et al. in 2021, and it was then included into the
program [27]. When dealing with variational issues, it is es-
sential to make use of approaches that provide the ideal answer,
such as mode decomposition. After going through the opti-
mization procedure, you will end up with a mode cluster that
has a band limit. VMD is comprised of many Wiener filters that
have been merged together [28]. Using this method, it is
possible to differentiate between modes that have distinct
center frequencies. Wang et al. examined the efficacy of
identifying rubbing-caused signals using VMD, EMD, EEMD,
and EWT as the four distinct methodologies. They found that
VMD was the most effective method. Zhang et al. stated that
they were able to effectively recover the rolling bearing signal
from a multistage centrifugal pump using VMD [29]. This
accomplishment was made before. The results of this study [30]
suggest that VMD is superior to other approaches in terms of
the number of characteristics it can extract. Tang et al. created

an optimization index that was the ratio of the energy that was
left over to the energy that was present in the original signal
[31]. In this instance, it was decided when the ratio dropped
below a certain threshold that had been established beforehand.
Because the procedures described in [32] do not take into
consideration the properties of the signal component, mode
mixing is possible as a consequence of these approaches. Both
the VMD mode number and the penalty parameter were
improved thanks to the authors' efforts. Although it is possible
to achieve the value that is needed for the parameter, this
technique is inefficient. The idea came from Susanta Haldar
and a few other people [33].

3. Proposed Work

Because it is used to determine whether or not the heart’s activity
is healthy, the electrocardiogram, often known as the ECG signal,
is the most significant signal in the field of biomedical signal
processing. In today’s world, the ECG signal processing devices
are shrinking in size while simultaneously becoming more
compact. That should be equipped with a battery power source so
that it may be shrunk down to a more manageable size. A system
that is battery driven should have a lower overall power con-
sumption. When this occurs, the circuit has increased func-
tionality and durability. Many different algorithms have been
presented over the last few decades in an effort to make the ECG
signal processing system as effective as possible [34]. Only by
increasing the total number of electrodes did the older algorithms
succeed in decreasing the amount of power they used. The
procedure of decreasing the number of electrodes is still quite
complicated [35]. Communication between the interior of the
chip and the outside of the chip is another aspect in the archi-
tecture of a SoC that consumes power. Communication with the
chip and its peripherals may take place in a variety of modes,
including synchronous communication and asynchronous
communication, among others. Because the synchronous tech-
nique needs a network for clock production and dissemination,
the system ends up being more complicated than the asyn-
chronous system. In a system when the clock signal is already
there, there must be extra pins for peripheral interface in Figure 1.
In the past, a variety of researches have been carried out
for various gating and encoding schemes for the purpose of
reducing the unnecessary switching activity of a chip during
the process of serial data transmission from on-chip to the
outside world or network. These schemes aim to reduce the
amount of switching activity that occurs during the trans-
mission. However, the encoding approach either increases the
bit size or decreases the power consumption by less than 15
percent. Neither of these options is ideal. Bus-invert coding
was suggested as a low-power input-output coding scheme.
The development of a data transmission circuit that requires
little power is the primary emphasis of this effort. When more
components are added to the circuit, the amount of power
that is lost as dynamic power due to charging and discharging
node capacitances likewise rises [35]. This study applies the
approach of coding to the I/O, which has the effect of re-
ducing the activity on the bus. According to reports, the peak
power has decreased by fifty percent, while the average power
dissipation has decreased by twenty-five percent.
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FIGUre 1: Proposed model architecture.

Based on transition inversion, the low power data coding
scheme for synchronous serial communication that was
suggested is described below. The decrease of power con-
sumption in parallel bus systems is the primary emphasis of
this study. This strategy is not appropriate for use with
systems in which the transmission takes place in a sequential
fashion. The study will be applied to systems like JTAG and
SPI, both of which experience significant power loss as a
result of data transitions. The work results in a transition
decrease that is 39% lower than before. In the research that
has been done, there is a technique that has been suggested
for the transmission of data in serial mode between the
master and the slave. For the purpose of transferring data
between the master and the slave, it has been suggested to
use a high-speed serial peripheral interface [36].

A regularized channel inversion using dirty paper coding
was developed in order to decrease the power offset in
MIMO X Channels. The authors based their proposal on a
precoding and detection approach. The technology of beam
formation has been adapted to be used in this way. The
inversion of data and compression of such data are also
gaining steam, with the study investigating various canonical
sorting permutations in an effort to achieve data com-
pression. When compared to the block sorting method, the
move to front strategy indicated above provides superior
performance. There is a new approach presented in the
literature that has a minimal overhead and uses 34 MSB
controlled inversion coding. For the purpose of exper-
imenting with inversion coding, discrete cosine transform
and its inverse for a picture are used in practice. There is a 33
percent decrease in the amount of transition activity for
DCT data and a 46 percent decrease for IDCT data. The
strategy is only useful when the buses are loaded with a
significant amount of capacitive components. A method of
coding for on-chip flash memory that uses a minimal
amount of current was suggested. A sensing amplifier was
used in the process that was given the moniker built-in
binary coded inversion technique. This approach compared
the read current to the reference current. The approach is
suggested for use with an ARM Cortex-M3 microprocessor
and relies on chip flash memory manufactured using the
180nm process. A technique known as segmented group
inversion coding is one that is based on the inversion-or-not

transformation of data that has been specified as being
grouped. This technique brings the ratio of ones to zeros
down to either one or two, depending on the situation. This
strategy is ineffective for computer systems that have less
memory and devices that are quicker [37].

It should be noted that even bits are discarded if the
number of transitions exceeds 50 percent of the word’s total
length. For the purpose of error detection, a parity bit has
been provided. This approach results in a 7.4 percent re-
duction in power consumption for the transmission of each
bit. An embedded transition inversion (ETI) coding was
determined by the phase difference between the data clock
and the driving clock [33].

The parallel-to-serial conversion of lines is made easier
with the help of the suggested approach, which cuts down on
the increased transition bit that occurs during this process.

The article outlines a way that cuts the changeover time
by about 30 percent, making it more efficient. The findings
for a variety of data patterns have been validated by the work.
When employing the optimal spacing and data width, the
energy savings are enhanced by a factor of thirty percent.
Embedded shift invert transition coding for parallel links
was a proposal that was suggested.

3.1. Collection of Signal. The sensor interface, which collects
ECG data from electrodes attached via the front end signal
conditioning unit, is one of the fundamental building
components of the system-on-chip (SoC). The filtering block
eliminates the undesirable sounds, such as base line drift and
physiological disturbances. The processing and decision
block is responsible for the extraction of the features, and the
communication unit is the one responsible for transmitting
the information to the remote unit. The novel encoding unit
for the communication block that conveys the information
while using less power is the goal of the work that is dis-
cussed in this thesis. The switching activity of devices (which
occurs when a signal transitions from high to low and vice
versa) is the primary driver of power dissipation in a chip. A
significant area of focus is the amount of power that is used
by the buses throughout the data transmission process [38].
The information is transported all across the chip via the
buses, even out to the buffers and into the outside world. In
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addition, the switching activity of the buffers has a signif-
icant impact on the total amount of power used. Therefore,
there is the potential to save a significant amount of power
by lowering the amount of power that is used by buses and
buffers. In addition to that, the length of the individual data
packets is another significant aspect related to data.

The throughput, the delay, and the energy usage are all
determined by the data length. On-chip design may often
play a significant part in multicore architectures, which is
necessary in order to alleviate the issues that are caused by
long data networks.

They eventually form a component of the architecture of
the system-on-chip (Kim et al). When the length is in-
creased, the number of header and tail flits will decrease, but
the number of null flits will remain the same. This will occur
when the individual packet length is increased. There is not
much of a shift in the overall amount of no-data flits, and
there is also not much of a shift in the architecture’s
throughput, latency, or energy consumption. The bandwidth
and power limits may be significantly reduced by designing a
different coding architecture for the communication unit of
the SoC as illustrated in Figure 2.

In the form of a system-on-a-chip architecture, portable
biomedical devices include fundamental components such as
sensors, a power management circuit, a digital signal processor,
inbuilt flash memories, a transmitter, and input and output
devices. Other fundamental components include a power
management circuit, a digital signal processor, and inbuilt flash
memories. They make use of any and all kinds of communi-
cation that are available to them. The sensors act as an interface
medium to collect real-time patient data, which is then sent to
the digital processing unit so that a choice may be made based
on the information that was collected. Portable biomedical
devices may have a wide variety of sensors, some of which are
designed to monitor vital signs such as the heart rate, insulin
level, and pulse rate, while others monitor other parameters.

A microprocessor includes programming memory, which
holds calculating formulas, and an input/output (I/O) con-
troller, which acts differently depending on how the inputs are
configured. Both of these memories are connected via a bus.
The multiplier, shifter, and adder lookup unit (ALU) circuits
are the most important parts of the DSP controller, which is
used by the mathematical processing unit. The DSP controller
is used to convert digital signals into analog signals.

3.1.1. Extraction of Key Frame for the Shot Abstraction of
Video. Consider one video shot v of F frames, for example,
v ={n;,n,,...np}, and the extraction process of key frames

classifies the taken shot videos into C clusters, where
C =C,,C,,...Cy. The frame-oriented color histogram is
used as the feature in this algorithm, hence can be extracted
easily and with low risk. The resemblance between the
frames n; ang nj is found using

m

X(ni,nj) = 21/32 min(Xi(oc,/S),Xj(oc,/S)). (1)
a=1 =1

If the resemblance value possesses more means, the
identical frames are more similar when considering the
histogram. When a new cluster is added to the group of
clusters, then the centroid value is to be calculated first. The
key frame is extracted from the sequence of clusters by
comparing it with the threshold value, T.

3.1.2. Object Segmentation Using Model-Based Clustering.
In this approach, object-based segmentation from the video
is extracted using the GMM model. The Gaussian distri-
bution is used because it is highly traceable and the central
limit theorem used here guarantees the summing of random
variables from the Gaussian distribution. Hence, the per-
formance of GMM is better, as no-data assumption is made
possible over here. A probabilistic video-based segmentation
is used for extracting the object from the video segments.
The probabilistic space determination is made by the ab-
straction of feature samples from a set of Gaussian mixtures.
The estimation of density in GMM is obtained in a semi-
parametric mode as the complexity of the data is a deter-
ministic factor and the size of data is a nondeterministic
factor.

3.1.3. Feature Extraction. The raw video data which are in
the time-space are transformed into multidimensional
feature space, in which the feature vectors are provided
with a topology for regularization like the patterns of
motion, color, and textures of the video information’s.
The selection of feature is used for identifying the effective
features, but somehow it is not possible to extract the
whole contents because of dimensionality variation. The
effectiveness of the features will be depending on the
selection methods and the extraction methods by con-
sidering the motion, color, and the texture. Here in this
approach, a pixel-wise feature extraction is used which
directly extracts the video data using the extraction
process. The feature extraction is made for all the pixels in
the frames.



3.1.4. Key Frame Refinement. The extraction of key frames is
used for facilitating the object-based video segmentation.
The clustering results are used for refining the key frames
which will make the shot-oriented representation com-
pactible because of GMM. The extraction of key frame is
made with the help of threshold value T. This will make the
selection of video frames to be efficient and is needed more
for object-based representation. After the extraction of key
frames, a key frame set S is obtained as
S = {kn,,kn,,...kn,}. The frame index is denoted as f (i).
The key frames in the set S are partitioned into N regions
ij(i), j=1,2,...G, where Gis the total number of GMM
components in the overall process.

The distance between the Y;/ PandY ;/*1 s calculated
using

X(ij(i), ij(i+1)).
2

(2)

D(yjf(i),ij(iH)) _

Then, the distance in between the two successive key
frames kn; and kn; is calculated using the following math-
ematical expression:

K
Distance (kn;, kn;, ;) = Z D(ij(i+1),ij(i)). (3)
=1

3.2. Adaptive Kalman Filter. The information from the raw
video signals is segmented to video frames, and the shot
video signals are interpolated to 23 frames per second. Then,
the normalization process is started from the obtained signal
X (t) as

x() =)y -
1 1

X =

, (4)

where # and A are the mean and standard deviation of X(t).
The Kalman filter is used for smoothing the signal in order to
amplify the heart pulse and respiration pulse. Once the
attenuation process of the signal is over, then it is subjected
to band-pass FIR filter. At last, the heart rate and the res-
piration rate from the signal using the specific algorithm are
used for real-time prediction of the video signals. The ro-
bustness and the accuracy are made in control by using
Lomb periodogram. The algorithm is shown below in al-
gorithm 1.

3.3. Amplification and Smoothing of the Signals. The Kalman
filter is used for filtering out the unwanted signals and to
retrieve back the original signal. It contains a nonstationary
recursive filter for estimating the needed signal from the
noisy background.

The Kalman filter is described in steady state with two
different stochastic equations.

Ak = XAk+1 + Wy, (5)

By = YA;H '
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Here, A, = [ak’ak_l,ak_z]Tand wy, = [wy,0,1]7; the Ay
is the column vector which represents the signal vector with
no motion. The estimated value By is a scalar quantity.

The obtained vector value y is the state transaction
noise, and another value wk is the measurement noise. The
matrix for X is determined with the time step value k-1 in
consideration with the absence of the noise, and the values
are marked as below

110
X=|-101]

100 (6)
Y=[20-1]

Normally, the Kalman filter consists of two different
parts like updating the equations based on time constraints
and updating the equations based on the measurements.

3.4. For Time Updates, the Equation Might Be as Follows

Zk = XZ + u)k,
k+ . (7)
Pk = Xppa XD+ R
For measurement updates, the equat{on might be
T T -
D =pY (YPkY +Qk—1) ] (8)

Zk = Zk + Fk (Bk - sz) + Rk+l‘

Here, Iy is the Kalman gain, and the error covariance
estimation is determined with the setting of 3 x 3 matrix for
the value py. Then, the error covariance prediction is made
with the value p~'. This could be shown in the matrix as

04 1 0
R=|0 0 0 9)
0 -10

For deriving the constants X and Y, the value of Ay is to
be determined with uniform sampling rate. Here, A value is
set to be A, = A(t;), and the value of k=1, 2, .... The
spacing is made constant and given for “t” as At and hence
got the value t,,, = t, + At. While estimating Ay,;, we get

A(ten) = Aty + At) =A(tk)+ma§. (10)

The derivative approximation is expressed as
0A A(ty) - Atxy)

11
ot At ' (1)

From the above equations, it is clear that the estimated
value By possesses some value which is much lower than the
predicted value and the final expression for the filter design
is formulated as

Vi = Ag + a(Ag = Aey) + B(By = Byy)- (12)
The smaller value « and f shows that the Ay, exceeds the

value By, that shows the prediction of heart pulse and
respiration pulse is marked amplified.
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X_apriori = x_aposteriori_last;
P_apriori=P_aposteriori_last + Q;

K = P_apriori/(P_apriori + R);

x_aposteriori = x_apriori+ K* (z - x_apriori);

function [x_aposteriori P_aposteriori] = KalmanFilterIteration(z,Q,R,x_aposteriori_last, P_aposteriori_last)

P_aposteriori = (eye(length(x_aposteriori)) - K) *P_apriori;

ArGoriTHM 1: For Adaptive Kalman Filter.

3.5. Modified Adaptive Fourier Decomposition (MAFD).
In this research, the MAFD is supporting the adaptive de-
composition of the video frames in the process of prediction
of the HARR value. The obtained frames are grouped as F(t)
which is made to place in H-space and is given as

n-1 00 M
F(t) = z 7’ + Z Qe = Z S, (1)
a=0 a=n-2 m=1

- (13)
+ Wy (1), Z |Zk|2 <00,

a=0

where S,,(t) is the series of mono components and Wy is the
standard remainder.

The MAFD uses the ration system for pertaining the or-
thogonality process by fixing the functions for determining the
HARR value. The main process involved in MAFD is to extract
the mono components from the sequence of high component
generation to the low component generation. The estimation of
the energy relation is done by fixing the corresponding value of
the standard remainders Wy

) on=l — a.eJ'Wt
Qu(e") =¥,i(e") Y (14)
R

For achieving the higher convergence rate, the ob-
tained energy value of the standard remainder, ¥, at all
parts of the decomposition level is maintained to be
minimum. Hence, the maximum rate of the projection is
shown below.

Z, = argmaximum{<1//n, e{zn}>}2: Z, (15)

The MAFD value gets differed from the normal Fourier
decomposition models. For the normal frequency analysis,
the various signals are decomposed with the help of MAFD
which purely depends on the distribution of energy that
makes it possible for determining the overall frequency
ranges with individual energy considerations.

The application of MAFD is measured by considering
the noise-based signal which effectively removes the noises
by using the Hilbert transform.

szm(t)LdT}.
t—1

(16)

0 (o]
His, (0) = - {Jw () dr + J

=0

The analytic representation of the obtained noisy signal
is determined as

v (t) =s,,(m) + jH{s,, (1)} (17)

(17) is applied as input to the MAFD. The noise signal is
expressed as

5, () =y () + w(t). (18)

3.6. Enhanced Hilbert Vibration Decomposition (EHVD).
The EHVD will decompose the nonstationary signals with
various mono components along with the sequentially
varying signals with suitable frequencies and amplitudes.
The amplitude variation of the signal is decomposed by
considering the first components of the input signal. The
main part of the mixture is obtained with the highly
complicated amplitude signals with lower amplitude. The
instantaneous frequency is computed with the largest
component analyzed and is subtracted with the already
extracted mono components from the input signals. Hence,
the EHVD decomposing of the signal s(t) is obtained by
using the mathematical expression

s =Y a (t)cos(J 1 (t)dt) +Y B (t)cos(J 9, (t)dt>.
k k
(19)

The envelope of the signal is represented as a(t) and
B(t). The EHVD method might use the analytical signal
representation of the input signal for computing the am-
plitude of the envelope from the obtained. It is projected
with highly complicated respiratory components for
attaining the PPG signal which has lower energy compo-
nents of EHVD.

3.7. Improved Variation Mode Decomposition (IVMD).
The IVMD is a completely inherent and adaptable tech-
nique that decomposes a signal into many modes with
varying center frequencies, energy, and bandwidth. When
synthesizing the incoming signal, each sub-signal has a
particular sparsity and a central wavelength with low
bandwidth.

Here, the parameters which are used for initializing the
process might include with some representation of the
nodes. The larger values of the IVMD method are not
provided with appropriate value, and it may depend upon
the application it is used. The larger value in the IVMD
method founds difficulties in estimating the center fre-
quencies in an accurate manner. Here, the obtained PPG and



BCG signals are decomposed into its corresponding fre-
quency spectrum values. The decomposition of the noise
signal is correlated with the noise signals

4. Experimental Results

For validating the performance of the proposed model, a set
of experiments are conducted with some real-time video
samples.

4.1. Data Collection. The video samples are taken from 25
participants (12 females and 13 males). The age range among
the participants is ranging from 20 to 40 years. The video
signals are collected by manually testing the participants
with the HARR monitor. The subjects are asked to assemble
in a separate hall during periodic intervals. The hall is
equipped with all setups supporting real-time observation. A
pulse oximeter is used for tracing out the real heartbeat
value, the exact value is obtained using the BCG, and the
respiration rate is monitored using the method PPG in
addition to manual checking. The data collection is made in
a random manner by extracting about 10 frames per second
for up to 10 minutes. The subjects are allowed to sit freely for
15 minutes; hence, their head motion and face reaction all
are noted.

4.2. Analysis. The efficiency of the proposed model is tested
with different aspects. Initially, the information from the
PPG and BCG is obtained with video information. The video
information is converted into various frames using the HVS
method. The information regarding the signal conversion is
shown in Table 1.

From the total information retrieved (i.e., 22500 seconds
of video), only a part is considered for the analysis. Most of
the contents are removed by a process of smoothing and
refinement. Mostly, the video is taken out in real time, and
hence, the noise attack is more in the video and it can be
removed with the help of the Kalman filter.

Initially, the video signals are preprocessed before
feeding into the Kalman filter. Mostly, the videos are taken
with the help of cameras with high-resolution pixel repre-
sentation. After converting the videos into frames, there is a
need for checking the synchronization process. The distance
between the frames is to be calculated and make sure that the
identical distances are to be fixed in between the frames.
After then, the signal frames are to be set into various
clusters or groups. The obtained RGB signal generated after
setting up the groups is shown in Figure 3.

The groups of RGB signals from the video output are
divided into various frames using the suitable segmentation
process. Here, the process of detrending the signals is to be
needed for estimating the exact RGB value. Since the signals
are grouped, there is a need for separation between the
frames, so a form of synchronization is needed for com-
bining the original signal with the grouped signal. The
detrending process is illustrated in Figure 4.

After synchronization, the extraction of green signals
from the whole set of frames is needed. The video frame
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TaBLE 1: Information retrieved from initial observation.

Total
Total running Total Total time Frame
number of  time of the frames  consumed
. . rate
participants video extracted  (seconds)
(seconds)
25 22500 828 583E+01 142E+01
250 T T T T T T T T T
240 1
230 1
220 r 1
210 7
200 1
190 f R
180 1 1 1 L 1 1 1 1 L
0 50 100 150 200 250 300 350 400 450 500
FIGURE 3: Generation of RGB signal.
filtered signal
3 : T T

0 10 20 30 40 50 60 70 80 90 100

FIGURE 4: Process of signal detrending.

separation is mentioned in another way as green signal
separation. For estimating the exact value in separated video
frames, the green signal separation supports the process and
is illustrated in Figure 5.

From Figure 5, it is clear that the green signals are
separated from the whole video sequence. These predicted
green signals must possess some errors due to the in-
volvement of noises. In the proposed model, an adaptive
Kalman filter is implemented for removing the noises.

The noise-included video frames are subjected to an
adaptive Kalman filter for further processing. For effective
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FIGURE 5: Separation of green signals.

prediction of the HARR value, the removal of noise is
mandatory. The signal coming out from the video frames is
shown in Figure 6.

Figure 3 shows the signals retrieved from the video
frames are clustered and analyzed. After the implication of
the filtering process, the signals get removed with noise and
are refined. This is illustrated in Figure 7.

The change in the peak value shows the effectiveness of
the algorithm using the Kalman filter. The variation is
predicted with a suitable approach made in the estimation of
the true value in association with the Kalman filtered value.
The smoothening process is made effective in the deter-
mination of the exact value of information without noise.
The axis is taken at different intervals within the time and
valuable consideration. The exact comparison of the true
value and the Kalman filtered value is shown in Figure 8.

The noise-free signals are subjected to the enhanced
Hilbert vibration decomposition (EHVD) method, and the
result obtained is illustrated in Figure 9.

The parameters are fixed for the values analyzed between
the beats per minutes to heart rate and respiration rate. The
peak value is to be detected for identification of the peak
points where the pulse is so active. The values obtained from
the given sources are shown in Table 2.

Then, the improved variational mode decomposition
method is implemented for the determination of the HARR
value. The peak value determination shows that the respi-
ration rate and heart beat rate estimation are proved to be
more effective in the analysis. This is illustrated in Figure 10.

The estimation is made for the values beats per minutes
along with the deterministic values. The total values obtained
after the experimentation analysis of IVMD are shown in
Table 3.

The modified adaptive Fourier decomposition is used for
the estimation of the heartbeat and the respiration rate.
Here, the peak value is identified to be in approximated
range in many areas. A form of stability is found in the
estimation of signals. The estimation of the HARR value
suing MAFD is illustrated in Figure 11.
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FiGURE 9: HARR results obtained from EHVD.

TaBLE 2: HARR results for EHVD.

h Frame rate EHVD respiration rate EHVD heartbeat rate
828 1.42e +01 4.92e +00 9.45e +00
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Ficure 10: HARR results obtained from IVMD.
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TaBLE 3: HARR results for IVMD.

Total frames extracted Frame rate

IVMD respiration rate IVMD heartbeat rate

828 1.42e +01

3.44e + 00 8.27e+00
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Ficure 11: HARR results obtained from MAFD.
TaBLE 4: HARR results obtained from MAFD.
MAFD MAFD
Total frames ..
Frame rate Respiration Heartbeat
extracted
rate rate
828 1.42e + 01 2.17e+00 5.60e+ 00

TaBLE 5: Comparison of HARR value for various methods.

Methods Total frames Frame  Respiration Heartbeat
extracted rate rate rate
MAFD 828 1.42e+01 2.17e¢+00  5.60e+00
IVMD 828 1.42e+01 3.44e+00 8.27e+00
EHVD 828 1.42e+01 4.92e+00 9.45e¢+00

From Table 5, it is clear that the respiration rate of the MAFD process is
2.17e+ 00, for IVMD it is 3.44e + 00, and for EHVD it is 1.42e + 00. Then,
the heartbeat rate is predicted to be 5.60e + 00 for MAFD, 8.27e + 00 for
IVMD, and 9.45e + 00 for EHVD. From the obtained values, the EHVD
possesses better performance in the estimation of heartbeat rate and res-
piration rate.

The value of the HARR after implementing the MAFD
method is shown in Table 4.

From the overall analysis held with the estimation of
HARR value after the implementation of the three various
models like IVMD, MAFD, and EHVD, a small variation
was identified. The comparison status of the HARR value
along with the three models is shown in Table 5.

5. Conclusion

The design of very large-scale integrated circuits (VLSI)
provides the foundation for the construction of biomedical
systems that can read, evaluate, and make decisions, such as
electrocardiograms (ECGs). In the past, academics and re-
search organizations have devised and outlined techniques
for the gathering, processing, and sharing of ECG data. The
effectiveness of the computational algorithms, the trans-
mission bandwidth, and the number of electrodes employed
all contribute to the overall level of complexity. When de-
signing an architecture for a system-on-chip, it is not feasible
to use a greater number of electrodes in the acquisition unit,
and the computer method has to be as compact as is
practically practicable. The portable gadget relies on a
battery in order to function, which is of the utmost im-
portance. The incorporation of VLSI design satisfies the
criteria for decreased cost, decreased space, and decreased
power consumption.

The purpose of this thesis is to propose the creation of an
encoding approach for the purpose of communication. The
modeled SoC is described in a few chapters, as well as the
recommended approach along with comparative analysis.
The study is being expanded in the direction of building a
processing element called the multiplier design, which
provides optimal performance and is suited for operation on
SoCs. The design was completed using CMOS technology
with a 90 nm process node in order to save both power and
space. In order to construct the multiplier, an innovative
technique that is based on the lookup table method was used.
The design demonstrates superior performance and may be
used to carry out the implementation of any functions whose
variables include complex or trigonometric expressions. The
vast majority of the algorithm for signal processing is de-
voted to the treatment of exponential and complex func-
tions. Therefore, the suggested multiplier is suitable for
usage in the aforementioned contexts [39].
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