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Abstract

Introduction: Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care
has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of
probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and
shock has not been well explored.

Objective: Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse
model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury.

Methods: 3 week-old FVB/N mice were orally gavaged with 200 ml of either LGG, BL or sterile water (vehicle) immediately
prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was
evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-a, MyD88, TLR-4, TLR-2, NFKB (p50/p105) and Cox-2
in the lung analyzed via real-time PCR. TNF-a and IL-6 in lung was analyzed via ELISA.

Results: LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung
neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-a
and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of
TLR-2, MyD88 and NFKB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the
lung of mice receiving LGG or BL while TLR-4 levels remained unchanged.

Conclusions: Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is
associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic
therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.
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Introduction

Sepsis is a leading cause of death in infants and children despite

the advances in medical and ICU care. Over 42,000 cases of

severe sepsis are reported each year in the United States alone and

millions are thought to occur worldwide [1]. Over 1 million deaths

worldwide are associated with sepsis within the neonatal popula-

tion [2,3]. Low birth weight infants are particularly at risk, where

the mortality is reported to be ,50% [4]. Further the neonates

who survive sepsis and septic shock continue to face substantial

long term adverse effects [5]. Pediatric patients diagnosed with

pneumonia or sepsis are also susceptible to acute lung injury or

acute respiratory distress syndrome leading to a mortality rate of

,25% [6,7].

Critical illness and ICU care (broad spectrum antibiotics, poor

nutrition deliver etc) creates a hostile environment in the gut and

alter the microflora tilting the balance to favor pathogens [8].

Probiotics are living nonpathogenic bacteria colonizing intestine

and providing benefit to the host with the potential to normalize

the altered intestinal flora [9]. The use of probiotics in prevention

of nosocomial gastrointestinal and respiratory tract infections in

critical care has increased over the last few years and results from a

growing number of randomized controlled trials within the adult

and pediatric populations suggest their use as a promising

treatment [10,11,12,13]. The need for alternative, non-antimicro-

bial interventions for prevention of infection in an age of

increasing antimicrobial resistance also make probiotics a prom-

ising strategy. Specifically, lactobacilli and bifidobacteria alone or

in combination are the most frequently used strains in the

treatment of various gastrointestinal disorders [14,15,16] or as

therapy for different clinical conditions including antibiotic

associated diarrhea [17], acute pancreatitis [18], ventilator
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associated pneumonia [11,12,19], sepsis and postoperative infec-

tions [20,21].

Although probiotics are showing promise as an effective therapy

in a growing number of illnesses, the mechanisms of their action

are complex and still elusive [22]. Based on the results from several

in vivo and in vitro studies, probiotics are able to decrease apoptosis

in intestinal epithelial cells [23,24,25,26], improve intestinal

integrity [27,28,29,30], prevent bacterial translocation [30,31],

reduce the overgrowth of pathogenic bacteria and suppress

cytokine production [32,33,34,35].

Despite the benefits of probiotic use in intestinal disorders, the

effects of probiotic treatment to protect against lung injury

following infection and sepsis are not well understood. We have

recently shown the benefits of Lactobacillus rhamnosus GG (LGG)

and Bifidobacterium longum (BL) on improved survival and intestinal

homeostasis in weanling mouse model of cecal ligation and

puncture (CLP) [36]. CLP is an experimental model of shock that

mimics the pathology of sepsis occurring in the ICU patients [37].

Toll like receptors (TLRs) are pattern recognition receptors

involved in the initial steps of signaling pathway leading to

multiple organ failure in sepsis. TLRs bind to cell-wall components

which activates nuclear factor (NF)-KB/IKB system resulting in

release of pro-inflammatory cytokines [38]. In addition to

cytokines, pathogens activating TLRs were also reported to

induce Cox-2 expression [39,40].

In this study we hypothesized that LGG and BL will also have a

protective effect against lung injury and will decrease the

inflammatory response in the lungs potentially via the TLR/

Myd88 pathway.

Methods

Probiotic treatment and septic peritonitis model
The animal protocol used in these studies was approved by the

Institutional Animal Care and Use Committee of the University of

Colorado Anschutz Medical Campus. Briefly, 3 weeks old FVB/N

mice were orally gavaged with 200 ml of either LGG

(16109 CFU/ml), BL (16107 CFU/ml), or sterile water (vehicle)

immediately prior to initiation of the cecal ligation and puncture

(CLP) procedure [41]. Briefly, a small midline abdominal incision

was made, the cecum was ligated just distal to the ileocecal valve,

and was then punctured twice with a 23-gauge needle. The cecum

was squeezed to extrude a small amount of stool, replaced in the

abdomen, and the peritoneum and skin were closed in layers.

Sham mice were treated identically except the cecum was neither

ligated nor punctured. All mice received 1.0 ml normal saline

subcutaneously after the surgery to compensate for fluid loss. Mice

received a single dose of probiotics prior to tissue collection.

Animals were euthanized at 24 h.

Lactobacillus rhamnosus GG and Bifidobacterium longum
culture

LGG (ATCC, Manassas, VA) was incubated in MRS broth

(BD, Sparks, MD) for 24 hours at 37uC and 5% CO2. BL (ATCC,

Manassas, VA) was cultured in Trypticase soy broth (BD, Sparks,

MD) for 72 hours in an anaerobic chamber at 37uC. A600 was

measured to determine the number of colony forming units (CFU)

per 1 ml. BL and LGG were pelleted from the broth (10,000 rpm;

10 min) and resuspended in distilled water.

Immunohistology
Lung tissue was collected from each animal at 24 h and fixed

overnight in 10% formalin, paraffin-embedded, and sectioned at

4–6 mm. Serial sections were stained with hematoxylin-eosin

(H&E) and evaluated for severity of lung injury by blinded

evaluator using a grading scale from 0 (no abnormality) to 4

(severe lung injury) as described previously [42].

Neutrophil infiltration into the lungs was evaluated by staining

for myeloperoxidase (MPO). After deparaffinization and rehydra-

tion, sections were blocked with 1.5% rabbit serum (Vector

Laboratories, Burlingame, CA) in phosphate-buffered saline for

30 min, then incubated with goat polyclonal MPO (1:50; R&D

Systems, Minneapolis, MN) antibody for 1 hour, washed with

phosphate-buffered saline, and incubated with rabbit anti-goat

biotinylated secondary antibody (Vector Laboratories) for 30 min.

Vectastain Elite ABC reagent (Vector Laboratories) was then

applied, followed by diaminobenzidine as substrate. Sections were

counterstained with hematoxylin, dehydrated and cover-slipped.

MPO positive cells were quantified in 10 random high-power

fields per section. All counting was performed by a blinded

evaluator.

RNA Preparation, RT, and Real-Time PCR
Total RNA was isolated from lung tissue (snap frozen in liquid

N2, collected at 24 h) using the RNeasy Plus Mini Kit (Qiagen,

Santa Clarita, CA) as described in the manufacturer’s protocol.

RNA concentrations were quantified at 260 nm, and the purity

and integrity were determined using a NanoDrop. RT and real-

time PCR assays were performed to quantify steady-state mRNA

levels of IL-6, TNF-a, MyD88, TLR-4, TLR-2, NFKB (p50/

p105) and Cox-2. cDNA was synthesized from 0.2 mg of total

RNA. Predeveloped TaqMan primers and probes (Applied

Biosystems) were used for detection. Reporter dye emission was

detected by an automated sequence detector combined with ABI

Prism 7300 Real Time PCR System (Applied Biosystems). Real-

time PCR quantification was performed with TaqMan GAPDH

controls and relative mRNA expression calculated using the

22DDCT method [43].

IL-6 and TNF-a protein analysis in the lung tissue
Lung tissue was harvested and frozen immediately in liquid

nitrogen. Samples were homogenized with a hand-held homog-

enizer in a 56 volume of ice-cold homogenization buffer (Tris

HCl, 50 mm; pH, 7.4; NaCl, 100 mm; EDTA, 10 mm; Triton X-

100, 0.5%) with added protease inhibitors (Roche Diagnostics,

Mannheim, Germany). The homogenates were centrifuged at

10,000 rpm for 5 min at 4uC and the supernatant was collected.

Total protein concentration was quantified using the Bradford

protein assay. Enzyme-linked immunosorbent assay (ELISA)

(R&D Systems, Mineapolis, MN) was used to determine the

concentrations of TNF-a and IL-6 in lung tissue homogenates

according to the manufacturer’s instructions.

Statistics
Comparisons were performed with t test analysis (unpaired,

two-tailed). To analyze the bacterial culture results, 2-tailed NPar,

Mann-Whitney Test was used. No measurements or animals were

lost to observation or missing in the analysis. Data were analyzed

using Prism 4.0 (GraphPad Software, San Diego, CA) and

reported as means 6 SE. A p value#0.05 was considered to be

statistically significant.

Results

Probiotics improve lung injury and decrease the
neutrophil infiltration during sepsis

We have previously shown in this model that probiotic

treatment with LGG or BL can improve survival following CLP

Probiotics Attenuate Lung Injury in Sepsis
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[36]. In this study we hypothesized this may be associated with or

be related to reduction in lung injury. Thus, the effect of probiotic

treatment on lung pathology was assessed. Sepsis led to marked

histological injury 24 hours after CLP surgery in septic animals.

This injury was significantly improved in septic animals treated

with LGG or BL (Figure 1A, B). Sepsis-mediated lung injury was

associated with a significantly higher number of infiltrating

neutrophils, represented by the number of MPO positive cells in

the septic animals when compared to shams (P,0.0001).

Treatment with LGG and BL normalized (P,0.0001) the number

of MPO positive cells in the lungs to that observed in sham mice

(Figure 2A, B).

Probiotics attenuate proinflammatory cytokine release in
the lung after sepsis

To determine the effect of LGG and BL treatment on pro-

inflammatory cytokine release in lungs after CLP-induced

polymicrobial sepsis, mRNA levels of IL-6 and TNF-a were

analyzed by Real-Time PCR and protein levels measured by

ELISA. Gene expressions of IL-6 and TNF-a (Figure 3A, B) were

significantly increased in lungs of septic animals (P,0.05) and

normalized to sham levels in LGG or BL treated mice. Protein

levels of IL-6 (P,0.01) (Figure 3C) and TNF-a (P,0.05)

(Figure 3D) were also markedly elevated in septic mice and

attenuated to sham levels in mice treated with either probiotic

strain.

Figure 1. Probiotics improve lung pathology 24 hours post CLP. (A) The severity of pneumonia (from 0: no abnormality to 4: severe lung
injury) was significantly reduced in the lungs of mice treated with LGG and BL (P,0.05). (B) Representative H&E stained sections of lung are shown.
Original magnification 6100. Shams n = 4 per group, Septic, Septic+LGG, Septic+BL n = 5–8 per group.
doi:10.1371/journal.pone.0097861.g001

Probiotics Attenuate Lung Injury in Sepsis
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Probiotics decrease Cox-2 expression and regulate toll-
like receptor (TLR) pathway in the lung during sepsis

Cox-2 is rapidly induced in response to cytokines and is elevated

at sites of inflammation. Gene expression of Cox-2 was

significantly increased in lungs of septic mice (P,0.05) and

treatment with LGG or BL significantly decreased (P,0.05) Cox-2

levels to those observed in the lung of sham animals (Figure 4).

TLRs signal via the MyD88 pathway that includes the NFKB

transcriptional factor, which is a key activator of the cytokines

involved in the innate immunity response. MyD88 has an

important role in early recruitment of inflammatory cells and in

the control of bacterial infection [44]. Gene expression of TLR-2,

TLR-4, MyD88 and NFKB (p50/p105) was analyzed by Real-

Time PCR. There was significant increase of TLR-2 MyD88 and

NFKB (p50/p105) in the lungs of septic mice (P,0.05) (Figure 5A,

C, D). LGG or BL treatment normalized the levels of TLR-2 and

MyD88 to those in shams (Figure 5A, C). NFKB (p50/p105) was

significantly decreased in the lung of LGG treated mice (P,0.05).

The levels in BL treated mice were also decreased but did not

reach statistical significance (Figure 5D). TLR-4 remained

unchanged regardless of treatment (Figure 5B).

Discussion

This work demonstrates two probiotic strains, Lactobacillus

rhamnosus GG and Bifidobacterium longum, can reduce lung injury

and attenuate the inflammatory response in the lungs of weanling

mice subjected to CLP.

Figure 2. Probiotics decrease neutrophil infiltration in the lung 24 hours post CLP (A) Number of MPO positive cells in the lungs of septic
mice were significantly increased compared to shams. LGG or BL treatment normalized these levels (P,0.0001). (B) Representative MPO stained
sections of lung are shown. Original magnification 6200. Shams n = 4 per group, Septic, Septic+LGG, Septic+BL n = 6 per group.
doi:10.1371/journal.pone.0097861.g002

Probiotics Attenuate Lung Injury in Sepsis
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Not surprisingly, the gut has been identified as an origin and

promoter of nosocomial sepsis and multiorgan failure in the

critically ill, the major determinant of ICU outcome [45].Critical

illness and ICU-based therapies, such as vasopressors and broad

spectrum antibiotics, create a hostile environment in the gut and

alter the microflora favoring the growth of pathogens. This is in

part due to the loss of key beneficial lactic acid bacteria [46]

otherwise called probiotics that can inhibit the overgrowth of

pathogens by production of bacteriocins, hydrogen peroxide,

organic acids, ammonia and by increased competition for

adhesion sites on intestinal epithelia [47,48]. Also, a number of

bioactive factors secreted by probiotics, mainly by LGG, have

been identified and their effects studied in intestinal injury as well

as airway inflammation models [49,50]. Soluble protein p40

derived from LGG as published by Polk et al preserves barrier

function and reduces apoptosis in the colon epithelium in an EGF

Figure 3. Probiotics attenuate proinflammatory cytokine release in lung 24 hours post CLP. Reverse transcription and real-time PCR
assays were performed to quantify steady-state mRNA levels of pro-inflammatory cytokines. (A) IL-6 and (B) TNF-a were significantly increased in the
lung of septic animals compare to shams (P,0.05). LGG or BL treatment normalized these levels to shams (P,0.05). Shams n = 4 per group; Septic,
Septic+LGG, Septic+BL n = 5 per group. Data are expressed as the mean 6 SE. Enzyme-linked immunosorbent assay (ELISA) was used to determine
the protein concentrations of IL-6 and TNF-a in the lung. (C) IL-6 and (D) TNF-a were significantly elevated in the lung of septic mice compared to
shams (P,0.05). Treatment with LGG or BL prior to CLP led to significantly reduced (P,0.05) levels of both cytokines compared to untreated septic
mice. Shams n = 3 per group; Septic, Septic+LGG, Septic+BL n = 4 per group. Data are expressed as the mean 6 SE.
doi:10.1371/journal.pone.0097861.g003
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receptor-dependent manner [51]. A study performed in healthy

adults suggests how three different lactobacilli induce differential

gene-regulatory networks and pathways in the human mucosa,

showing that mucosal responses to LGG involve would healing,

IFN response and ion homeostasis [52]. A recent review article

provides detailed information on several probiotic strains and their

ability to stimulate the immune system including activation of

macrophages, natural killer cells, T-lymphocytes and release of

cytokines in strain specific, dose dependent manner [53]. Several

randomized controlled trials within adult and pediatric popula-

tions suggest the use of probiotics as a promising therapy for

nosocomial gastrointestinal and respiratory tract infections

[10,11,12,13] but there are still many questions to be answered

about their mechanisms of action.

From current clinical studies of probiotic therapy, it appears

that timing of probiotic administration may be important in their

effectiveness with administration early in critical illness potentially

being important. [27,54,55,56]. In our mouse model of sepsis, the

animals were given LGG or BL immediately before the surgery to

better reflect the common clinical setting where a patient

presenting with peritonitis could be treated at the time of surgery

to attempt to prevent future hospital acquired infections and acute

lung injury. Our recently published data describe significant

improvement of several outcomes including survival, bacteremia,

systemic inflammatory response and intestinal homeostasis with

administration of these probiotic strains in this immediate

‘‘surgical’’ timeframe. [36].

The pathophysiology of septic shock syndrome is characterized

by hyperactive and dysregulated endogenous inflammatory

mediators including cytokines such as IL-6, TNF-a, IL-1b, IL-12

and interferon c [57,58]. It has been shown that early attenuation

of transcription factor NFKB activation and cytokine message

expression correlates with improved outcome in polymicrobial

sepsis [59]. Controlling inflammatory mediated injury to distant

organs is a key goal in sepsis to prevent the multiple organ

dysfunction syndrome (MODS) which carries quite a high

mortality. This is often observed in generalized peritonitis (as

studied in our model), which accompanies surgical conditions such

as gastrointestinal perforation [58]. Clinical and experimental data

support an important role of the lung during the initial stages of

the multiple organ dysfunction syndrome (MODS) [60]. The

release of pro-inflammatory mediators can cause acute lung injury

[61] and it has been reported that levels of pro-inflammatory

cytokines such as IL-6 and TNF-a are significantly elevated in the

lungs after CLP-induced peritonitis [59,62]. There are several

publications reporting the protective effect of different probiotic

strains against bacterial infection. A study done in the rat CLP

peritonitis model demostrated a decrease of TNF-a and IL-1b in

lungs of animals receiving a prolonged three week pre-treatment

with probiotics and overall reduction of acute lung injury was also

observed [35]. Racedo at al. used a mouse model of Streptococcus

pneumoniae infection to evaluate the effect of L. casei and found that

two days of pre-treatment could beneficially regulate the TNF-a
and IL-10 balance, allowing a more effective immune response

against infection and modulation the inflammatory response. This

was associated with less damage to the lung in this model [63]. In

our unique immediate pre-treatment model, we found significantly

increased mRNA and protein levels of pro-inflammatory cytokines

TNF-a, IL-6 in the lungs of septic mice. Treatment at the time of

onset of peritonitis (rather than a prolonged pre-treatment period)

with either Lactobacillus rhamnosus GG or Bifidobacterium longum

normalized these cytokine levels to those seen in shams indicating

the anti-inflammatory effect of both probiotic strains possibly

contributing to better overall outcome.

In general, Cox-2 is not expressed in healthy tissues but is

rapidly induced in response to cytokines and is elevated at sites of

inflammation and injury [64] and is involved in pathogenesis of

sepsis [65]. In mouse CLP model, Cox-2 expression was previously

shown to increase in the lungs of septic mice [66,67,68], in

addition dual inhibition of Cox-2 and 5-LOX successfully

attenuated lung injury, reduced MPO activity and improved

survival of these mice [69]. As shown in several in vitro and in vivo

models, pathogens induce Cox-2 expression via activated Toll like

receptors (TLRs) [39,40]. TLRs play a central role in the initiation

of innate immune responses and in the development of a

subsequent pro-inflammatory response, which can lead to

inflammation induced organ injury. TLRs are activated by specific

microbial ligands leading to an association with TIR domain

containing MyD88 factor which mediates a signaling cascade that

activates NFKB factor and results in upregulation of pro-

inflammatory cytokines [70]. Markedly increased expression of

TLR-2 and TLR-4 in monocytes [71,72] and leukocytes [73] has

been reported in septic patients. In mouse CLP peritonitis models,

TLR-2 and TLR-4 expressions were significantly upregulated in

hepatic and splenic macrophages [74], in the lungs and liver

[75,76] as well as in the intestine [77] when compared to sham

mice. Here we demonstrate that Cox-2, TLR-2, MyD88 and

NFKB (p50/p105) were significantly higher in the lungs of septic

mice compared to healthy shams and lower in the lungs of LGG

and BL mice. NFKB (p50/p105) in the lungs of BL treated septic

mice showed only a decreasing trend. The expression of TLR-4 in

the lungs remained unchanged among all experimental groups,

similar to the observations of Williams et al. [75] in a CLP

peritonitis model where TLR-4 expression increased at earlier

time points but not at 24 hours. We speculate that downregulation

of Cox-2 through TLR-2/TLR-4 (via MyD88) in the lungs of

Lactobacillus rhamnosus GG or Bifidobacterium longum treated mice may

play a protective role in attenuating inflammation induced lung

injury following systemic sepsis and peritonitis.

In conclusion, probiotic therapy with LGG and BL can reduce

lung injury following experimental peritonitis and sepsis and is

Figure 4. Probiotics downregulate Cox-2 expression in the lung
24 hours post CLP. Reverse transcription and real-time PCR assays
were performed to quantify steady-state mRNA levels of Cox-2. Cox-2
was significantly elevated in the septic group compared to sham
groups (P,0.05). Treatment with LGG or BL significantly reduced mRNA
levels of Cox-2 compared to untreated septic mice (P,0.05). Shams
n = 4 per group; Septic, Septic+LGG, Septic+BL n = 4–5 per group. Data
are expressed as the mean 6 SE.
doi:10.1371/journal.pone.0097861.g004
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associated with reduced lung inflammatory cell infiltrate and

decreased markers of lung inflammatory response activation.

Probiotic therapy may be a promising intervention to improve

clinical lung injury following systemic infection and sepsis.
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