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Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and
peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly
expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the
brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part
of the wider RF-amide peptides family, many orthologues have been characterized across
vertebrate species, and due to the promiscuity between ligands and receptors within this
family, confusion over the nomenclature and function has arisen. In this review, we intend
to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by
reviewing specific localization and ligand availability, we propose an integrative role for
GnIH in the coordination of reproductive and metabolic processes. Specifically, we
propose that GnIH participates in the central regulation of feed intake while modulating
the impact of thyroid hormones and the stress axis to allow active reproduction to
proceed depending on the availability of resources. Furthermore, beyond the central
nervous system, we also propose a peripheral role for GnIH in the control of glucose and
lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together,
evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on
the reproductive axis is based on the integration of environmental cues and internal
metabolic status.

Keywords: Gonadotropin inhibitory hormone (GnIH), RF-amide related peptide (RFRP), G-protein coupled receptor
(GPCR), reproduction, metabolic control
INTRODUCTION

Following the initial discovery of gonadotropin-inhibiting hormone (GnIH) in quail over 20 years
ago (1), homologues have been identified and characterized in multiple vertebrate species ranging
from fish to mammals (for review: 2, 3). Structurally, GnIH and its homologues belong to the
broader RF-amide peptides family with a unique LPXRFa (X=L or Q) C-terminal motif. As is the
case for many novel peptides, GnIH was named after its reported inhibitory effects on gonadotropin
release in quail. In fact, GnIH was the first hypothalamic peptide reported to exert an anti-
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gonadotrophic effect in any vertebrate species (1). Specifically,
GnIH was shown to directly inhibit gonadotropin-releasing
hormone (GnRH) release via the GnIH receptor (GnIH-R; 4),
as well as downregulate luteinizing hormone beta-subunit (LHb)
mRNA levels (5) and inhibit its release (1) from the anterior
pituitary gland. However, the role of GnIH on follicle-
stimulating hormone beta-subunit (FSHb) has been more
ambiguous, as studies in quail have revealed no impact on
mRNA levels (5) or FSH release (1), while both were
suppressed in cultured cockerel pituitaries (6). Interestingly,
although this effect was further confirmed in other avian
species and extensively reviewed (7–11), it is less evident in
mammals and remains controversial, especially as it relates to
puberty (12). Beyond the reproductive axis, GnIH and its
receptor have also been shown to participate in the control of
energy homeostasis and nutrient partitioning through regulation
of appetite control, glycemia, adipose, thyroid activity, and the
stress response. Furthermore, since the GnIH-R in mammals is
also activated by neuropeptide FF (NPFF), it has been shown to
modulate nociception, although via activation by NPFF rather
than GnIH (13). In this review, based on tissue distribution,
cellular localization, and ligand availability, we explore the
integrative neuroendocrine function of GnIH and its receptor
to coordinate reproduction and energy homeostasis in response
to multiple internal and external cues.
NOMENCLATURE OF GnIH-R AND
ITS LIGANDS

Throughout the literature, while GnIH was originally named for
its identified role in quail (1), orthologs in mammalian species
are commonly annotated as LPXRFa peptides or RFamide-
related peptides (RFRPs), specifically RFRP-3 (14). Additional
annotations also used in the literature include neuropeptide VF
(NPVF) and neuropeptide SF (NPSF) (15, 16). Similarly,
receptors are often named after their known ligands, or when
the ligand is unknown, based on the receptor type, genomic, and
phylogenic information. In the case of RFamide peptides, this is
further complicated by the promiscuity between receptors and
ligands (for review: 17). As a result, non-avian GnIH-Rs are also
referred to as Neuropeptide-FF receptor 1 (NPFF-R1) (13),
receptor OT7T022 (15), and RFRP-R (7). In addition, based on
the nomenclature of G protein-coupled receptors (GPR), the
GnIH-R is known as GPR147 (18). In fact, despite the confusing
nomenclature surrounding GnIH-Rs, it is now well accepted that
the primary receptor for GnIH is GPR147, while another
candidate, GPR74 (referred to as HLWAR77 or NPFF-R2),
which is present in most vertebrates with the exception of fish
(2, 19), displays a lower affinity for GnIH and may actually be
more specific to NPFF (7, 8, 13, 16, 20). This preferential binding
of NPFF to GPR74 also extends to the ligands neuropeptide AF
(NPAF) and RFRP-1 (21). Thus, whenever possible for simplicity
and coherence, we opted to refer to both ligand and receptors as
GnIH and GnIH-Rs, respectively.
Frontiers in Endocrinology | www.frontiersin.org 2
GnIH-Rs STRUCTURE, INTRACELLULAR
SIGNALLING AND LIGAND SELECTIVITY

To date, GnIH-Rs have been cloned or deduced from genomic
databases across many vertebrate species (Table 1), including
teleosts, aves, and mammals (for review: 2), and although most
species possess a single GnIH-R, up to three paralogues have
been reported in Goldfish (Carassius auratus; 49), Zebrafish
(Danio rerio; 51), common carp (Cyprinus Carpio; 54) and
more recently, the Indian Major Carp (Labeo Catla) in which
GnIH-R paralogues were shown to belong to the GPR147 group,
although forming their own subclade separate from mammalian
and avian GPR147 (61). Interestingly, despite these differences in
phylogeny, these GnIH-R paralogues have been reported to play
similar roles in reproduction, as outlined throughout Table 1.

Like all GPCRs, GnIH-Rs are composed of seven interconnected
transmembrane domains along with an N-terminal extracellular
and a C-terminal intracellular tail. Following the original
identification of the human GnIH-R, transfection studies in
Chinese Hamster Ovary (CHO) cells revealed that activation of
the receptor results in decreased forskolin-induced cAMP
accumulation, while no effect on Ca2+ mediated signaling was
observed, suggesting inhibition of adenylyl cyclase, and thus
coupling to Gai or Gao (15). The specific inhibition of forskolin-
induced cAMP accumulation in CHO cells transfected with the
human GnIH-R was further confirmed by Mollereau et al. (62).
Similarly, in chickens, initial studies suggested GnIH could
modulate the levels of Gai2 mRNA in COS-7 cells transiently
transfected with the GnIH-R, suggesting activation of Gai (7). This
was later confirmed in vitro as GnIH was shown to block forskolin-
induced cAMP accumulation in GH3 cells (a rat pituitary
somatolactotrope line) transiently transfected with the chicken
receptor (44). In addition, in this study, co-transfection of the
chicken GnIH-R and gonadotropin-releasing hormone receptor III
(GnRH-RIII) showed that activation of the GnIH-R resulted in the
reduction of GnRH-induced cAMP response in a receptor ratio-
dependent manner, suggesting a direct interaction between the
signaling of both GnIH-R and GnRH-RIII in chickens (44).

In fish, the intracellular signaling pathways used by GnIH-Rs
have also been studied in vitro (for review: 63). Although, in
tilapia, activation of the GnIH-R with LPXRFa-2 was shown to
stimulate reporter constructs for both PKA and PKC suggesting
coupling to Gas and Gaq (56), stimulation of all three zebrafish
GnIH-Rs (LPXRF-R1, LPXRF-R2 LPXRF-R3) transfected in COS-
7 cells failed to activate reporter constructs for PKC while LPXRF-
R2 and LPXRF-R3 exhibited a dose-response activation of reporter
constructs for PKA, suggesting exclusive coupling to Gas (52).
However, inhibition of cAMP accumulation was not measured in
the above-mentioned studies. Further investigation in CHO cells
demonstrated that both human NPFF-Rs (including GnIH-R or
NPFF-R1) couple to Gai3 and Gas as the primary transducers,
with NPFF-R2, additionally coupled to Gai2 and Ga (64). This
suggests that ligand binding could result in opposing signaling
pathways and may in part explain the conflicting results outlined
in Table 1. Interestingly, studies in mammals showed that
although GnIH orthologues are the preferential ligand for
January 2022 | Volume 12 | Article 781543
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TABLE 1 | List of GnIH-Rs orthologues across vertebrate species with localization and reported function.

MAMMALS

Species Sex1 Receptor Ligand Reported Function References

Name Localization2 Reproductive Metabolic Other

Horse
(Equus caballus)

F NPFFR-1 Hyp, Pit RFRP-3 No effect on GnRH or LH release (22)

Syrian hamster
(Mesocricetus
auratus)

M GPR147 Hyp, BNST,
HbN, Hpc

RFRP-3 Stimulates the HPG axis Potential role as an
intermediate between
metabolic cues toward
central reproductive control

(23)

F GPR147 Hyp, BNST,
HbN, Hpc

RFRP-3 Inhibits LH release

GPR147 GnRH neurons,
Kiss neurons

RFRP-3 Inhibits gonadotropin release in
presence of GnRH stimulation

(24)

F GPR147 Pit RFRP-3 Mediates LH surge at the level of
the Pit

(25)

M GPR147 B, T RFRP Regulates spermatogenesis (26)
Siberian hamster
(Phodopus
sungorus)

M GPR147 GnRH neurons RFRP-1 Inhibits LH release during LD;
promotes LH release during SD;
no effect on FSH

(27)
GPR147 GnRH neurons RFRP-3

Sheep
(Ovis aries)

NPFFR-1 SCN, PeVN,
SON, PT

RFRP Potential role in photoperiodic time
measurement

(28)

Human
(Homo sapiens)

GPR147 Adipose NPFF Slow antilipolytic effect (29)
GPR147 Adipose NPSF Rapid antilipolytic effect
GPR147 Ov RFRP-3 Downregulates steroidogenesis (30)
GPR147 Hyp, Pit RFRP-3 Downregulates GnRH expression;

directly inhibits gonadotropin
release

(4)

NPFFR-1 Hyp, Thal, Amyg,
Cb, Hpc, SC

NPFF Potentially anorexigenic Pro- and anti-
opioid effects

(13)

Marmoset
(Callithrix jacchus)

GPR147 Hyp RFRP Inhibits reproduction during the
prepubertal period

(31)

Pig
(Sus scrofa)

F GPR147 Hyp, Pit, OB,
MO, Cb, Cbr,
Hpc, Ov, MO,
SC, spleen,
uterus, eye,
adrenal, kidney,
intestine

GnIH Regulates the estrus cycle in
sexually mature animals at all
levels of the HPG axis

(32)

F GPR147 Hyp, Pit, Ov RFRP-3 Inhibits GnRH; downregulates
gonadotropin synthesis;
downregulates estradiol secretion

(33)

NPFFR-1 Hyp, Pit RFRP-3 Suppresses LH pulses; regulates
sexual maturation

(34)

Cat
(Felis catus)

F NPFFR-1 Ov RFRP-3 Increases progesterone
production from preantral follicles

(35)

Rat
(Rattus norvegicus)

GPR147 Hyp RFRP Controls the prepubertal state and
reproductive development

(36)

NPFFR-1 PVN, mPOA,
AHN, DMH, PMv,
LS, Thal, Amyg

NPVF Anti-opioid
effects

(16)
NPFFR-1 NPAF

NPFFR-1 Hyp, Pit, T, Ov,
Thal, Amyg, OB,
adrenal

NPFF Potentially anorexigenic Indirect role in
the
dopaminergic
system; pro-
and anti-
opioid effects

(13)

OT7T022 Hyp, Pit, T, Ov,
Cbr, BG, Hpc,
Thal, Mes, Cb,
MO, SC, optic
nerve, eye,
adrenal, placenta

RFRP-1 Increases prolactin secretion (15)
OT7T022 RFRP-3

(Continued)
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TABLE 1 | Continued

MAMMALS

Species Sex1 Receptor Ligand Reported Function References

Name Localization2 Reproductive Metabolic Other

M NPFF1R Amyg RFRP-1 Anorexigenic (37)
GPR147 RP3V, Arc, MS,

POA, Pit, Hpc
RFRP-3 Regulates the central control of

reproduction in adults
(38)

Mouse
(Mus musculus)

M NPFF1R Hyp RFRP-3 Orexigenic action likely via
the modulation of the effects
of leptin and ghrelin on
feeding behavior; involved in
the regulation of glucose
homeostasis

(39)

F NPFF1R Hyp RFRP-3 No effect on feeding
behavior; role in the
homeostatic control of body
weight and body
composition in basal
conditions; regulates energy
expenditure

GPR147 DS RFRP-3 Inhibits GnRH neurons (40)
GPR147 GnRH neurons,

Kiss neurons,
PVN, LS

RFRP-3 Inhibits Kiss and GnRH neurons (24)

GPR147 GnRH neurons,
gonadotropes

GnIH (41)

GPR147 Gonadotropes RFRP-1/
3

Downregulates gene expression of
LH-b, FSH-b, and common a-
subunits in presence of GnRH
stimulation; inhibits LH release

(42)

AVES

Species Sex Receptor Ligand Reported Function References

Name Localization Reproductive Metabolic Other

Japanese quail
(Coturnix japonica)

M GnIH-R Pit, Cbr, Mes, SC GnIH Inhibits gonadotropin release;
suppresses testosterone
production and testicular
development; negatively regulates
the development of secondary sex
characteristics

(5, 8)

GnIH-R Dien, Pit, Ov, T,
epididymis, vas
deferens, germ
cells

GnIH Downregulates reproduction at all
levels of the HPG axis; regulates
steroid synthesis and release,
sperm maturation, and germ cell
differentiation

(10)

Chicken
(Gallus gallus)

RFRPR Dien, Pit, Tel, OT,
OB

GnIH Regulates gonadotropin release (7)

NPFFR Dien, Pit, Ov, T,
Tel, OT, Cb, OB,
MO, SC, eye,
heart, liver,
adrenal, spleen

GnIH

NPFFR-1 Hyp GnIH (43)
F GnIH-R Dien, Pit GnIH Control of the prepubertal state;

regulates the termination of
reproduction

(44)

GnIH-R Hyp GnIH Orexigenic effects (45)
GnIH-R T, Ov,

prehierachiral
follicles

GnIH Possibly downregulates gonadal
steroids; functions in follicular
selection and maturation

(46)

(Continued)
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TABLE 1 | Continued

MAMMALS

Species Sex1 Receptor Ligand Reported Function References

Name Localization2 Reproductive Metabolic Other

Turkey
(Meleagris
gallopavo)

F GnIH-R Pit GnIH Reduces egg production efficiency (47)

European starling
(Sturnus vulgaris)

GnIH-R Mes, PO region,
GnRH-I neurons,
GnRH-II neurons

GnIH Inhibits the GnRH system (18)

GnIH-R Dien, Pit, T, Ov,
Mes, oviduct

GnIH Downregulates reproduction at all
levels of the HPG axis

(10)

White crowned
sparrow
(Zonotrichia
leucophrys)

F GnIH-R Dien, GnRH-II
neurons, ME,
BNST, OMC

GnIH Suppresses LH release; inhibits
copulation solicitation behavior

(9)

GnIH-R Pit, Ov, T GnIH Downregulates reproduction at the
level of the gonad

(10)

House sparrow
(Passer domesticus)

GnIH-R T GnIH Inhibits gonadotropin-induced
testosterone secretion

(11)

TELEOSTS

Species Sex Receptor Ligand Reported Function References

Name Localization Reproductive Metabolic Other

Goldfish
(Carassius auratus)

GnIH-
R1*†

Hyp, PI of Pit,
Thal, PeVN, NAT,
NDTL, NDLI

GnIH *Directly downregulates GnRH
expression; †Suppresses
gonadotropin release

(48)

GnIH-
R2*†

Hyp, PI of Pit,
Thal, POA

GnIH

GnIH-
R3*

Hyp, Thal, POA GnIH

GnIH-R1 Ov, T GnIH No effect in females; increases
testosterone, upregulates StAR
and 3bHSD, and downregulates
CYP19 in males

(49)
GnIH-R2 Ov, T GnIH

GnIH-R Pit GnIH Regulates gonadotropin release
and mRNA expression of LH-b
and FSH-b subunits; may be
stimulatory or inhibitory to control
seasonal reproduction

(50)

Zebrafish
(Danio rerio)

GnIH-
R1*

B, T, spleen, eye,
muscle, kidney

GnIH *Downregulates GnIH; potentially
downregulates steroidogenesis
and gametogenesis; †Role in
embryonic and early larval
development; ‡Mediates the
hypophysiotropic action of GnIH

(51)

GnIH-
R2*†

B, T, eye, kidney GnIH

GnIH-
R3*‡

B, Pit, T, Ov,
spleen, eye, gill,
muscle

GnIH

LPXRF-
R2

Pit LPXRFa-
1/2/3

Downregulates LH b-subunit and
CGA expression; no effect on FSH
b-subunit expression

(52)

LPXRF-
R3

Pit LPXRFa-
1/2/3

NPFFR1-
1

Dien, Pit, Tel,
Mes, Rhom, OB

LPXRFa Upregulates GnRH-3 expression in
the Hyp and the FSH-b subunit in
the Pit

(53)

NPFFR1-
2

Dien, Pit, Tel,
Mes, Rhom

LPXRFa

NPFFR1-
3

Dien, Pit, Tel,
Mes, Rhom

LPXRFa

Common carp
(Cyprinus carpio)

GnIH-
R1*

Hyp, T, Ov GnIH-III *Downregulates GnRH-3; †Inhibits
LH-b and FSH-b subunit
expression

(54)

GnIH-
R2*†

Hyp, Pit, T, Ov GnIH-III

GnIH-
R3*†

Hyp, Pit, T, Ov GnIH-III

(Continued)

AVES
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GnIH-R, other members of the RFamide family can also bind and
activate it. For example, the human GnIH-R was shown to also
bind several other endogenous peptides possessing an
FLFQPQRFa sequence, although with lower affinity (62). In fact,
cross-activation of receptors by multiple members of the RFamide
family commonly occurs, as demonstrated by kisspeptin-10 and
kisspeptin-54 shown to bind and activate both NPFF receptors,
including the GnIH-R. In any case, this resulted in increased Ca2+

mobilization and decreased cAMP accumulation, confirming the
coupling of mammalian GnIH-Rs to both Gaq/11 and Gai/o (65).

Interestingly, in the case of kisspeptin, the cross-activation
appears to be unidirectional, as GnIH orthologues failed to
Frontiers in Endocrinology | www.frontiersin.org 6
significantly bind to and activate GPR54, the known receptor
to kisspeptin (65). As RFamides and their receptors have
significant clinical implications in humans, specific agonists
and antagonists have been designed over the years. However,
as for their native ligand, specificity may be an issue due to the
promiscuity of NPFF-Rs (for review: 17). As a matter of fact,
known agonists of GPR54 were shown to also bind to the GnIH-
R and elicit intracellular Ca2+ mobilization, although they failed
to mediate a decrease in cAMP accumulation (65). This suggests
that while mammalian GnIH-Rs can couple to both Gaq/11 and
Gai/o, the activation of downstream signaling is dependent on
the ligand. In fact, this lack of receptor subtype selectivity can be
TABLE 1 | Continued

MAMMALS

Species Sex1 Receptor Ligand Reported Function References

Name Localization2 Reproductive Metabolic Other

Catla
(Catla catla)

GnIH-R1 B, G, kidney,
liver, heart, gill,
eye, stomach,
intestine

GnIH Primary site for GnIH action in the
brain

(55)

GnIH-R2 B, G, kidney,
muscle, heart,
eye, stomach

GnIH

GnIH-R3 G, kidney, liver,
heart, gill, eye,
intestine

GnIH

Nile tilapia
(Oreochromis
niloticus)

F LPXRF-R Dien, Pit, T, Ov,
Tel, Mes, liver,
intestine,
adipose, muscle,
gill, heart,
stomach

LPXRFa Upregulates LH and FSH (56)

Orange-spotted
grouper
(Epinephelus
coioides)

H GnIH-R Hyp, Pit, G, OB,
Tel, OT, Cb, MO,
gill, kidney,
stomach

GnIH-I/II/
III

Decreases GnRH in brain and
suppresses LH release

(19)

Clownfish
(Amphiprion
melanopus)

H GnIH-R B, Pit, G, eye GnIH Downregulates gonadotropins;
potential role in sex change

(57)

GnIH-R Dien GnIH Downregulates GnRH expression
and suppresses LH and FSH
synthesis and release

(58)

Grass puffer
(Takifugu niphobles)

LPXRFa-
R

Dien, Pit, Tel, OT,
eye

LPXRFa Upregulates LH-b and FSH-b
subunit expression

(59)

Tongue sole
(Cynoglossus
semilaevis)

LPXRFa-
R

B, Pit, Ov, gill,
heart, liver,
spleen, kidney,
stomach,
intestine, muscle

LPXRAa-
1

Stimulatory action (60)

LPXRFa-
R

B, Pit, Ov, gill,
heart, liver,
spleen, kidney,
stomach,
intestine, muscle

LPXRAa-
2

Inhibitory action

TELEOSTS
January 2022 | Volume 12 | A
1Sex abbreviations: M, Male; F, Female; H, Hermaphrodite.
2Localization abbreviations: Amyg, Amygdala; AHN, Anterior hypothalamic nucleus; Arc, Arcuate nucleus; BG, Basal ganglia; BNST, Bed nucleus of the stria terminalis; B, Brain; Cb,
Cerebellum; Cbr, Cerebrum; Dien, Diencephalon; DS, Dorsal septal nucleus; DMH, Dorsomedial hypothalamus; G, Gonad; HbN, Habenular nuclei; Hpc, Hippocampus; Hyp,
Hypothalamus; LS, Lateral septum; mPOA, Medial preoptic nucleus; MS, Medial septum; ME, Median eminence; MO, Medulla oblongata; Mes, Mesencephalon; NAT, Nucleus
anterior tuberis; NDLI, Nucleus diffuses lobi inferioris; NDLT, Nucleus diffuses tori lateralis; BNST, Nucleus stria terminalis; OMC, Oculomotor complex; OB, Olfactory bulb; OT, Optic
tectum; OV, Ovary; PVN, Paraventricular nucleus; PI, Pars intermedia; PT, Pars tuberalis; PeVN, Periventricular nucleus; Pit, Pituitary; POA, Preoptic area; Rhom, Rhombencephalon;
RP3V, Rostral periventricular area of the third ventricle; SC, Spinal cord; SCN, Suprachiasmatic nucleus; SON, Supraoptic nucleus; Tel, Telencephalon; T, Testis; Thal, Thalamus; VMH,
Ventromedial hypothalamus.
rticle 781543
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a significant challenge for the development of therapeutics, as
recently discussed by Nguyen et al. (66).

Nonetheless, beyond therapeutic applications, the promiscuity
of ligands for NPFF-Rs have significantly widened the
physiological relevance of RF-amide peptides, including GnIH.
For example, NPFF has a strong affinity for the GnIH-R (13),
suggesting that the physiological impacts of GnIH-R activation
depend on receptor localization and ligand availability. In
mammals, particular attention has been placed on the role of
NPFF and its receptors on modulating nociception, especially as it
relates to opioid-induced analgesia (67, 68). Interestingly, the
distribution of GnIH-R (NPFF-R1) and NPFF-R2 within the
central nervous system differs amongst mammalian species (13),
further highlighting the importance of both the presence of
receptors and ligand availability. Nonetheless, the presence of
GnIH-Rs throughout the hypothalamus suggests involvement in
multiple neuroendocrine processes, and while GnIH was first
identified as an inhibitory hypothalamic peptide on
reproduction (1), it has since been shown to also participate in
behavior, stress, and metabolism (for review: 3), all associated with
energy balance and nutrient partitioning.
GnIH AND ITS RECEPTOR IN THE BRAIN,
INVOLVEMENT IN MULTIPLE
NEUROENDOCRINE SYSTEMS

Since its discovery, GnIH has been localized throughout the
brain of many species, especially the diencephalon and
mesencephalon, with particular emphasis on the hypothalamic
region (4, 27, 69, 70). Despite some variations among species,
GnIH perikarya have been located in the paraventricular nucleus
(PVN) of quail (71, 72) and many other wild bird species (18, 73–
75), the dorsomedial hypothalamic area (DMH) in hamsters and
mice (14, 27), the periventricular nucleus (PerVN) in rats (15),
and the dorsomedial nucleus, as well as the PVN in sheep (76).
Neuronal projections have also been identified extending
throughout the brain, including the preoptic area (POA),
lateral septum, arcuate nucleus (ARC), and anterior
hypothalamus in mammals (14, 70, 77, 78). Similar to the
expression patterns of GnIH, GnIH-R is expressed throughout
the hypothalamus, specifically in the POA, rostral periventricular
area of the third ventricle (RP3V) and ARC. With further
expression in the pituitary gland (38), this widespread
localization within the hypothalamic area strongly suggests
multiple neuroendocrine functions. However, the expression of
GnIH and its receptor in the ARC is of particular interest, as this
area is involved in the regulation of both reproduction and
energy homeostasis (reviewed by: 79), which is further
discussed below.

Neuroendocrine Control of Reproduction
Seasonal Breeders
Long Day (LD) Breeders
Species such as chickens, deer, horses, and fish such as salmon,
carp, seabass, tilapia, goldfish, and grass puffer (50, 59, 80–90),
Frontiers in Endocrinology | www.frontiersin.org 7
are diurnal seasonal breeders known to be reproductively active
under long day lengths. Since the first species in which GnIH was
identified was the quail (1), most of the early research on the
effect of GnIH on reproduction involved avian species and the
relationship with photoperiodicity. Specifically, an increase in
melatonin released by the pineal gland and retina of the eye
during the dark period results in an elevation of GnIH synthesis
and release from the hypothalamus (86). In turn, binding of
GnIH to its receptor on GnRH-containing neurons inhibits
GnRH synthesis and release, while binding to its receptor in
the anterior pituitary directly inhibits the production of
gonadotropins (5). This inhibition of LH secretion was further
confirmed in several other avian species, including chickens,
white-crowned sparrows, and quail (5, 73, 91). As in avian
species, the photoperiodic control of reproduction in many fish
species is regulated by melatonin released from the retina of the
eye and the pineal gland (Review by: 88), suggesting a common
mechanism involving GnIH. As a matter of fact, administration
of GnIH-3 downregulates GnRH and LHb mRNA levels in
goldfish (48), clownfish (57), zebrafish (52), and sole fish (92).
Additionally, GnIH-3 administration decreases the expression of
GnRH-I in the orange-spotted grouper (19), while in the
common carp, expression of both LHb and FSHb are
downregulated (54). Conversely, in the sockeye salmon, in
vitro stimulation of pituitary cells with all three GnIH
orthologs induced an elevation in FSH and LH release (93),
while in vitro treatment of grasspuffer fish pituitary cells with
goldfish GnIH resulted in an elevation in FSHb and LHb subunit
mRNA levels (59). Interestingly, the inhibitory effects of GnIH
on gonadotropins were observed upon in vivo treatment, while
the stimulatory effects were obtained in vitro using primary
pituitary cell cultures and would need to be further confirmed
in vivo.

In avian species, upon photostimulation, decreasing levels of
melatonin result in a decrease in GnIH synthesis, thus lifting the
inhibition on the hypothalamic-pituitary-gonadal (HPG) axis
and allowing for the release of GnRH and the subsequent
activation of pituitary gonadotropes (94, 95). Interestingly, in
chickens, once the axis has been activated, ovarian production of
estradiol downregulates the expression of the GnIH-R in the
pituitary gland (46), thus switching the sensitivity of the
adenohypophysis in favor of stimulatory inputs (44, 94).

In nocturnal species, such as hamsters, studies on the role of
GnIH frequently resulted in conflicting results, with both
stimulatory and inhibitory effects reported (96, 97). This is
possibly due to the contrasting role of melatonin in these
species, with elevated levels during the dark phase contributing
to heightened activity. In fact, central administration of GnIH
stimulated the HPG axis of Syrian and Siberian male hamsters
exposed to short day (SD) lengths, with GnIH triggering the
release of LH (27, 98). However, when male Siberian hamsters
were exposed to long day (LD) lengths, GnIH administration led
to an inhibition of LH release (27). Additionally, gonadotropin
production was suppressed in female Syrian hamster following
intracerebroventricular (ICV) injection of GnIH, with no day
length effect reported in this study (14). Therefore, additional
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sex-specific differences may be at play in this species as GnIH-R
mRNA levels were reported to be higher in females than males
across all tissues examined (23). However, GnIH-R mRNA levels
were consistently elevated in hamsters maintained under LD
versus SD, regardless of sex (23), suggesting differential
regulation of GnIH and GnIH-R by melatonin and/or
photoperiod compared to diurnal breeders. Nonetheless, in the
same study, GnIH fibres were found to be more abundant in
females under SD than LD, while no changes were observed in
males (23). Interestingly, in ovariectomized Syrian hamsters, it
has been suggested that time of day is critical in the determination
of the sensitivity of the HPG axis to GnIH administration, with
GnIH-R and LHb mRNA levels exclusively downregulated when
ICV injection occurred in the afternoon, while morning
administration had no effect (97). This is consistent with the
established model of diurnal, seasonal breeders and the timing of
the LH surge as GnIH-ir cells significantly declined at the time of
the surge in Syrian hamsters (25).

Short Day (SD) Breeders
In the case of short-day seasonal breeders such as the rhesus
monkey, elevated melatonin levels lead to the advancement of
puberty and the presentation of sexual cues (99). In this species,
GnIH mRNA levels were upregulated in the pre-pubertal phase,
and due to the association with GnRH during this period, it has
been suggested that the inhibitory activity of GnIH contributes to
the pulsatility and reduced firing rate of GnRH neurons,
maintaining reproduction in an inactive state (31, 100).
Furthermore, GnIH and its receptor were observed to be
highest in adults (31). In sheep, GnIH treatment has also been
shown to reduce the synthesis and release of gonadotropins (76,
101), and more recently, the use of a GnIH-R antagonist, RF9,
resulted in the stimulation of gonadotropin production in ewes
(102). However, upon further investigation, RF9 was not only
found to be nonspecific to NPFF-R1 (GnIH-R) and NPFF-R2,
but also acted as an agonist of GPR54, which could have resulted
in the stimulation of LH release (103). To overcome the lack of
specificity, additional antagonists were developed, with RF313
and GJ14 displaying moderate to high specificity for the GnIH-R
with no impact on GPR54 (103, 104). In fact, while GJ14 does not
impact forskolin-induced cAMP production, it was shown to
block all effects of GnIH (103), making this receptor antagonist a
valuable tool for future studies.

Non-Seasonal Breeders
Non-seasonal breeders include spontaneous ovulating species,
such as humans, rats, mice, and naked mole rats, as well as
induced ovulating species, such as the domestic cat. Unlike
short-day and long-day breeders, the literature on non-
seasonal breeders is more consistent, and GnIH and its
receptor were shown to be present in all three levels of the
HPG axis (13, 15, 30, 35, 105). Interestingly, puberty in humans
has been hypothesized to be better anticipated by measuring the
accumulation of fat rather than using age or environmental
stimuli as a predictor (106). Therefore, it is not surprising that
a direct role of GnIH on the hypothalamic control of
reproduction appears to be substantially less critical than in
Frontiers in Endocrinology | www.frontiersin.org 8
seasonal breeders, as demonstrated by the reduced number of
projections of GnIH neurons to GnRH neurons in the mouse
(14) and GnIH projections to the median eminence (ME) in the
rat and mouse (70, 77, 107). However, IV administration of
GnIH still resulted in an inhibition of the GnRH-induced LH
production in ovariectomized rats (107, 108). Although a decline
in the expression of both GnIH and GnIH-R were reported
around sexual maturation in male rats, while in females, the
expression of GnIH increased and the expression of GnIH-R
significantly declined between 28 and 49 days of age (36), again
indicating a possible sex-related difference in the regulation of
and sensitivity to GnIH. In naked mole rats, only dominant
females can undergo spontaneous ovulation and breeding
females display elevated numbers of kisspeptin cells while non-
breeders presented an elevated number of GnIH cells (105).
Beyond puberty and ovulation, GnIH levels in rats significantly
declined immediately following parturition (109), likely playing a
role in facilitating postpartum estrus in this species (110, 111).
Thus, although the role of GnIH may be more discrete in non-
seasonal breeders, the inhibitory impact on reproduction is
still conserved.

Interaction With Kisspeptin and Its Receptor
Since its initial discovery as a novel gene in humans (112),
kisspeptin, along with its receptor (GPR54/Kiss-1r; 113), was
shown to control puberty and reproduction in mammals via
direct stimulation of GnRH neurons (114–119). In fact, along
with neurokinin B and dynorphin, kisspeptin is part of an
intricate neuronal circuitry responsible for the pulsatile
secretion of GnRH, referred to as the KNDy neurons (for
review: 120). Interestingly, GnIH-Rs are expressed in 9-16% of
RP3V kisspeptin neurons in rats (24), as well as in 5-10% of the
anteroventral periventricular nucleus (AVPV) and 25% of ARC
Kiss1 neurons in mice (121). Additionally, Kiss1 neurons in the
ARC are in close proximity to GnIH fibres (121), suggesting that
GnIH may directly inhibit a subset of kisspeptin neurons and
thus inhibit reproduction (122), although a reciprocal effect was
not identified (121). In mice, GnIH-R knockout (KO) resulted in
a weaker disruption of LH secretion (123) compared to GPR54
KO (124). However, Kiss1 mRNA was found to increase in
GnIH-R KO mice (123), and with 33% of GnRH neurons also
expressing GnIH-R in rats, GnIH likely acts at multiple levels
(GnRH and kisspeptin neurons) to inhibit GnRH synthesis and
release (24). This is further supported by the similarities in
expression patterns between GnIH-R and GPR54 as previously
reported (15, 125).

In long-day breeders, shorter day lengths result in increased
expression of GnIH due to higher melatonin (86), while the
number of kisspeptin-positive cells in the ARC and Kiss1mRNA
levels decline (126–129). Interestingly, when hamsters
maintained under a short-day length were treated with Kp10,
maturation of the reproductive tract was observed, with organ
weights comparable to that under long days (96), indicating that
exogenous kisspeptin is able to override the need for
photostimulation. As discussed further in the following
sections, beyond photoperiod, switching the activity of the
HPG axis from inhibitory to stimulatory may intimately be
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linked to metabolic status and the hypothalamic control of
energy reserves and nutrient partitioning (130, 131). This is
further supported as a relationship between kisspeptin,
photoperiod, and food availability has previously been
established in seasonal mammals (132).

Furthermore, as avian species require a significant shift in
energy partitioning towards egg production, metabolic status
may be the primary cue controlling the activation of the HPG
axis (133). Thus, the absence of a Kp gene in several avian species
(134, 135) may allow GnIH to take a central role in balancing
energy status and reproduction.

Integration With the Central Regulation of
Metabolic Processes
Regulation of Body Weight and Composition
The relationship between reproduction and body weight has been
previously described in mammalian and avian species (133, 136–
139), with a minimum body weight threshold required to initiate
the activation of the HPG axis (140, 141). Prior to sexual
maturation, animals undergo a rapid weight gain and growth
phase while the HPG axis remains suppressed, possibly via
elevated levels of GnIH. For example, moderate to high
intraperitoneal doses of GnIH in mice were reported to evoke an
increase in body mass (142), and chronic GnIH ICV injection
elevated both body weight and feed intake in male mice (143).
Initially, it was proposed that body weight was under the dual
control of both GnIH and its stimulatory counterpart, as GnRH
agonist treatment also resulted in a dose-dependent bodymass gain
in rats (144). However, the impact GnRH had on body weight was
likely the outcome of a GnRH-stimulated increase in the expression
of neuropeptide Y (NPY), as this peptide not only stimulates feed
intake but has additionally been implicated in the preovulatory
surge (145, 146). Furthermore, as described in the following
section, more recent evidence suggests that beyond the central
nervous system, GnIH can also influence body weight via direct
control of adiposity in male mice, acting independently of
reproductive steroids or the melanocortin system (96).

In view of the promiscuity between ligand and receptors from
the RFamide peptide family, it is reasonable to question whether
the impact of GnIH on body weight is mediated through its own
receptor. This could partly be answered using GnIH-R KO, and
in mice, inactivation of the GnIH-R resulted in significantly
heavier females, yet it did not impact the weight of males (39),
suggesting that the impact of GnIH on body weight is sex-
dependent and most likely related to reproduction. Since in
mammals, the GnIH-R was shown to couple to both Gai3 and
Gas (64), the observed differences between males and females
may point to a differential receptor activation and signalling
between sexes (147). In fact, when GnIH-KO and control mice
were fed high-fat diets (HFD) and low-fat diets (LFD), males
displayed declined locomotor activity in both KO groups, while
female mice in both KO groups demonstrated elevated fat mass
over the control (39). However, regardless of sex, obese (ob/ob)
mice displayed lower GnIH mRNA levels in the dorsal-medial
nucleus than their wild-type counterparts (148). Taken together,
these studies suggest that as proposed by Cázarez-Márquez et al.
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(96), the impact of GnIH and its receptor on body weight may be
linked to adiposity, which is also intimately associated with
reproduction. Back in 1974, Frisch and McArthur (106)
postulated the ‘critical weight hypothesis,’ which states that the
accumulation of body fat stores may be a better indicator of the
timing of sexual maturation rather than age or body weight itself.
This has further been confirmed in rats, as well as chickens, with
insufficient fat stores resulting in pubertal delay (136, 149, 150)
and diet-induced obesity resulting in declined reproductive
capacity (151, 152). In a recent study, GnIH injections resulted
in the elevation of serum total triglycerides and cholesterol (153),
leading to increased uptake of triglycerides by the adipose tissue
(142). Thus, it could be hypothesized that GnIH acts to control
fat deposition in adipose tissue not only in immature animals but
also in adults. This is partially supported by the association
between GnIH-induced increased body weight and increased
brown adipose tissue (BAT) mass and liver mass (143). However,
although GnIH appears to stimulate fat deposition, male GnIH-
R KO mice were not protected from body weight gain on a high-
fat diet (39), and a lack of GnIH-R signalling did not prevent
obesity. Additionally, with GnIH-stimulated feed intake reported
to trigger dyslipidemia (153) and abnormal glucose metabolism
(143, 154), GnIH may play a larger peripheral role in the control
of metabolism than previously thought (discussed in a
following section).

Regulation of Feed Intake via the
Melanocortin System
It is well-established that the melanocortin system controls feed
intake through the orexigenic peptides, neuropeptide Y (NPY)
and agouti-related peptide (AgRP), and the anorexigenic
peptides, pro-opiomelanocortin (POMC) and cocaine-and-
amphetamine regulated transcript (CART) (155–160). Neurons
from the melanocortin system have been localized throughout
many regions of the hypothalamus (24, 161) and shown to be in
close contact with GnIH neurons in the DMH, with GnIH-
containing fibres projecting to the ARC and PVN in mice (77,
162). In fact, the orexigenic effect of GnIH is mediated through
the modulation of POMC and NPY neuronal activity (24, 161,
163, 164), with POMC downregulated in the presence of GnIH
(161, 164, 165). In GnIH-R KO male mice, POMC mRNA levels
in the hypothalamus are elevated compared to wild type (39),
further suggesting a direct role for GnIH and its receptor in the
inhibition of the anorexigenic response. However, the direct role
of GnIH on NPY appears to be more ambiguous (161, 164). In
mice, GnIH has been reported to inhibit the neuronal activation
of NPY (161), yet in chicks, sheep, and rats, GnIH was shown to
stimulate NPY, prompting an increase in feed intake (165, 166).
Nonetheless, whether acting on both branches of the
melanocortin system or not, ICV administration of GnIH
increases feeding duration (167) and overall feed intake in
chickens and rats (70, 108, 165, 168). However, the injection of
GnIH into the amygdala of rats also resulted in an opposite effect
with the suppression of food intake (37). Interestingly, despite
mediating increases in feed intake in sheep, GnIH administration
did not result in a reduction in energy expenditure, as measured
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by calorimetry (166). This strongly suggests that the effect of
GnIH on feed intake is not intended to achieve or restore energy
homeostasis but may rather coordinate the partitioning of energy
away from reproduction (169). However, chronic ICV injection
of GnIH in mice did decrease energy expenditure and increased
feed intake, contributing to a rapid decline in brown adipose
tissues (BAT) activity prior to an accumulation in lipid droplets,
thus elevating BAT deposition overall (143). This effect also
resulted in a GnIH-induced decrease in core body temperature
during short exposure to the dark phase, suggesting for the first
time that GnIH contributes to the conservation of energy (143).

In songbirds and zebra finches, food deprivation results in a
decline in the number of GnIH-ir cells (170), although no
differences in mRNA or peptide were observed (171, 172). As
hypothesized by Fraley et al. (167), this decrease in GnIH-ir cells
following feed restriction is likely the result of chronic metabolic
stress. Of interest, declining GnIH-ir cell numbers have been
correlated to declining body mass in female songbirds (170).
When GnIH-R deficient male mice underwent 12-h fasting,
despite a large decline in body mass, no change in LH
secretion was detected. Conversely, in their wild-type
counterparts, an immediate decline in LH secretion occurred
following a 12-h fasting (123). Taken together, these studies
provide an alternative pathway by which GnIH is able to mediate
feed-seeking behavior via body mass fluctuations (170).

Since the leptin receptor is co-expressed with NPY and
POMC, leptin is also thought to regulate feed intake (173,
174). Thus, a possible integration between GnIH and leptin
has been investigated. This led to the identification of the long
form of the leptin receptor (LepRb), present on 15 to 20% of
GnIH neurons (148). This finding highlights a possible pathway
between GnIH and the regulation of adiposity via leptin and feed
intake (175). With diminished levels of GnIH observed in the
leptin-deficient ob/ob mice, a direct inhibition from leptin via
the small subset of LepRb-expressing neurons is possible, yet
alternative indirect hypotheses have also been proposed (148).
However, leptin acts through the PKC-dependent pathway to
promote intracellular Ca2+ signalling within GnIH neurons,
thereby potentially eliciting an indirect effect on appetite
control and an indirect negative feedback to GnRH neurons
(176), which lack the LepRb (177). Thus, elevated circulating
leptin results in a decline in GnIH activity (178), leading to low
LH levels in ob/ob mice, resulting in infertility (179). However,
reactivation of the HPG axis is possible with leptin treatment
(180, 181), illustrating a possible multipronged link between
metabolism and reproductive success (182, 183), with leptin
additionally proposed as a regulator in the timing of puberty
(184). Furthermore, as both leptin and GnIH activate the PI3K/
Akt signalling pathway (185, 186), Anjum et al. (175)
hypothesized that PI3K/Akt signalling in ventromedial nucleus
of the hypothalamus (VHM) neurons is responsible for the
coordination of energy homeostasis (further discussed in a
following section).

GnIH and Central Ghrelin
In addition to the melanocortin system, ghrelin, a hormone
traditionally referred to as the ‘hunger hormone,’ is also involved
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in the control of appetite. As for GnIH, ghrelin elicits a
stimulatory effect on food intake and an inhibitory effect on
gonadotropin secretion through the growth hormone
secretagogue receptor (GHS-R) (187) present on GnRH
neurons (188). While this hormone has been primarily linked
to the gastrointestinal tract, it was also identified in the brain of
chickens (189), mice, and rats (190, 191), pointing to a
neuroendocrine role beyond the gut. Specifically, ghrelin-
containing hypothalamic neurons have been proposed to
interact with NPY and AgRP-containing neurons to stimulate
the secretion of orexigenic peptides in rodents (190, 191).
Beyond appetite control, ghrelin can also inhibit LH (192), and
testosterone production through the inhibition of steroidogenic
enzymes (193), contributing to the suppression of the HPG axis
during periods of insufficient energy stores (reviewed by: 194).
Interestingly, when fed a HFD, GnIH-R KOmice demonstrated a
complete resistance to the central administration of ghrelin,
failing to prompt an increased cumulative feed intake
compared to their wild-type counterparts (39). This suggests
that the effect of ghrelin on appetite control may be in part
mediated viaGnIH and its receptor. However, the suppression of
ghrelin effects in GnIH-R KO was not sustained when mice were
fed a LFD (39). Since it has previously been reported that rats fed
a HFD do not display ghrelin-induced hyperphagia but do
maintain the increased adiposity also observed in LFD-fed rats,
ghrelin may utilize separate mechanisms to act on appetite and
lipid metabolism (195). In fact, Anjum et al. (175) suggested that
the ghrelin receptor involved in the brain may be different and
not yet identified.

Integration With the Stress Response
The relationship between the hypothalamo-pituitary-adrenal
(HPA) axis and GnIH has been previously established
(Reviewed by: 196). GnIH neurons in the PVN are in direct
contact with neurons containing corticotrophin releasing
hormone (CRH); (163), which upon release, triggers the
activation of the stress axis (197, 198). Furthermore, the CRH
receptor 1 is expressed in 13% of GnIH neurons and its
activation has been shown to elevate GnIH-R mRNA in vitro
(199). As well, GnIH neurons have been shown to respond to
mediators of acute and chronic stress (199–201). These stressors
include but are not limited to, immunological stress, physical
restraint, and social isolation and defeat. Specifically, a
lipopolysaccharide (LPS) challenge in female rats resulted in a
significant elevation in GnIH and GnIH-R expression,
concurrent with a direct downregulation in LH-b mRNA
(202). A similar inhibitory effect on the HPG axis was
observed during social defeat stress in tilapia, with pituitary
GnIH-R levels significantly increasing along with cortisol levels
(203, 204). This was further validated in immobilized Wistar
rodents (199), although in socially isolated male Sprague-Dawley
rats, both GnRH mRNA expression and GnIH neuronal activity
were suppressed, while no changes in the number of GnIH cells
were detected (205). Taken together, experimental evidence
suggests that CRH can directly activate a proportion of
hypothalamic GnIH neurons and increase GnIH sensitivity by
upregulating the GnIH-R. As for most neuroendocrine responses,
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chronic activation of the CRH receptor can lead to the
desensitization of the HPA axis (206). Thus, it has been
hypothesized that CRH sensitive GnIH cells may also become
unresponsive, resulting in the interruption of the GnIH-GnRH
neuronal pathway during sustained chronic stress (205). Since the
GnIH-R is also expressed in pituitary corticotropes along with
POMC, the precursor peptide of ACTH (207), the interactions
between GnIH and the HPA axis appears bidirectional and in fact,
ICV injectionofGnIHin tilapia led toan elevation inplasmaACTH
levels (208). However, recent studies have demonstrated that this is
unlikely due to co-expression of GnIH-R and POMC, as pituitary
expression of GnIH-Rwas elevated during social defeat, along with
an elevation in GnIH mRNA and cell numbers, while POMC
remained unaffected (204).

As discussed in the previous section, GnIH is implicated in
metabolic control via feed intake and energy partitioning. In
birds, metabolic stress can be induced by feed deprivation,
resulting in serum corticosterone levels 13 times higher than
under ad libitum feeding, although no change in the number of
CRH-ir neurons were observed in the PVN (170). A positive
correlation between serum corticosterone levels and mass loss
was previously identified (170). However, whether the loss of
mass was directly induced by corticosterone, or the consequence
of reduced feed intake, is not clear and could potentially involve
GnIH. Of interest, glucocorticoid receptors (GRs) are present in
GnIH cells (201), and activation of GR via the administration of
synthetic glucocorticoids such as dexamethasone stimulates
GnIH and GnIH-R transcription (209). Interestingly, although
chronic administration of corticosterone resulted in the
stimulation of GnIH synthesis in the diencephalon of quail,
acute injections did not (201), suggesting that the impact of stress
on reproduction via GnIH is intended to adapt to longer-term
impact. Furthermore, since GnIH is more effective at
interrupting reproduction during the early breeding season in
rock doves (210), the impact of stress on GnIH may allow the
delay of sexual maturation when conditions, such as food
availability, are not favourable.

Integration With the Central Control of
Thyroid Hormones
Similar to GnIH, THs have been implicated in both reproduction
and metabolism. Since THs upregulate the basal metabolic rate
of most cells of the body, hypothyroidism is associated with
significant increases in body weight, along with high levels of
TSH due to the absence of negative feedback (211, 212).
Conversely, systemic or central (ICV) administration of T3

results in weight loss with a reduction in thyroid-releasing
hormone (TRH) and TSH (213). These fluctuations in weight
appear to also be related to observed fluctuations in GnIH, with
changes in circulating TH concentrations inducing the inverse
expression of GnIH (122). However, to the best of our
knowledge, a direct effect of GnIH on the thyroid gland is not
known, and the expression of the GnIH-R in follicular cells has
not been reported. Nonetheless, it is well documented that
hyperthyroidism ultimately leads to a net fat loss through an
elevation in resting energy expenditure, decreased cholesterol
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levels, and increased lipolysis and gluconeogenesis (reviewed by:
214, 215), which could lead to reproductive dysfunction. Under
fasting conditions, a decline in pituitary Dio2 levels was
observed, leading to an inactivation of the HPG axis (216).
Simultaneously, hypothalamic Dio2 levels were found to
increase (216), resulting in an elevation in NPY and AgRP in
the ARC and the inhibition of TRH production in the PVN
(217). This likely occurs to defend energy stores (218, 219),
stimulating feed intake to restore homeostasis. In fact,
administration of leptin and alpha-melanocortin-stimulating
hormone (a-MSH) restored TRH levels to normal following
the fasting-induced decline (220–223). As leptin has been found
to be correlated with body mass index (BMI) and TSH levels
(224), this adipokine inhibits the orexigenic branch of the
melanocortin system while stimulating POMC (222, 225).
These stimulatory effects of leptin on TRH occur in both a
direct mechanism in the PVN and the indirect mechanism in the
ARC, acting through the melanocortin system (222).
Intriguingly, in Dio2-KO mice, post-fasting feeding behavior
did not return to normal levels (217), suggesting that T3

activation of the orexigenic peptides may be more critical than
GnIH in restoring this behavior.

As elevated TH levels are known to activate GnRHneurons and
indirectly suppress the activity of GnIH (226–228), it is
unsurprising that GnIH mRNA levels decline with the
administration of T4 and increase during periods of low
circulating levels (122). In fact, GnIH-KO prevented the delay in
pubertal onset typically associated with hypothyroidism (122).
Furthermore, as is discussed in more detail in the following
section, while GnIH has been shown to decrease insulin
production, TH are known to exert an opposite role (229),
leading to alterations in leptin concentrations. Thus, we
hypothesize that leptin may be indirectly downregulated in the
presence of GnIH, and therefore the re-activation of the HPT axis
via leptin depends on the downregulation of GnIH observed under
fasting conditions.
BEYOND NEUROENDOCRINE
FUNCTIONS, GnIH AND ITS RECEPTOR
PARTICIPATE IN THE PERIPHERAL
REGULATION OF PHYSIOLOGICAL
PROCESSES

Peripheral Control of Reproduction
Although it is clear that GnIH and its receptor are key to the
hypothalamic control of reproduction, the presence of the GnIH-
R at the lower level of the HPG axis (gonads) has also been
reported in avian species, including the Japanese quail, the
European starling, the white-crowned sparrow (10), and the
domestic chicken (7, 230), as well as various fish species
including clownfish (57), Nile tilapia (56), Indian carp (61),
common carp (54), zebrafish (51), and goldfish (49), and the rat
(13, 15). Additionally, the GnIH-R has been identified in the
ovary of humans (30), swine (33), felines (35), tongue sole (60),
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and in the testis of Syrian hamsters (26) and house sparrows (11)
(Table 1). Furthermore, treatment with GnIH was shown to
effectively shut down reproduction in the ovary and testis not
only by indirectly reducing gonadotropins release from the
pituitary as previously discussed, but also directly by
decreasing cell viability in the ovary and reducing the levels of
testosterone in the testis (5, 8, 10, 11, 46, 51). In fact, the GnIH-R
has been found to play a role in the downregulation of
steroidogenesis (7, 10, 11, 30, 46, 51). In humans, GnIH has
been shown to downregulate the production of steroidogenic
acute regulatory (StAR) protein, while the GnIH-R antagonist
(RF9) was able to partly block this effect (30). Beyond
steroidogenic enzymes, by suppressing glucose uptake (to be
discussed in the following section), which normally promotes
cholesterol uptake and thus metabolic substrates to germ cells
(231, 232), GnIH may also reduce substrate availability resulting
in a decline in sex steroid production in mammals (142). In turn,
the inhibitory effect of GnIH produced in the gonads results in a
decline in spermatogenesis (10, 26) or a decline in the viability of
pre-hierarchical follicles leading to impaired follicular
maturation (46). Similar to the anterior pituitary, treatment
with estradiol and/or progesterone also downregulates the
expression of the GnIH-R in the chicken ovary (46). Thus, the
impact of GnIH on the inhibition of the HPG axis may become
less influential once the animal reaches sexual maturity.

Peripheral Metabolic Control
Similar to reproduction, recent evidence also points to a broader
role for GnIH on peripheral tissues, especially as it relates to
energy storage and availability. Recently, high levels of GnIH
mRNA have been confirmed in the eye, while low levels were
observed in the colon, stomach, ileum, muscle, kidney, and
spleen (162). Interestingly, the expression pattern of GnIH in
these peripheral tissues was similar to that of its receptor (162).
Nonetheless, since this is a relatively new field of research, most
studies described in the following section are based on the
peripheral administration of exogenous GnIH rather than on
the activity of endogenous GnIH itself.

Adipose Tissue
Although GnIH may not be produced in the adipose tissue, its
receptor was shown to be present on human fat cells, suggesting a
direct role for GnIH or its orthologues on adiposity (29).
Interestingly, the initial focus was placed on white adipose
tissue (WAT) due to its association with energy storage (233).
However, it was recently reported that GnIH treatment inhibits
the activity of BAT (143), which plays a critical role in energy
expenditure through thermogenesis (reviewed by: 234, 235).

In terms ofWAT, circulating leptin concentrations can be used
as an indirect measure of fat accumulation (96, 236–238). For
example, higher leptin concentrations are observed in fat or ad
libitum fed Syrian hamsters compared to their respective lean or
feed-restricted counterparts (239). Of interest, leptin is known to
reduce feed intake (240) and is considered anorexigenic (241). This
activity opposes the role of GnIH on appetite control discussed
earlier and highlights a possible antagonistic effect between leptin
Frontiers in Endocrinology | www.frontiersin.org 12
and GnIH (178). This relationship is further emphasized in ob/ob
mice, which lack a functional leptin gene (181).Without thisWAT
regulator, rats demonstrated an elevation in bodyweight (242, 243),
similar to that observed in GnIH treated mice (143).

As described previously, both leptin and GnIH activate the
PI3K/Akt signalling pathway in the hypothalamus, a pathway
also used during insulin-mediated glucose uptake in the adipose
tissue (142), thus, raising the possibility of an interaction
between, GnIH, leptin, and insulin in the regulation of glucose
uptake. Since GnIH-treated male hamsters had higher levels of
leptin and insulin compared to controls (96), it is possible that
this resulted in increased adiposity (142), leading to increased
insulin resistance (reviewed by: 244). However, this effect was not
observed in female hamsters (96). In fact, it appears that the
effect of GnIH may be dose-dependent as 2,000 and 20 ng
induced a decline and increase in glucose levels, respectively,
with a concomitant elevation in insulin receptor and GLUT8
proteins under the lowest GnIH dose only (142). Thus, GnIH
may regulate insulin sensitivity, at least in male mice. As the
study by Cázarez-Marquez et al. (96) used significantly higher
GnIH levels (105-mg), a possible GnIH threshold may exist with
supraphysiological doses eliciting opposite effects.

Pancreas
As described in the previous section, GnIH has been hypothesized
to regulate fat accumulation inadipose tissue through themediation
of increased nutrient uptake, including glucose and triglycerides
(142). In fact,when injected intraperitoneally,GnIHhasbeen found
to primarily co-localize with glucagon in a-cells, while its receptor,
although present in both cell types, is primarily co-localized with
insulin in b-cells of pancreatic islets (153), strongly suggesting an
involvement in glucose homeostasis. Essentially, GnIH supportsa-
cell survival and hyperplasia through activation of the GnIH-R
present in these cells, which triggers theAKTandERK1/2 pathways
(186), leading to an increase in glucagon and feed intake. When
glycemia is elevated, b-cells would normally release insulin to offset
the imbalance, restore glucose homeostasis, and reduce feed intake
(reviewed by: 245). However, recent evidence demonstrated that
chronic and acute doses ofGnIH increase blood glucose levelswhile
simultaneously reducing insulin secretion. With the colocalization
ofGnIHandglucagon, it is likelyGnIHcanpromote hyperglycemia
in rats (153, 246). The direct blockade of insulin has been
hypothesized to occur through Gai and the inhibition of the AC-
cAMP-PKA pathway (153, 247). This hypothesis is further
supported by the reduced insulin sensitivity with chronic GnIH
treatment, characterized by a decline in insulin receptor and
GLUT4 in the adipose tissue (142, 153). Intriguingly, since insulin
is able to relay information regarding body fat status to the central
nervous system(reviewedby: 248, 249), inhibition viaGnIHfurther
supports amultipronged impact throughwhichGnIHpromotes fat
accumulation and an elevation in body weight, associated with
increased feed intake (see previous section). Furthermore,
kisspeptin has also been reported to stimulate glucose production
with an increased glucose tolerance to prevent the onset of
hyperglycemic disorders (250) via its receptor. As this effect is
absent in GPR54-KOmice (251), it is possible that cross-activation
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by various members of the RFamide family, including GnIH, can
occur. This is of particular interest as insulin has been reported to be
a mediator between nutritional status and reproductive success
(252), and significant fluctuations in glucose levels can be lethal
(reviewed by: 253).
Frontiers in Endocrinology | www.frontiersin.org 13
CONCLUSION

Since its initial discovery over 20 years ago, the roles and
importance of GnIH and its receptor have significantly
expanded. As shown in Figure 1, GnIH, via its receptor, not
FIGURE 1 | The hypothalamo-pituitary-gonadal (HPG; yellow), thyroid/metabolic (HPT; green), and adrenal (HPA; purple) axes are highly integrated via the activity of
gonadotropin-inhibitory hormone (GnIH) and its receptor (GnIH-R). As part of the HPG axis, GnIH neurons elicit an inhibitory effect on gonadotropin-releasing
hormone I (GnRH-I) neurons (hypothalamus) and gonadotroph cells (pituitary gland) in all species, in addition to suppressing the activity of kisspeptin (Kiss-1) neurons
in mammalian species (hypothalamus). Additional GnIH-Rs on GnRH-II neurons in the midbrain contribute to the inhibition of sexual behaviors. In seasonal breeders,
photoperiod influences the expression of GnIH, with short day (SD) lengths elevating GnIH and inhibiting reproduction, while long day (LD) lengths diminish GnIH
expression and permits the progression of sexual maturation, via gonadotropin production. Acting at the level of the gonads (ovary and testis), the production of sex
steroids further downregulates GnIH-R expressed in the pituitary gland. Simultaneously, GnIH neurons stimulate the orexigenic peptides, neuropeptide Y (NPY) and
agouti-related peptide (AgRP), and downregulate the anorexigenic peptide pro-opiomelanocortin (POMC). Overall, this results in an increase in feed intake, promoting
an upregulation of the HPT axis. Ghrelin from the gastrointestinal tract (GIT) also contributes to this elevation in feed intake and knockout (KO) of the GnIH-R can
downregulate this pathway. Active conversion of thyroid hormones (T4 → T3) stimulates the release of GnRH from the hypothalamus, thus activating the HPG axis.
Finally, the HPA (stress) axis also provides input to GnIH neurons. While GnIH can bind to pituitary corticotropes and the adrenal cortex to promote an elevation in
adrenocorticotropic hormone (ACTH) and glucocorticoids, respectively, elevations in glucocorticoids positively feedback on GnIH neurons. This results in an inhibitory
effect on reproductive activity, hypothesized to shift resources away from this energetically expensive process and towards managing the stressor.
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only directly inhibits the synthesis and release of GnRH and
gonadotropins but also participates in the integration of multiple
internal and external cues to control reproduction. Specifically,
we propose that GnIH is responsible for modulating body
composition and energy status and thus partitioning nutrients
away from reproduction. This is achieved in part by stimulating
feed intake via the melanocortin system, which in turn inhibits
the induced release of GnRH in the ME by THs. Furthermore, we
also propose that the negative impact of stress on reproduction is
mediated in part via GnIH, as it is upregulated by both
hypothalamic CRH and circulating glucocorticoids while also
stimulating the expression of POMC in pituitary corticotrophs
and glucocorticoids in the adrenal cortex. This results in a
complex central integration between the HPG, HPT and HPA
axes to allow or preclude reproduction from proceeding
(Figure 1). In addition, recent evidence also suggests that
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GnIH and its receptor participate in the regulation of
peripheral metabolic processes (Figure 2). In the pancreatic
islets, GnIH produced by a-cells acts in a paracrine manner on
its receptor present on b-cells to inhibit the production of
insulin, thus counteracting the effect of THs and leptin and
promoting feed intake while reducing gluconeogenesis and
glycogenesis in the liver (Figure 2). Interestingly, the presence
of the GnIH-R in adipose tissue suggests a more complex role on
energy partitioning, requiring further investigation (Figure 2).
Nonetheless, with the known promiscuity between members of
the RF-amide family and their receptors, it is also possible that
alternative ligands and receptors are also involved, opening new
avenues for potential therapeutic applications.

Ultimately, while our understanding of the individual
physiological roles played by GnIH and its receptor has been
extensively investigated over the last two decades, integrative
FIGURE 2 | Gonadotropin-inhibitory hormone (GnIH) and its receptor (GnIH-R) impact metabolic control and energy partitioning in various peripheral organs. In the
pancreas, GnIH is expressed in alpha cells (a-cells), while GnIH-R is expressed in the beta cells (b-cells). It is hypothesized that GnIH binding to its receptor will
inhibit the production of insulin in b-cells, thus stimulating feed intake. In an effort to achieve homeostasis, high glucose levels stimulate the production of insulin
leading to the stimulation of glycogenesis and inhibition of gluconeogenesis in the liver. However, in periods of low glucose availability, a-cells increase their
production of glucagon, leading to the stimulation of feed intake, similar to the activity of GnIH. In addition, glucagon stimulates both glycogenolysis and
gluconeogenesis, elevating the circulating levels of glucose. While the expression and presence of GnIH has yet to be reported in adipocytes, GnIH-R is. Thus, it is
hypothesized that GnIH can influence circulating leptin concentrations, an hormone known to oppose the action of GnIH on insulin, thereby downregulating feed
intake. As for leptin, thyroid hormones also stimulate the anorexigenic effect of insulin, thus counteracting the effect of GnIH on glucose mediated feed intake.
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functions both centrally and peripherally are relatively recent
and open the avenue to a new era of research.
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