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A B S T R A C T

Background: Pancreatic adenocarcinoma (PAAD) is one of the most lethal carcinomas, and the current histo-
pathological classifications are of limited use in clinical decision-making. There is an unmet need to identify
new biomarkers for prognosis-informative molecular subtyping and ultimately for precision medicine.
Methods: We profiled genomic alterations for 608 PAAD patients in a Chinese cohort, including somatic
mutations, pathogenic germline variants and copy number variations (CNV). Using the CNV information, we
performed unsupervised consensus clustering of these patients, differential CNV analysis and functional/
pathway enrichment analysis. Cox regression was conducted for progression-free survival analysis, the elas-
tic net algorithm used for prognostic model construction, and rank-based gene set enrichment analysis for
exploring tumor microenvironments.
Findings: Our data did not support prognostic value of point mutations in either highly mutated genes (such
as KRAS, TP53, CDKN2A and SMAD4) or homologous recombination repair genes. Instead, associated with
worse prognosis were amplified genes involved in DNA repair and receptor tyrosine kinase (RTK) related sig-
nalings. Motivated by this observation, we categorized patients into four molecular subtypes (namely repair-
deficient, proliferation-active, repair-proficient and repair-enhanced) that differed in prognosis, and also
constructed a prognostic model that can stratify patients with low or high risk of relapse. Finally, we ana-
lyzed publicly available datasets, not only reinforcing the prognostic value of our identified genes in DNA
repair and RTK related signalings, but also identifying tumor microenvironment correlates with prognostic
risks.
Interpretation: Together with the evidence from genomic footprint analysis, we suggest that repair-deficient
and proliferation-active subtypes are better suited for DNA damage therapies, while immunotherapy is
highly recommended for repair-proficient and repair-enhanced subtypes. Our results represent a significant
step in molecular subtyping, diagnosis and management for PAAD patients.
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Introduction

Pancreatic adenocarcinoma (PAAD) is one of the most aggressive
and deadly cancers in China, with an estimate of 90,100 new cases
and 79,400 new deaths according to the cancer statistics [1]. The high
rate of mortality indicates worse prognosis over time and lacking
effective systematic therapies available for patients. The first and the
most urgent is to stratify patients ideally driven by molecular subtyp-
ing coupled with effective prognostic models. With patients stratified
into, for example, high or low risk of relapse, the right treatment can
be applied to the right patient (‘precision medicine’) [2], ultimately
reducing mortality.

The prevailing stratification and treatment for PAAD patients are
based on the mutation profiles of genes, particularly those genes
involved in homologous recombination repair (HRR) pathway [3,4]. It
has been reported that patients with deficiency in HRR genes have
better prognosis than patients with proficiency in HRR genes, when
treated with platinum-based chemotherapy or poly (ADP-ribose)
polymerase inhibitor (PARPi) [5,6]. However, for resected or
advanced patients unable to receive platinum-based chemotherapy,
there is no value in prognosis, irrespective of HRR genes mutated or
not [6]. Moreover, the overall prevalence of point mutations in HRR
genes for PAAD patients is as low as 15.4% [95% Confidence Interval
(CI) = 13.0%-18.0%] [7], limiting wide application of this prognostic
marker.

In addition to HRR genes, other genetic alterations have also been
identified from a comprehensive study involving a cohort of 3,594
PAAD patients [8]. Newly identified genetic alterations are mostly
somatic mutations in KRAS, TP53, CDKN2A and SMAD4. For example,
somatic mutations in KRAS are found in as many as 88% of patients. A
majority of mutated genes, however, are not druggable. Only 4% of
patients have genetic alterations occurring in druggable genes, and
most of these genes are involved in receptor tyrosine kinase (RTK),
RAS or MAPK signalings. Only 0.5% of patients have high tumor muta-
tional burden (TMB) or high microsatellite instability (MSI). There-
fore, there is an unmet need to seek new genomic markers that can
be used to guide prognosis and treatment for PAAD patients.

Exploring tumor microenvironments is an active area of research
in PAAD, as highlighted by the effort stratifying patients by cytolytic
activity which can be estimated from, for example, RNA-seq tran-
scriptome data of PAAD patients in The Cancer Genome Atlas (TCGA)
cohort[9]. Patients with low cytolytic activity tend to be more insta-
ble in the genome with increased copy number alterations, including
recurrent amplification of MYC and NOTCH2 as well as deletion of
CDKN2A/B[9]. On the other hand, for patients with high cytolytic
activity, immune checkpoint genes (except for PD-L1) are highly
expressed [9]. However, prognostic values are far from clear when
patients stratified in this way, awaiting further studies.

We recognize that the high mortality of PAAD in China can be
traced back to the lack of comprehensive molecular subtyping. With
this end, we profile the mutational landscape of 608 PAAD patients,
the largest cohort ever reported in China, generating the most com-
prehensive resource on genetic alternations. Genetic alterations pro-
filed include somatic mutations, pathogenic germline variants, copy
number variations (CNV) and well-known genomic markers, such as
TMB, copy number instability (CNI) and somatic mutational signa-
tures. To the best of our knowledge, we are the first to report that the
poor prognosis is associated with amplification of genes involved in
DNA repair and RTK related signalings. Based on this finding, we are
able to stratify patients into four molecular subtypes, each associated
with distinct prognosis and treatment. Then, we construct a prognos-
tic model incorporating the information on CNV of DNA repair and
RTK related genes, and apply the constructed model to distinguish
patients with high or low risk of relapse. Finally, we analyze PAAD
patients from a Western cohort [10] to reinforce the informativeness
of CNV of DNA repair and RTK related genes in identifying molecular
subtypes informative for prognosis.
Methods

Patient cohort

This study enrolled a Chinese cohort consisting of 608 patients
pathologically diagnosed with PAAD from a commercial genetic test-
ing database (Genecast Connect) and Ruijin Hospital (Shanghai,
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China) between March 2018 and April 2020. Informed consent form
was obtained from each participant. Amongst 608 patients, 233
underwent a follow-up of �6 months and received radical pancrea-
tectomy (R0) in Ruijin Hospital (Supplementary Table 1), thus
selected for progression-free survival (PFS) analysis. The associated
clinical data, including histological grade, TNM stages and adjuvant
treatment data, were collected from Ruijin Hospital. Clinical stage
was classified according to the 8th edition of the American Joint Com-
mittee on Cancer staging criteria. The overall study protocol (NO.
2013-70) was approved by the Medical Ethical Committee of Ruijin
Hospital and the research was conducted in accordance with relevant
ethical guidelines. The copy of the study protocol was provided in
Supplementary File 1.

DNA extraction

Genomic DNA of tumor was extracted from formalin-fixed paraf-
fin-embedded (FFPE) samples using MagPure FFPE DNA Kit B (Magen,
China, ID: D6323-02). Genomic DNA of peripheral blood lymphocyte
(PBL) was extracted using TGuide S32 Magnetic Blood Genomic DNA
Kit (Tiangen, China, ID: DP601). The concentration of DNA was mea-
sured by Qubit dsDNA HS (High Sensitivity) Assay Kit (Thermo Fisher,
USA, ID: Q32851), while the quality of DNA was assessed by Agilent
2100 BioAnalyzer (Agilent, USA). All samples for DNA extraction
were obtained before the treatments started.

Library preparation

30 to 300 ng genomic DNA extracted from samples of FFPE and
PBL was sheared with Covaris LE220 to the length of 200 bp with rec-
ommended settings. Then, fragmented DNA was used to construct
library using KAPA Hyper Preparation Kit (Kapa Biosystems, USA, ID:
KK8504) according to the manufacturer’s instructions. Quantity of
libraries was measured using AccuGreen High Sensitivity dsDNA
Quantitation Kit (Biotium, USA, ID: Q32854) and size was determined
on Agilent Bioanalyzer 2100 (Agilent, USA).

Targeted-region capture and sequencing

Targeted-region capture was performed using xGen Hybridization
and wash kit box (IDT, USA, ID:1080584). Two gene panels, specifi-
cally designed for cancer gene detection by our project partner (Gen-
ecast Biotechnology Co., Ltd), include 566 and 764 genes,
respectively. Panels cover frequently mutated genes in solid tumors,
and gene lists were provided in Supplementary Table 2. For 608
patients involved in this study, 562 patients were profiled using
the panel with 566 genes, and 46 patients profiled using the
panel with 764 genes. Hybridization and washing were imple-
mented according to the manufacturer’s protocol. Captured librar-
ies were sequenced on the instrument of Illumina NovaSeq 6000
according to the manufacturer’s protocol, producing reads with
the length of 150 bp in pairs.

Somatic mutation calling

Raw reads were first processed by Trimmomatic (v0.36) [11] to
remove adaptor sequence and low-quality base. Clean reads were
mapped to human genome (version hg19) by BWA aligner (v0.7.17)
[12]. Mapping results were then sorted and marked for duplications
via Picard (v2.23.0) [13]. SNVs and InDels as well as complex muta-
tions were called via VarDict (v1.5.1) [14] and FreeBayes (v 1.2.0)
from processed mapping results in pair of tumor and control samples,
respectively. Somatic mutations appeared in genomic regions over-
lapped with lowly mappable regions defined by ENCODE [15] as well
as low complex repeats were removed. Segmental duplications and
recurrent sequence specific errors (SSEs) were also removed to
promise reliable calling results. Retained somatic mutations were
annotated with ANNOVAR [16]and further filtered according to these
criteria: i) VAF (variant allele frequency) >= 2%, supported reads >= 6
and without strand bias; ii) annotated as nonsynonymous mutations;
iii) MAF (minor allele frequency) <= 0.2% in both databases of Exome
Aggregation Consortium (ExAC) [17]and Genome Aggregation Data-
base (gnomAD) [18]. The information on the identity of somatic
mutations (together with VAF) was provided in Supplementary
Table 3.

Germline variant calling for HRR genes

Germline variants were called for 18 HRR genes (ATM, ATR, BARD1,
BLM, BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, NBN, PALB2, RAD50,
RAD51B, RAD51C, RAD51D, RAD54L and MRE11A) from mapping
results of control samples. Firstly, only germline variants with sup-
ported reads not smaller than 15 and with VAF not smaller than 1%
were retained. Secondly, pathogenicity (pathogenic and likely patho-
genic) of germline variants were evaluated by CharGer [19], ClinVar
[20] and manual curation-ACMG, and those labeled as “pathogenic”
and “likely pathogenic” were retained. Lastly, pathologic germline
variants in HRR genes were further checked by manual curation.
Notably, all of patients in our cohort carry heterozygous pathogenic
germline variants in DNA repair genes, with the detailed information
available in Supplementary Table 4.

Somatic CNV identification

Somatic CNVs were identified using CNVkit (v0.9.2) [21] in the
reference mode. The baseline of normalized sequencing depth on tar-
geted regions were first constructed based on a panel of normal sam-
ples. For each tumor sample, log2 copy number ratio of normalized
sequencing depth on each targeted region between the tumor sample
and the baseline was then calculated. If a gene contained at least 5
targeted regions, median log2 ratio was considered as the CNV value
for this gene. Gene depletion was called if the CNV value was not
larger than -0.74 (log20.6), and gene amplification called if the CNV
value was not smaller than 0.68 (log21.6). When log2 copy number
ratio > 0, the higher positive value indicates the higher level of gene
amplification. Inversely when log2 copy number ratio < 0, the lower
negative value indicates the higher level of gene depletion.

Patient clustering based on CNV value

The methodology used to cluster patients was based on the con-
cept of consensus clustering, implemented by the Consensus Cluster
Plus package [22]. This package was designed to allow the optimiza-
tion of parameters, including clustering algorithms (such as hierar-
chical, K-means and PAM), distance measures (such as Euclidean
distance versus Pearson correlation) and the optimal number of clus-
ters/groups. The analysis was detailed as follows. We first normalized
CNV values of genes in samples by subtracting the mean and dividing
the standard deviation. Based on normalized CNV, we then per-
formed sensitivity analysis to optimize parameters mentioned above:
1) the subsampling was done both on genes and samples; 2) these
subsamples were tested against different clustering algorithms, dis-
tance measures and the number of groups (from 2 to 6); and 3) item-
consensus and cluster-consensus plots were drawn to evaluate the
stability of clusters (Supplementary Figure1), showing that the use
of PAM in combination with the Euclidean distance identified two
groups (the optimal) of patients. Genes with significantly differential
CNV value between patients of two clusters were identified through
Wilcoxon rank-sum test [23], a non-parametric test that relaxes dis-
tribution assumptions and thus is more widely applicable than
parameter-based tests.
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CNV score calculation

Genes with significantly differential CNV value between different
patients were grouped into two clusters via the same method men-
tioned above. Then, the first principal component (PC1) was calcu-
lated for all patients based on normalized CNV values of genes in
each cluster, respectively. Next, univariate Cox regression was con-
ducted to calculate the hazard ratio (HR) for PC1 per cluster. Follow-
ing the approach [24], we constructed the following fomula to
calculate the CNV score:

CNV score ¼
XPC

1i ��
XPC

1j

where i represented the gene cluster with HR larger than 1, and j for the
cluster with HR smaller than 1. Codes for CNV score calculation are made
available at https://github.com/corefacilitygenecast/FACTORscore. Based
on the CNV score, patients were stratified into two groups with high or
low CNV score, using the optimal cutoff (4.5) determined by the maxstat
package25 to maximize the separation of these two groups. The maxstat
package implements a significance test on standardized maximally
selected rank statistic of CNV scores under the null hypothesis that any
cutoff has no influence on the distribution of survival time. Also, genes
with significantly differential CNV value between patients in different
groupswere identified throughWilcoxon rank-sum test [23].

Functional and pathway enrichment analysis

Enrichment analysis was conducted for genes with significantly
higher CNV value in each cluster or group, through Fisher’s exact test
implemented by the cluster Profiler package [26] using functional
annotations of Gene Ontology (GO) [27,28], and pathway resources
obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG)
[29] as well as Reactome [30].

Risk score calculation

As mentioned above, in our cohorts there were 233 patients with
available prognostic information. These patients were first randomly par-
titioned into training and validation sets according to the ratio of 2:1,
resulting in 155 patients in the training set and 78 patients in the valida-
tion set. Such random allocation was not stratified on any clinical varia-
bles. Based on patients in the training set, a prognostic model was
constructed through the algorithm of elastic net implemented by the
glmnet package [31,32], taking as inputs normalized CNV values of 73
genes involved in DNA repair and RTK related signalings as well as in the
HRR pathway (Supplementary Table 5). More specifically, these genes,
as an initial gene set, were used to fit a regularized Coxmodel for survival
times (PFS), where the elastic net penalty was adopted to maximize the
partial likelihood of coefficients of selected genes. After the process of
leave-one-out cross-validation, 5 genes closely associated with PFS were
selected and tuned for their coefficients. The resulting prognostic model
was shown below (Equation 1):

Risk score = -0.1136*RAD50 + 0.6140*AKT1 + 0.5643*CSF1R -
0.3089*JAK2 -0.2088*ABL1 where each gene name represented its
CNV value of patients. Then, risk score for each paitent was calculated
according to the constructed prognostic Cox model with CNV values
of 5 genes composing it. The optimal cutoff (-0.0958) of risk score
was determined via the maxstat package [25] to stratify patients into
two groups with high or low risk of relapse, while prognosis of
patients in these two groups was compared. Lastly, the same prog-
nostic and cutoff were applied in the validation set.

Risk score calculation for the TCGA cohort

Datasets of genomic alteration and clinical information of PAAD
patients collected in TCGA were downloaded from the website of
cBioPortal for cancer genomics (https://www.cbioportal.org/study/
summary?id=paad_tcga_pan_can_atlas_2018). For PADD, 182
patients had both CNV values and prognostic information available.
We then conducted the downstream analysis for these 182 PAAD
patients in the TCGA cohort. We constructed a prognostic model for
patients of the TCGA cohort with the same strategy and method as
described above (Equation 2):

Risk score = 0.1707*PALB2 - 0.8363*RAD51C + 0.1818*FGF3 -
0.1096*NF1 + 1.2076e-05*FGF4 + 1.9914*PIK3CA - 0.1841*MAP-
KAP1 - 0.1357*RICTOR

where each gene name represented its CNV value of patients. Follow-
ing that, risk score was calculated for each patient based on this prog-
nostic model. The optimal cutoff (0.2833) was determined by the
maxstat package [25] to stratify patients into two groups and the
prognosis was compared between them.

Tumor microenvironment (TME) analysis for TCGA cohort

We obtained transcriptional signatures associated with infiltra-
tion of immune cells [33], that is, marker gene sets signifying immune
cells of different types (Supplementary Table 6). The abundance of
each immune cell type in TME for each patient in the TCGA cohort
was estimated through the algorithm of single sample Gene Set
Enrichment Analysis (ssGSEA) [34]. This algorithm calculates an
enrichment score that quantifies the degree of absolute enrichment
of a cell-type-specific gene set in each patient. Additionally, enrich-
ment score of transcriptional signatures associated with anti-PD-1
resistance (IPRES) [35] was also calculated for each patient using
Gene Set Variation Analysis (GSVA) [36]. Both analyses were con-
ducted based on RNA-seq data of patients in the TCGA cohort down-
loaded from the website of cBioPortal for cancer genomics, and the
analysis methods are the same as above. Significantly differential
transcriptional signatures between patients in groups with high- or
low-risk score were identified throughWilcoxon rank sum test.

Statistical analysis and visualization

Prognosis of patients in different clusters or groups was analyzed
and compared via Kaplan-Meier estimate and log-rank test [37]
implemented by the survival package [38,39], with results visualized
by the survminer package. Effects on PFS of other independent varia-
bles were evaluated via multivariate Cox regression analysis imple-
mented in the survival package [38,39]. ROC curves together with
AUC values were calculated using the pROCpackage [40]. Comparison
of values between two distributions was conducted via Wilcoxon
rank sum test, while multiple testing correction was done using false
discovery rate (FDR) method. Landscape of genomic alterations of
PAAD patients in the Chinese cohort was plotted through the Com-
plexHeatmap package [41].

Statistics

Wilcoxon rank-sum test was used to compare the distributions of
continuous values between two groups, which is a non-parametric
test that relaxes distribution assumptions and widely applicable in
statistical analysis. Fisher’s exact test was used to examine the signifi-
cance of the association between the two kinds of classification of
patients, which is much more robust for the case of small sample size
in any cell of the contingency table. Similarly, pathway and functional
enrichment analysis was implemented via Fisher’s exact test. Addi-
tionally, log-rank test was used to compare the survival distributions
of two kinds of stratification of patients, and Wald test used to test
whether the beta coefficient of a given variable is significantly differ-
ent from zero in the multivariate Cox regression analysis; both are
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conventional in prognosis analyses. In total, 608 PAAD patients are
involved in this study, and this cohort is enough to promise the
power for statistical analysis.
Role of funders

The funders had no role in the design of the study; in the collec-
tion, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results.
Results

Mutational landscape of PAAD patients

We carried out a cohort study involving 608 PAAD patients in
China and, for each patient, profiled genetic alterations including
somatic mutations, pathogenic germline variants and CNV along with
several genomic markers, such as TMB, CNI and somatic mutational
signatures. From this Chinese cohort we identified a list of frequently
mutated genes, with the top 30 illustrated in Figure 1A. Consistent
with the previous findings based on two larger cohorts of PAAD
patients (collected out of China) [8,42], the highest mutated genes
included KRAS (518 out of 608 patients, 85%), TP53 (63%), SMAD4
(20%) and CDKN2A (18%). For the gene KRAS, the somatic mutations
tended to occur in G12D (233 out of 608 patients, 38%), G12V (29%)
and G12R (11%); this mutation pattern was similar to the observation
based on the TCGA cohort [42]. More interestingly, we found that 73
out of 608 patients (12%) in our cohort carried point mutations in one
or more genes involved in the HRR pathway (Table 1), including
ATM, ATR, BARD1, BLM, BRCA1/2, BRIP1, CDK12, CHEK1/2, NBN, PALB2,
RAD50/51B/51C/51D/54L and MRE11A. When considering the HRR
genes as a whole, aggregated carrier ratio (12.01%) was similar to
that in the Caris cohort [7].

Next, we explored prognostic values of mutated genes identified
above, focusing on a subset of PAAD patients (233 out of 608) treated
with R0 resection and containing prognostic information (�6-month
follow-up; Supplementary Table 1). Firstly, we found no significant
difference in prognosis when stratifying patients by mutated status
of KRAS, TP53, SMAD4 or CDKN2A (Figure 1B-E). These four genes
were mutated prevalently in PAAD patients, and our finding did not
support their use in prognosis. When examining specific mutations
within KRAS, we also found no significant association with the prog-
nosis; for example, the median survival time (310 days) of patients
with G12D versus that (406 days) of patients with wild type
[Figure 1F; hazard ratio (HR) = 1.6, 95% CI = 0.85-2.9, P = 0.15 on
Wald test]. Secondly, we found no prognostic value of HRR genes
(Figure 1G and Supplementary Figure 2), consistent with the previ-
ous findings from cohorts collected in Know Your Tumor program
[6]. Thirdly, we also observed no difference in prognosis when
patients were stratified into two groups according to mutated status
of all genes (Supplementary Figure 3).

In addition to prognostic values, we also explored therapeutic val-
ues for genes with genetic alternations. Firstly, we found that 42 out
of 608 patients (6.9%) had clinically actionable genetic alterations
that might be targeted with existing drugs, including gene amplifica-
tions (n = 9), gene deletions (n = 4) and somatic mutations (n = 29).
Secondly, we found that most of genetic alterations occurred within
druggable candidate genes, such as genes involved in the RTK/RAS
signaling (EGFR, ERBB2, MET and BRAF) and the PI3K pathway (PTEN,
PIK3CA and AKT1); this is similar to a previous report based on real-
time targeted genome profile analysis [8]. Third, we found that 7
patients (1.2%) had somatic mutations in genes involved in the mis-
match repair (MMR) pathway (MLH1 and MSH2), indicating potential
benefits on immunotherapy [43].
Amplification of DNA repair genes confers worse prognosis in PAAD
patients

The above analysis suggested that in terms of prognostic use, a
limited number of mutated genes might be not informative for such
complex cancers as PAAD. This motivated us to consider other geno-
mic information, particularly CNV (quantified as logarithmically
transformed ratio of normalized read depth on genes between tumor
samples and normal samples; see Methods). We classified 608 PAAD
patients into two groups according to CNV (Figure 2A): the first
group (CNV-G1 with 321 patients) versus the second group (CNV-G2
with 287 patients). Patients in CNV-G2 had a worse prognosis than
patients in CNV-G1 (HR = 2.0, 95% CI = 1.3-3.2, P = 1.7 £ 10�3 on Log-
rank test), with median survival time (410 days) for CNV-G1 versus
that (239 days) for CNV-G2 (Figure 2B).

To uncover genomic factors influencing the survival of PAAD
patients, we performed differential CNV analysis using Wilcoxon
rank sum test, identifying 155 genes with higher CNV in CNV-G1
than in CNV-G2, and 215 genes with higher CNV in CNV-G2 under
the cutoff of FDR < 0.05. Through enrichment analysis using Reac-
tome pathways[30], we found that 26 genes with significantly higher
CNV value in CNV-G2 patients were enriched in DNA repair
(Figure 2C; odds ratio (OR) = 3.7, FDR = 5.4 £ 10�4 on Fisher’s exact
test), including 11 genes involved in the HRR pathway (ATM, ATR,
BLM, BRCA1/2, BRIP1, CHEK2, PALB2 and RAD51B/51C/51D). This find-
ing was visually confirmed by the CNV landscape (Figure 2D), in
which CNV-G2 patients possessed more amplified DNA repair genes,
especially those in the HRR pathway. Contrary to that, CNV-G1
patients possessed more depleted DNA repair genes, with 11.5% of
these patients (37 out of 321) having depleted TP53 that functions in
modulating the DNA damage repair pathway[44]. In summary, as
compared to CNV-G1, CNV-G2 patients seemed to obtain an
enhanced function of DNA repair, likely HRR. For convenience, we
renamed CNV-G2 as ‘repair-proficient’, and CNV-G1 as ‘repair-defi-
cient’. Such relabeling was also justified by our observation that
repair-deficient patients (43 out of 321 patients, 13%) had more point
mutations in genes involved in the HRR pathway than repair-profi-
cient patients (30 out of 287 patients, 10%), though no significance
reached (OR = 1.32, P = 0.32 on Fisher’s exact test).

Next, we explored genomic signatures that could signify the dif-
ference between repair-deficient patients and repair-proficient
patients. We found that CNI of repair-deficient patients was signifi-
cantly higher than that of repair-proficient patients (P = 9.1 £ 10�11

on Wilcoxon rank sum test; Figure 2E), whereas TMB of repair-profi-
cient patients was significantly higher than that of repair-deficient
patients (P = 2.6 £ 10�2 on Wilcoxon rank sum test; Figure 2E), likely
reflecting the involvement of different oncogenic mechanisms in
these two groups of patients. Consistent with these observations, we
also found distinct patterns of somatic mutational signatures that
were associated with each of these two groups (Figure 2F). Muta-
tional signatures for each patient were systematically identified
based on the point somatic mutation profiles of patients in our
cohort. Comparing the abundance distribution of mutational signa-
tures between repair-proficient and repair-deficient patients (Wil-
coxon rank sum test), we found that mutational signatures of defects
in DNA-DSB repair by homologous recombination
(FDR = 2.7 £ 10�38) as well as defective DNA mismatch repair
(FDR = 1.5 £ 10�33) were significantly higher in repair-deficient
patients (in other words, prevalent in repair-deficient patients). On
the contrary, mutational signatures of defects in polymerase POLE
(FDR = 1.9 £ 10�108) were prevalent in repair-proficient patients,
consistent with higher TMB observed in these patients shown in
Figure 2E. Among 287 repair-proficient patients, 4 had TMB larger
than 10, which can be considered as the hypermutation phenotype
associated with loss of POLE. More intriguingly, mutational signatures
of exposure to tobacco (smoking) mutagens were observed only in



Figure 1. Genomic landscape of PAAD patients and prognosis analysis based on mutational status of selected genes. (A) The somatic mutation landscape of PAAD patients. Top 30
genes with the highest frequency were plotted, with types of somatic mutations color-coded. (B-E) Kaplan-Meier survival curves for patients with KRAS, TP53, SMAD4 or CDKN2A
mutated (denoted as 1) or not (0). (F) The forest plot showed the result of multivariate Cox regression. Multivariate Cox regression determined the correlation between different
types of somatic mutations in KRAS (including G12 D, G12R, G12V and others) and prognosis. Hazard ratio and Pvalue ranked in the second and fourth column, respectively. Hori-
zontal lines represent the 95% confidence interval. (G) Kaplan-Meier survival curve for patients with any HRR genes mutated (denoted as 1) or not (0).

6 Q. Zhan et al. / EBioMedicine 74 (2021) 103716



Table 1
Carrier ratio of pathogenic germline variants and somatic mutations in
genes of HRR pathway in PAAD patients.

Gene Germline variant (%) Somatic mutation (%) All (%)

ATM 1.15 3.45 4.44
ATR 0.33 1.48 1.81
BARD1 0.16 1.15 1.32
BLM 0.00 0.16 0.16
BRCA1 0.00 0.82 0.82
BRCA2 0.33 1.32 1.65
BRIP1 0.16 0.49 0.66
CDK12 0.00 0.99 0.99
CHEK1 0.00 0.33 0.33
CHEK2 0.16 0.49 0.66
MRE11A 0.00 0.49 0.49
NBN 0.00 0.33 0.33
PALB2 0.49 0.33 0.66
RAD50 0.16 1.15 1.32
RAD51B 0.00 0.16 0.16
RAD51C 0.00 0.66 0.66
RAD51D 0.00 0.16 0.16
RAD54L 0.33 0.99 1.32
ALL 3.29 9.21 12.01
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repair-deficient patients (Supplementary Figure 4A), and mutational
signatures of exposure to alkylating agents observed only in repair-
proficient patients (Supplementary Figure 4B). Noteworthily, the
latter has also been found in melanoma, the cancer with high TMB in
patients fromWestern countries [45].

Amplification of RTK related genes is associated with worse prognosis in
PAAD patients

To further identify sub-clusters from repair-deficient patients
(and/or repair-proficient patients, though limited by the numbers
available), we first calculated CNV scores for each of 608 patients,
and then used such information for prognostic analysis in terms of
PFS as the clinical outcome endpoint (see Methods). We partitioned
patients into two subgroups based on an optimal cutoff[25]: one sub-
group with high CNV score, and the other subgroup with low CNV
score. Patients with high CNV score were associated with worse prog-
nosis, including 50 repair-deficient patients and 6 repair-proficient
patients. As expected, repair-deficient patients tended to have higher
CNV score than repair-proficient patients (OR = 8.6, P = 1.7 £ 10�9 on
Fisher’s exact test). Regarding the repair-deficient group, prognostic
analysis showed that worse prognosis was significantly associated
with the subgroup with high CNV score compared to the subgroup
with low CNV score (HR = 2.2, 95% CI = 1.3-3.8, P = 1.8 £ 10�3 on Log-
rank test;Figure 3A). Regarding the repair-proficient group, though
the subgroup with high CNV score contained only one patient with
available prognostic information, we noted that this patient had PFS
as short as 48 days.

Comparing repair-deficient patients with high or low CNV score,
we identified 203 genes with differential CNV (FDR < 0.05 on Wil-
coxon rank sum test). Genes with higher CNV (in the patient sub-
group with higher CNV score) were largely involved in the RTK
related signalings (Figure 3B), including RTK signaling (OR = 3.32,
FDR = 1.7 £ 10�2 on Fisher’s exact test), Ras signaling (OR = 4.83,
FDR = 5.9 £ 10�4 on Fisher’s exact test), Rap1 signaling (OR = 3.25,
FDR = 1.4 £ 10�2 on Fisher’s exact test) and MAPK signaling
(OR = 2.96, FDR = 1.6 £ 10�2 on Fisher’s exact test). In addition, we
found that patients with higher CNV score possessed significantly
higher CNI than those with low CNV score (P = 6 £ 10�3 on Wilcoxon
rank sum test; Supplementary Figure 5). One of possible explana-
tions why patients with high CNV score had worse prognosis was
that the genome with high CNV tended to be instable, likely inducing
extensive amplification of, for example, RTK related genes.
Comparing repair-proficient patients with high or low CNV score,
we identified 95 genes with differential CNV (FDR < 0.05 on Wil-
coxon rank sum test). Genes with higher CNV (in the patient sub-
group with higher CNV score) were largely involved in HRR
(Figure 3C), including homology directed repair (OR = 17.23,
FDR = 8.5 £ 10�5 on Fisher’s exact test), homologous DNA pairing
and strand exchange (OR = 16.00, FDR = 4.2 £ 10�4 on Fisher’s exact
test) and homology directed repair through homologous recombina-
tion (OR = 13.05, FDR = 7.8 £ 10�4 on Fisher’s exact test). This func-
tional enrichment pattern implied that further amplification of HRR
genes in patients with high CNV likely enhanced the self-repair abil-
ity of cancer genome, ultimately resulting in worse prognosis.

Identification of molecular subtypes improves prognosis in PAAD
patients

Collectively considering the information obtained from unsuper-
vised clustering and CNV-based stratification, we were able to cate-
gorize PAAD patients into four molecular subtypes (namely repair-
deficient, proliferation-active, repair-proficient and repair-enhanced).
More specifically, we subdivided patients from the repair-deficient
group into two subtypes: the repair-deficient subtype with low CNV
score, and the proliferation-active subtype with high CNV score. Simi-
larly, we subdivided patients from the repair-proficient group into
two subtypes: the repair-proficient subtype with low CNV score, and
the repair-enhanced with high CNV score (notably lacking the sur-
vival information for prognostic analysis). Such categorization was
largely driven by the CNV information of genes involved in DNA
repair and RTK related signalings. We further showed that identified
subtypes were informative in prognosis. Repair-deficient patients
had the best prognosis with median survival time of 410 days,
whereas proliferation-active and repair-proficient patients had worse
prognosis with median survival times of 197 and 239 days, respec-
tively (HR = 2.2, 95% CI = 1.4-3.6, P = 2 £ 10�4 on Log-rank test;
Figure 3D). We also confirmed our findings using multivariate Cox
regression analysis (Supplementary Figure 6).

To evaluate the power of using the CNV information to predict
relapse in a range of follow-up windows (six months, twelve months
and median survival time), we compared receiver operating charac-
teristic (ROC) curves for patients with repair-deficient and prolifera-
tion-active subtypes (Supplementary Figure 7A) as well as with
repair-proficient and repair-enhanced subtypes (Supplementary
Figure 7B). Patients with higher CNV score experienced earlier
relapse, with predictive power achieved acceptably.

Validation of molecular subtypes using TCGA-PAAD datasets

Using TCGA-PAAD datasets, we performed three levels of valida-
tions on molecular subtypes identified from our Chinese-PAAD data-
sets. Firstly, we validated CNV-G1 (repair-deficient) and CNV-G2
(repair-proficient). Based on our Chinese PAAD cohort, standardized
shrunken centroids of CNV value were calculated for two groups of
CNV-G1 (repair-deficient) and CNV-G2 (repair-proficient). Using the
method of nearest shrunken centroids [46] each patient from the
TCGA-PAAD cohort was assigned to either of these two groups. For
example, a patient will be assigned to the CNV-G1 (repair-deficient)
group if this patient has the CNV profile closest squared distance to
the centroid of the CNV-G1 group. As such, we stratified TCGA-PAAD
patients into CNV-G1 (repair-deficient) and CNV-G2 (repair-profi-
cient). When comparing CNV values of genes between these two
groups, we found 7 genes (ATM, BARD1, BRCA1, CDK12, RAD51B/51D
and MRE11A) involved in the HRR pathway possessed significantly
lower CNV values in CNV-G1 than in CNV-G2, which is consistent
with results obtained from our Chinese-PAAD datasets.

Secondly, we validated CNV score-driven subclusters of CNV-G1
(repair-deficient). According to the eigenvectors of two PC1s



Figure 2. Amplification of HRR genes associated with worse prognosis. (A) Unsupervised clustering based on the CNV information identifying two groups of patients, visualized as a
heatmap with columns for patients and rows for genes. (B) Kaplan-Meier survival curves for patients of two groups, with patients of the repair-proficient (CNV-G2) group having
worse prognosis compared to patients of the repair-deficient (CNV-G1) group. (C) Genes with significantly higher CNV in patients of the repair-proficient (CNV-G2) group were
enriched in the function of DNA repair, including 11 genes involved in the HRR pathway. (D) CNV landscape of patients of repair-deficient (CNV-G1) and repair-proficient (CNV-G2)
groups. Red denotes gene amplification, and blue for gene deletion. (E) Boxplots for CNI and TMB distribution of patients in repair-deficient (CNV-G1) and repair-proficient (CNV-
G2) groups, showing that CNIs of patients in the repair-deficient group was significantly higher than those of patients in the repair-proficient group, whereas TMBs of patients in
the repair-proficient group was significantly higher than those of patients in the repair-deficient group. (F) Boxplots for contributions of somatic signatures of patients in repair-
deficient (CNV-G1) and repair-proficient (CNV-G2) groups, showing that somatic signatures of defects in DNA-DSB repair by homologous recombination and defective DNA mis-
match repair enriched in patients of the repair-deficient group, whereas somatic signature of defects in polymerase POLE enriched in patients of the repair-proficient group.
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extracted from the Chinese-PAAD datasets, we calculated the value
for each of them based on CNV values measured in the TCGA-PAAD
datasets. After prognostic analysis, we observed that both of these
two PC1s were associated with worse prognosis. This observation
motivated us to calculate CNV score for each patient in the TCGA-
PAAD cohort (similar to the ‘CNV score calculation’ of Methods),
obtaining two subclusters of CNV-G1 (repair-deficient). When com-
pared CNV values of genes between two subclusters of CNV-G1
(repair-deficient), we found 6 genes (ALK, CBL, ERBB4, ERRFI1, FGFR1
and ROS1) involved in RTK related signalings possessed significantly
higher CNV value in the subcluster with high CNV score than in the
subcluster with low CNV score, which is in line with results obtained
from the Chinese-PAAD datasets.

Thirdly, we validated molecular subtypes. Collectively considering
the information obtained from unsupervised clustering and CNV
score-driven subclusters, we categorized patients in the TCGA-PAAD



Figure 3. Amplification of RTK-related genes associated with worse prognosis. (A) Kaplan-Meier survival curves for patients in the repair-deficient group, showing that patients in
the subgroup with high CNV score had worse prognosis compared to patients in the subgroup with low CNV score. (B) Genes with significantly higher CNV in patients of the repair-
deficient group with high CNV score were mostly RTK signaling related. (C) Genes with significantly higher CNV in patients of the repair-proficient group with high CNV score were
enriched in the function of homologous recombination repair. (D) Kaplan-Meier survival curves for patients of three molecular subtypes, including repair-deficient, proliferation-
active and repair-proficient.
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cohort into three molecular subtypes, including repair-deficient
(n=18, derived from the repair-deficient group with low CNV score),
(2) proliferation-active (n=121, the repair-deficient group with high
CNV score), and (3) repair-enhanced (n=44, the repair-proficient
group with high CNV score). Patients of the repair-deficient subtype
showed the best prognosis (50% of patients above are still alive at last
point; Supplementary Figure 8) compared to ones in proliferation-
active (median survival time is 599 days) and repair-enhanced
(median survival time is 538 days) subtypes, which is consistent with
results obtained from the Chinese-PAAD datasets. Interestingly,
much more patients were classified as repair-enhanced subtype in
the TCGA-PAAD cohort than in the Chinese-PAAD cohort (OR = 31.83,
P< 2.2 £ 10�16 on Fisher’s exact test).

Construction of an effective prognostic model for PAAD patients

We proceeded to explore how to utilize the CNV information for
precision medicine in the field of PAAD. With this aim, we attempted
to construct a prognostic model that may be clinically actionable. We
selected a total of 73 genes that are mainly involved in DNA repair
and RTK related signalings, and these genes were used as the initial
gene set for model construction. Using the elastic net algorithm
[31,32] and dividing patients into training and validation sets (see
Methods), we first constructed a prognostic model from the training
set. The constructed model consisted of RAD50 (involved in the HRR
pathway), ABL1 (DNA repair), and 3 RTK related genes (JAK2, AKT1
and CSF1R). The CNV distribution for these 5 genes was illustrated in
Figure 4A. Afterwards, we calculated risk score for each patient based
on the constructed model, and stratified patients into two groups
with high- or low-risk score maximizing the PFS-based rank statistics
[25]. For the training set, patients with high-risk score (119 out of
155 patients, 77%) had significantly worse prognosis than those with
low-risk score (36 patients, 23%; HR = 5.9, 95% CI = 2.36-14.61,
P = 1.6£ 10�5 on Log-rank test; Supplementary Figure 9). This model
also performed well for patients in the validation set that were not
considered during the model construction (HR = 2.6, 95% CI = 1.02-
6.69, P = 3.8 £ 10�2 on Log-rank test;Figure 4B). Using multivariate
Cox regression model, we observed similar results (Supplementary
Figure 10). Thus, this prognostic model can be of potential use aiding
in clinical decision-making to identify patients with high-risk relapse
for receiving the right treatment and management.

As expected, most of patients with low-risk score were grouped
into the repair-deficient subtype which had the best prognosis (50
out of 56, 89%; OR = 3.6, P =1.5 £ 10�13 on Fisher’s exact test;
Figure 4C). In addition, patients of the same subtype may be classi-
fied as low- or high-risk score patients, thereby revealing the com-
plex relationship between molecular subtypes and prognosis. We
also calculated ROC curves of risk score to evaluate performance of
this prognostic model in predicting relapse of patients (Figure 4D).
Area under curves (AUCs) were 0.64 (95% CI = 0.56-0.72), 0.65 (95%
CI = 0.58-0.72) and 0.73 (95% CI = 0.66-0.79) for relapse within six
months, twelve months and median survival time, respectively. Thus,
our definition of higher risk score indeed can be used to signify ear-
lier relapse, with better predictive power than shown in Supplemen-
tary Figure 7.

Exploring tumor microenvironments of PAAD patients that correlate
with prognostic risk using publicly available datasets

The previous study [47] has demonstrated that CNV burden and
homologous recombination deficiency, as well as somatic alterations
of RTK related genes, have effects on immune microenvironments in
various cancer types. Thus, we proceeded to provide the clue show-
ing that tumor microenvironments differed between PAAD patients
with high- or low-risk prognostic score; doing so exclusively based
on CNV of genes involved in DNA repair and RTK related signalings.



Figure 4. Prognostic model for PAAD patients. (A) CNV heatmap of 5 genes, which were selected by the algorithm of elastic net to construct the prognostic model from the training
set. Genes in rows were sorted according to the direction of coefficients, while patients in columns were sorted according to the risk score, with green denoting patients with low
risk of relapse and red for patients with high risk of relapse. (B) Kaplan-Meier survival curves for patients with low and high risk of relapse in the independent testing set. (C) Distri-
bution of four molecular subtypes of patients over groups with low and high risk of relapse. (D) ROC curves of risk score of patients to evaluate its performance in predicting relapse
status within six months, twelve months and median survival time.
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We first constructed prognostic model using the same initial set of 73
genes (as justified and used in the previous subsections) and the
same method applied to 182 PAAD patients collected in the TCGA
cohort where both CNV values and prognostic information are avail-
able. Patients with high-risk score (132 out of 182 patients, 73%) had
significantly worse prognosis than those with low-risk score (50
patients, 27%; HR = 3.8, 95% CI = 2.2-6.7, P = 9.6 £ 10�7 on Log-rank
test; Supplementary Figure 11).

Finally, we compared the immune microenvironments between
two groups of patients with high- or low-risk score, using TCGA RNA-
seq datasets and transcriptional signatures associated with immune
cell infiltration33 and innate anti-PD-1 resistance (IPRES) [35]. As
shown in Figure 5A, we found that immune cells infiltrated into the
tumor of low-risk patients were more likely to be immune cells with
antitumor capability, such as effector memory CD4 T cell [48,49]
(FDR = 1.4 £ 10�2 on Wilcoxon rank sum test), monocyte [50]
(FDR = 1.4 £ 10�2 on Wilcoxon rank sum test) and eosinophil [51]
(FDR = 4.4 £ 10�2 on Wilcoxon rank sum test). In low-risk patients,
we also observed the suggestively significant enrichment of immune
cells responsible for killing tumor cells, including CD56 bright natural
killer cell [52,53], activated CD8 T cell [54] and T follicular helper cell
[55]. On the contrary, we found that transcriptional signatures associ-
ated with IPRES were enriched in high-risk patients (Figure 5B),
including the up-regulation of carcinoma associated fibroblast
(FDR = 1.8 £ 10�2 on Wilcoxon rank sum test) and MAPK inhibitor
induced epithelial mesenchymal transition (FDR = 2.1 £ 10�2 on
Wilcoxon rank sum test). Taken together, analysis of the TCGA data-
sets supported that the tumor microenvironment features of PAAD
patients can be relevant to their prognostic risks.

Discussion

PAAD is one of the most lethal carcinomas in China with high inci-
dence as well as mortality [1]. In this study, we attempt to define
molecular subtypes and develop prognostic model for PAAD patients
to assist in selection of the most appropriate treatment by compre-
hensively profiling the mutational landscape of PAAD patients in a
Chinese cohort. Interestingly, we found that amplification of genes in
DNA repair and RTK related signalings was associated with worse
prognosis. Motivated by this finding, we further used CNV of DNA
repair and RTK related genes to categorize our PAAD patients into
four molecular subtypes (including repair-deficient, proliferation-
active, repair-proficient and repair-enhanced), with the repair-defi-
cient subtype having the best prognosis and the worst prognosis
observed for the repair-enhanced subtype. These molecular subtypes
identified from our Chinese-PAAD cohort were validated using the
TCGA-PAAD cohort. Furthermore, we used DNA repair and RTK
related genes as the initial gene set to construct a clinically usable
prognostic model built on our Chinese cohort, which performed well
in discriminating high-risk PAAD patients from low-risk ones. We
have also used the TCGA-PAAD cohort to illustrate the informative-
ness of CNV of DNA repair and RTK related genes in prognosis,



Figure 5. Comparisons of tumor microenvironments of PAAD patients with high- or low-risk prognostic score. (A) Comparison of enrichment scores of immune cells infiltration in
PAAD patients between high-risk and low-risk group. (B) Comparison of enrichment scores of innate anti-PD-1 resistance in PAAD patients between high-risk and low-risk group.
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showing that TCGA-PAAD patients have poor prognosis if having a
high level of amplification/depletion of genes involved in DNA break
repair. It should be noted that, we did not use the TCGA-PAAD cohort
to validate ‘the model’ built on the Chinese cohort (notably, 5 genes
included in the prognostic model for our Chinese-PAAD cohort, and 8
genes in the model built based on the TCGA-PAAD cohort). Instead,
we used this external cohort to strengthen our findings, that is, the
prognostic value of CNV of DNA repair and RTK related genes to dis-
tinguish PAAD patients with high or low risk of relapse. Indeed, we
also attempted to calculate the risk score for each patient in the
TCGA-PAAD cohort according to the prognostic model constructed
based on our Chinese PAAD datasets. We used the same cutoff
(-0.0958) as determined in our Chinese PAAD datasets to separate
TCGA-PAAD patients into two groups with high and low risk. Prog-
nostic analysis showed that TCGA-PAAD patients with high-risk score
showed decreased median survival time compared to patients with
low-risk score (599 days versus 728 days, though no significance
reached).
As before, we analyzed somatic mutations and pathogenic germ-
line variants of PAAD patients in detail. Similar to Western cohorts,
the most patients had somatic mutations in KRAS, followed by TP53,
CDKN2A and SMAD4. However, none of these four mutated genes can
tell difference in prognosis, despite their high prevalence in our Chi-
nese cohort. Although mutated KRAS is a recognized risk factor for
PAAD prognosis in previous study [56], we only observed the trend
that mutated KRAS was associated with worse prognosis (Figure 1B),
which might be due to different ethnic backgrounds and operation
methods (notably, all of PAAD patients in our Chinese cohort received
R0 operation). More interestingly, there was no bias in patients with
highly mutated genes (KRAS, TP53, CDKN2A and SMAD4) distributed
over four molecular subtypes (P > 0.05 on Fisher’s exact test), likely
explaining why there was no difference in prognosis observed
between patients stratified by mutated status of those genes. We
detected somatic mutations and pathogenic germline variants in the
HRR genes for 12.01% of patients, the prevalence similar to that in the
Caris cohort [7]. Although mutated status of HRR genes can stratify
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platinum treated patients with different prognosis [5,6], we found
this genomic marker was unrelated to the prognosis of general
patients. Moreover, we clustered patients into two groups based on
mutated status of all genes and no different prognosis observed
between them. Taken together, we found point mutations are not
informative as prognostic markers for PAAD based on our Chinese
cohort.

In this study, we focused on analysis of CNVs for PAAD patients.
Through combination of unsupervised clustering and stratification by
CNV score, we categorized patients into four subtypes, named as
repair-deficient, proliferation-active, repair-proficient and repair-
enhanced subtypes. For repair-deficient and proliferation-active sub-
types, deletion tended to appear in DNA repair genes, including those
involved in HRR, mismatch repair and Fanconi anemia. These two
subtypes were also signified by higher CNI and stronger signatures of
defects in DNA-DSB repair by HRR as well as defective DNA mismatch
repair. On the other hand, for repair-proficient and repair-enhanced
subtypes, amplification tended to appear in DNA repair genes,
accompanied by higher TMB and exclusive signature of defects in
polymerase POLE. Prognosis of the repair-deficient subtype was bet-
ter than that of other three subtypes, indicating that deletion of genes
in the DNA repair pathway (especially the HRR pathway) induces
higher genomic instability and is disadvantaged for survival of cancer
cells. In addition to CNV of DNA repair genes, CNV of RTK related
genes also impacts prognosis. Compared to the repair-deficient sub-
type, amplification tended to appear in genes of RTK related signal-
ings in the proliferation-active subtype. Prognosis of the
proliferation-active subtype was worse than that of the repair-defi-
cient subtype, indicating that amplification of genes in RTK related
signalings promotes proliferation of cancer cells and thus confers
worse prognosis. Considering genomic footprints of patients, DNA
damage therapies (such as platinum-based chemotherapy and PARPi)
are suited for repair-deficient and proliferation-active subtypes
(which have higher CNI and defects in DNA-DSB repair by HRR),
while immunotherapy is suited for repair-proficient and repair-
enhanced subtypes (which have higher TMB and defects in polymer-
ase POLE). Intriguingly, Waddell et al observed that PAAD with high
BRCAmutational signature burden had much better response to plati-
num-based chemotherapy [57].

Indeed, amplification and deletion events of oncogenes and tumor
suppressor genes in PAAD patients have been observed in previous
studies [10,58,59], but the association between them and prognosis
was not clearly identified. Particularly, a study on 109 micro-dis-
sected PAAD found that patients with high level of amplification or
depletion of genes involved in DNA break repair had relatively poor
prognosis compared to others [10]. Although the trend discovered by
that study was similar with ours, it failed to categorize molecular
subtypes for patients and uncover respective characteristics behind
them.

It is important to assess whether the genes targeted by CNV gains
in this study are amplified or merely affected by broader background
gains. To partially address this, we calculated the CNV values for 44
arms of 22 chromosomes (with chromosomes X and Y excluded from
this analysis) with the same method as described above, and evalu-
ated the correlation between CNV value of each amplified gene
involved in selected pathways (including HRR and RTK related signal-
ings, and the chromosome arm in which these genes located). Our
results (Supplementary Table 7) showed there was only relatively
weak correlation between them (the mean correlation between all
pairs is 0.369), suggesting that the genes targeted by CNV gains are
likely amplified but not mainly affected by broader background gains.
CNVs include gains and losses. We thus also incorporated such dis-
tinction into CNV-based analysis. Comparing repair-deficient patients
with high (proliferation-active) and low (proliferation-active) CNV
score (Supplementary Figure 12), we identified 7 genes involved in
the RTK and RAS pathways having significantly higher CNV value in
proliferation-active patients than in repair-deficient patients. For
genes PTPN11 and RAC1, 42% and 56% patients in the proliferation-
active subtype were identified as amplification separately, whereas
just 17.34% and 32.1% patients in the repair-deficient subtype
appeared at lower percentage.

Transcriptomic data has been also utilized for molecular subtyp-
ing in PAAD. Collisson et al defined three subtypes (classical, quasi-
mesenchymal and exocrine-like) [60], Moffitt et al defined two sub-
types (normal stromal and activated stromal) [61], while Bailey et al
defined four subtypes (squamous, pancreatic progenitor, immuno-
genic and aberrantly differentiated endocrine exocrine) [58]. In those
studies, prognostic outcome varied among subtypes with moderate
significance reported (0.01 < P < 0.05). Instead, subtypes defined in
our study were highly evident at least from a statistical viewpoint
(P = 2 £ 10�4 on Log-rank test), indicating that subtyping based on
CNV profile was much more powerful for prognostic purpose than
doing so based on transcriptome data. This might be due to the fact
that the detection for mutations (and subsequent CNV) is more
robust (i.e. more specific to tumor cells), whereas the information of
gene expression might be influenced by, for example, the presence of
stroma (i.e. genes specifically expressed in stromal cells). Supple-
mentary Table 8provides the information on tumor contents for the
samples profiled in this study. More importantly, we found that geno-
mic footprints behind CNV-driven subtypes were of great use to infer
clinical treatments (for example, DNA damage therapies versus immu-
notherapy), providing much clearer guidance for clinical decision-mak-
ing than transcriptomic subtypes (lacking such clues on how to guide
the treatment management). Furthermore, from the viewpoint of clini-
cal practice, transcriptomic measures require higher quality of tumor
samples compared to CNV profiling, which is not so easy to achieve,
especially for formalin-fixed paraffin-embedded samples.

Finally, we attempted to construct a clinically usable prognostic
model to stratify PAAD patients with high and low risk of relapse,
providing aids for clinical decision-making. Considering the impor-
tance of DNA repair and RTK related genes in molecular subtyping,
we used these genes as the initial set to construct the prognostic
model. The prognostic model constructed based on the training set
also performed well based on the independent testing set. Intrigu-
ingly, using the same initial set of genes, a similar prognostic model
was also constructed for PAAD patients in the TCGA cohort, suggest-
ing the generalized values of DNA repair and RTK related genes in
prognosis. Furthermore, we established the connection between
prognostic risk and tumor microenvironments for PAAD patients in
the TCGA cohort, in which low-risk patients had more beneficial
tumor microenvironments than high-risk patients had.

We note limitations of our study as discussed below. First, we
found that mutated genes are not informative in terms of prognostic
use; this conclusion is restricted to genes assayed in our gene panels.
Second, it is well-recognised that the robustness of information is in
order as such: mutations > CNV > expression. Third, the model built
on the Chinese-PAAD cohort can not be naively and directly applied
to the TCGA-PAAD cohort; the inclusion of genes in the built model is
very specific to the input genomic and clinical datasets. Though we
can validate the prognostic value of CNV of DNA repair and RTK
related genes, the specific genes included in the model are varied (it
is also expected from the viewpoint of model building).

In conclusion, based on CNV landscape we categorized PAAD
patients into four molecular subtypes (including repair-deficient,
proliferation-active, repair-proficient, and repair-enhanced sub-
types), each with distinct genomic characteristics, prognostic status
and suited treatment (Figure 6). In addition, we constructed a clini-
cally actionable prognostic model to stratify patients with high or
low risk of relapse. Our molecular subtyping and prognostic model
can be of translational use to improve diagnosis, treatment and man-
agement for PAAD patients. Considering the relevance of immune
microenvironments to prognostic risks, we anticipate that our work
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CNI: copy number instability
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Figure 6. Diagram of the treatment management recommended for molecular subtypes of PAAD in the Chinese cohort.
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can be further extended, with the priority on either developing new
immunomodulators or repurposing existing immunomodulatory
therapies particularly for repair-proficient patients who have higher
TMB and defects in polymerase POLE.
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