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Background and Objective: The effect of chronic pulmonary regurgitation (PR) on
right ventricular (RV) dysfunction in repaired Tetralogy of Fallot (RTOF) patients is well
recognized by cardiac magnetic resonance (CMR). However, the link between RV
wall motion, intracardiac flow and PR has not been established. Hemodynamic force
(HDF) represents the global force exchanged between intracardiac blood volume and
endocardium, measurable by 4D flow or by a novel mathematical model of wall motion.
In our study, we used this novel methodology to derive HDF in a cohort of RTOF patients,
exclusively using routine CMR imaging.

Methods: RTOF patients and controls with CMR imaging were retrospectively included.
Three-dimensional (3D) models of RV were segmented, including RV outflow tract
(RVOT). Feature-tracking software (QStrain 2.0, Medis Medical Imaging Systems,
Leiden, Netherlands) captured endocardial contours from long/short-axis cine and used
to reconstruct RV wall motion. A global HDF vector was computed from the moving
surface, then decomposed into amplitude/impulse of three directional components
based on reference (Apical-to-Basal, Septal-to-Free Wall and Diaphragm-to-RVOT
direction). HDF were compared and correlated against CMR and exercise stress test
parameters. A subset of RTOF patients had 4D flow that was used to derive vorticity (for
correlation) and HDF (for comparison against cine method).

Results: 68 RTOF patients and 20 controls were included. RTOF patients had
increased diastolic HDF amplitude in all three directions (p<0.05). PR% correlated
with Diaphragm-RVOT HDF amplitude/impulse (r = 0.578, p<0.0001, r = 0.508,
p < 0.0001, respectively). RV ejection fraction modestly correlated with global HDF
amplitude (r = 0.2916, p = 0.031). VO2−max correlated with Septal-to-Free Wall HDF
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impulse (r = 0.536, p = 0.007). Diaphragm-to-RVOT HDF correlated with RVOT
vorticity (r = 0.4997, p = 0.001). There was no significant measurement bias between
Cine-derived HDF and 4D flow-derived HDF by Bland-Altman analysis.

Conclusion: RTOF patients have abnormal diastolic HDF that is correlated to PR,
RV function, exercise capacity and vorticity. HDF can be derived from conventional
cine, and is a potential link between RV wall motion and intracardiac flow from PR
in RTOF patients.

Keywords: Tetralogy of Fallot, hemodynamic force, 4D flow, cardiac magnetic resonance, feature tracking

INTRODUCTION

Tetralogy of Fallot is the most common cyanotic heart
disease that is surgically managed in infancy (1). Despite the
excellent surgical outcomes and high survival rate in this
growing population (2), adults with repaired Tetralogy of Fallot
(RTOF) may suffer from long term consequences of pulmonary
regurgitation (PR). These consequences include right ventricular
(RV) dilation and dysfunction. Eventually, these patients may
need pulmonary valve replacement (PVR) (3). Traditionally,
cardiac magnetic resonance (CMR) is used to guide PVR (4).
However, conventional CMR biomarkers do not clarify the direct
impact of PR on RV myocardial biomechanics.

CMR studies utilizing three-dimensional (3D) spatial
encoding combined with 3D velocity-encoded phase contrast
(4D flow) have demonstrated that RTOF patients have significant
alterations to intraventricular fluid dynamics in the RV. These
alterations include abnormal vorticity, turbulent kinetic energy,
viscous energy losses and hemodynamic forces (HDF) (5–8).
Additionally, there are changes to ventricular geometry that
correlate with RV dysfunction (9, 10). HDF in particular serves as
a link between intracardiac flow and ventricular function. HDF
represents the global force exchanged between blood volume
and endocardium, a summation of the intraventricular pressure
gradient inside the ventricular cavity (11). HDF coincides
with the direction of blood flow acceleration, measurable from
velocity vector fields in 4D flow by computing the material
derivative term of the Navier-Stokes momentum equation (11).

To date, there has only been one 4D flow study specifically
focused on HDF in RTOF patients by Sjöberg et al. in 19 RTOF
patients (8). Their analysis suggests that HDF may be a biomarker
for detecting cardiac dysfunction and trending changes after
PVR. However, studies involving HDF are hampered by
the availability of 4D flow, and its inherent limitations in
spatial/temporal resolution. These limitations could potentially
be addressed by deriving HDF from the wall motion instead (12).
Routine CMR sequences such as cine imaging could be used to
calculate HDF, via a mathematical model that relies exclusively
on the position and velocity of the endocardium and the valvular
planes. By combining this model with a novel reconstruction
of RV kinematics, HDF could be derived irrespective of the
availability of 4D flow.

Thus, the purpose of this study was to derive HDF in
a retrospective cohort of RTOF patients, exclusively using

routine CMR imaging, and investigate the potential relationships
between HDF, PR, and RV function.

MATERIALS AND METHODS

This was an Institutional Review Board-approved retrospective
study, involving patients who underwent a CMR study between
December 2018 and August 2021. RTOF patients included
those with pulmonary stenosis (TOF-PS) who underwent either
transannular or infundibular patch repair, as well as those with
pulmonary atresia (TOF-PA) who underwent right ventricle-to-
pulmonary artery (RV-PA) conduit repair. Patients with poor
imaging quality or significant stent/sternal artifact were excluded.
Patients with evidence of elevated pulmonary vascular resistance
(confirmed by cardiac catheterization) were also excluded. For
comparison, CMR datasets from normal controls were included.
Normal controls included those who underwent CMR imaging
for separate clinical indication (rule out cardiomyopathy, atrial
shunts or anomalous pulmonary venous drainage) and found to
have normal RV size, function and pulmonary-to-systemic flow
ratio (Qp:Qs)< 1.2:1.

All CMR studies were performed with a Siemens 1.5T
scanner. CMR data included cine imaging (long-axis and short-
axis cine), contrast-enhanced magnetic resonance angiography
(MRA), three-dimensional steady state free precession imaging
(3D SSFP), two-dimensional phase contrast across the pulmonary
valve (venc set between 2–2.5 m/s) and 4D flow. The
cine acquisition sequence parameters included FOV = 270–
360 × 202–270 mm, matrix = 208–256 × 156–192, TE = 1.1–
1.22 ms, flip angle = 50, slice thickness = 6–8 mm, number of
segments = 9–11 or 39–48 and number of acceleration factor = 2
or 4 depending on use of breath hold or motion corrected
re-binning as per lab standard (13). The 4D flow acquisitions
were used only for direct measurement of intracardiac vorticity
and for comparison against the cine-derived HDF. The 4D
flow sequence parameters included FOV = 280–480 × 140–
230 mm, matrix = 160 × 77, TE = 2.19 ms, TR = 37.9–
59.4 ms, flip angle = 15, slice thickness = 1.8–3 mm, venc = 2–
2.5 m/s and number of reconstructed phases = 25–30. The
MRA and 3D SSFP covered the entire heart with voxel size ∼
1.4 mm× 1.4 mm× 1.4 mm.

Standard clinical measurements of the RV, such as indexed
end-diastolic/end-systolic volumes (RVEDVi/RVESVi), ejection
fraction (RV-EF%), and pulmonary regurgitant fraction (PR%)
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were obtained. For RTOF patients, electrocardiogram and
cardiopulmonary exercise stress test (CPET) results within
1 years of CMR study were also collated for QRS duration, CPET
parameters, including maximal oxygen consumption (VO2−max
and % predicted VO2−max), O2 pulse and ventilatory efficiency
(VE/VCO2−max).

3D Modeling of Right Ventricle
3D end-diastolic models of the RV were created from MRA and
3D SSFP datasets, according to lab standard segmentation (14,
15) using commercially available software (Mimics; Materialise,
Leuven, Belgium). The 3D model incorporated the three
components of the RV including RV inflow, RV body/apex, and
RVOT. The planes of the tricuspid/pulmonary valve annulus
were carefully delineated by tagging the triangular elements and
corresponding vertices on the 3D model. The RVOT was further
isolated by a dividing plane orthogonal to the cranial aspect of the
tricuspid annulus (parallel to the four-chamber cine plane).

Right Ventricular Motion Reconstruction
With Feature Tracking and Diffeomorphic
Mapping
Long-axis and short-axis cine were used to reconstruct RV wall
motion (Figure 1). Each cine was used for feature tracking
analysis with QStrain V2.0 (Medis Medical Imaging Systems,
Leiden, Netherlands), a semi-automated process that requires
manual contour of the end-diastolic RV endocardial border to
initiate tracking. In cases of insufficient tracking with apparent
deviations, the RV endocardial contours were manually adjusted.
The moving endocardial borders of the entire RV were then
extracted and formatted as data contour points.

To create a continuous representation of RV motion, the
data contour points from QStrain were used to compute
diffeomorphic mappings (16) from the end-diastolic phase of
the point cloud to each of the 30 phases of the cardiac cycle,
as previously described using in-house MATLAB software
(17, 18). Two separate sets of mappings were computed: one
derived from the short-axis cine and the other from long-axis
cine (i.e., three-chamber and four-chamber planes); the final
transformation was then obtained by linearly superimposing
the two mapping fields. The computed diffeomorphisms
were applied to the segmented 3D end-diastolic model of the
RV, to obtain 30 triangulated surface meshes with the same
connectivity properties and with vertices correspondence
(19). Supplementary Video 1 demonstrates an example
of the RV motion reconstruction. This procedure also
provided the time history V (t) of the RV volume over
the cardiac cycle.

Hemodynamic Force Calculation
Historically, HDF or the global intraventricular pressure gradient
was computed by integrating the material derivative of blood flow
velocity over the ventricular volume, using 4D flow data. In this
work, the global HDF vector

−→
F (t) was computed according to

a recently developed mathematical formalism that only requires
information on the moving boundary surface that encloses

the blood volume (12). In this framework, the HDF vector is
provided by

−→
F (t) = ρ

∫
S(t)

[
−→x
(
∂−→v
∂t
·
−→n
)
+ v

(−→v · −→n )]dS (1)

where S (t) is the RV surface, comprising both the endocardium
and the valvular planes, ρ is the blood density (assumed to be
equal to 1,060 kg/m3), −→x (t) describes the position of the RV
surface in time, −→v (x, t) is the local fluid velocity at the surface,
and−→n (x, t) is the local unit normal vector. In order to practically
apply Eq. 1 and compute the HDF for each subject from the
reconstructed sets of 3D RV models, the fluid velocity needs to be
defined both along the endocardium and at the valvular planes.
For the closed portions of the RV surface (endocardium and
closed valves), the fluid velocity is equal to the tissue velocity (an
application of the no-slip condition), and evaluated numerically
by central-differentiating in time the position vector of each
vertex of the triangulated mesh; the same process was then used
to evaluate the temporal derivative term in Eq. 1. At the open
valvular planes, the following procedure was employed:

• for healthy subjects, only the pulmonary valve plane was
assumed to be open in systole (resp. diastole), and the
flow rate across the open portion of the RV surface
was first obtained from mass conservation, Q (t) = −∫

Sclosed

−→v · −→n dS, and then used to impose the velocity at the
open valvular plane assuming uniform unidirectional flow,
−→v open '

Q
Sopen
−→n ;

• for RTOF patients, both the tricuspid and pulmonary
valve planes were assumed to be open in diastole.
The flow rate across the pulmonary valve plane was
directly imposed based on the one measured by two-
dimensional phase-contrast, while the flow across the
tricuspid valve plane was obtained from mass conservation.
The velocity on both planes was computed assuming
uniform unidirectional flow.

The derived HDF vector was then divided by RV volume at
each phase of the cardiac cycle to allow for proper comparison
between subjects. It is worth noting that even if the derivation
of Eq. 1 is formally exact, approximations are introduced in
the actual calculations in terms of (i) reconstruction of RV
kinematics; (ii) assumption of uniform and unidirectional flow
at the valve orifices.

Vectorization and Quantification of
Diastolic Hemodynamic Force
Amplitude, Impulse, and Angle
The HDF vector was decomposed into three directional
components based on a reference system defined by Sjöberg et al.
(8). The Apical-to-Basal direction was defined as perpendicular to
the short-axis cine plane (positive amplitude is toward the base),
and the Septal-to-Free Wall direction is perpendicular to both the
short-axis cine plane and the three-chamber cine plane. Finally,
the Diaphragm-to-RVOT direction was derived as the cross
product between the other two directions (positive amplitude is
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toward RVOT). The reference system is schematically illustrated
in Figure 2.

A number of parameters were extracted from the time profile
of HDF, normalized against the instantaneous RV volume: (i)
the force amplitude during diastole, computed as the root mean
square, normalized by the corresponding time interval; (ii) the
net impulse (area under the curve) during diastole, normalized
by the corresponding time interval; (iii) the angles formed by
the mean diastolic force vector with the three reference axes. The
amplitude and impulse were calculated for each force component
as well as for the HDF module (global measurement).

4D Flow Quantification of Hemodynamic
Force (for Comparison Only)
To validate the cine-based method for computing HDF, forces
were also obtained from 4D flow datasets using the traditional
approach. A segmentation mask derived from the previously
described RV kinematics were used to isolate velocity vector
fields within the domains of interest. After background-phase
correction, the masks were further screened to remove regions of
noise artifact. HDF was then calculated using the volume integral
of the material time-derivative of blood velocity:

−→
F (t) = ρ

∫
V(t)

(
∂−→v
∂t
+
−→v .∇−→v

)
d
−→
V (2)

FIGURE 1 | Overall methodology of using three-dimensional (3D) modeling
and feature tracking of cine imaging to derive hemodynamic forces (HDF). The
planes of the tricuspid valve (TV) and pulmonic valve (PV) were also delineated
prior to kinematic reconstruction.

FIGURE 2 | Decomposition of hemodynamic forces into three components
for analysis, including the Diaphragm-to-Right ventricular outflow tract (RVOT)
axis, Septal-to-Free Wall axis and Apical-to-Basal axis.

and normalized against the instantaneous RV volume.

4D Flow Quantification of Vorticity in
Right Ventricle and Right Ventricular
Outflow Tract
4D flow quantification of vorticity in the total RV and RVOT
was derived as part of a previous RTOF study (5). The 3D end-
diastolic model of the RV and the isolated RVOT as previously
described were used as a segmentation mask to isolate the velocity
vector field. Vorticity was then quantified for each phase of
the cardiac cycle by iTFlow (Cardioflow, Tokyo, Japan) (20).
Conceptually, vorticity encodes the magnitude and the direction
of local spinning motion of blood. Vorticity is defined as the curl
of the velocity field,

−→ω = ∇ × −→v .

The normalized vorticity (units of 1/s) was calculated by
spatially integrating the vorticity magnitude

∣∣∣∣−→ω ∣∣∣∣ over the total
RV and the RVOT, and dividing by the associated segmented
volume:

ωTotal (t)
1

VTotal

∫
VTotal(t)

∣∣∣∣−→ω ∣∣∣∣ dV

ωRVOT (t) =
1

VRVOT

∫
VRVOT(t)

∣∣∣∣−→ω ∣∣∣∣ dV

The peak values within the total RV and RVOT during diastole
(ωTotal−Diastole, ωRVOT−Diastole) were collected for analysis.

Statistical Analysis
All statistical analysis was performed with Prism 8 (Graphpad,
San Diego, CA, United States). Unpaired t-test was used to
compare between HDF parameters between RTOF patients and
control groups. Subgroup analysis of RTOF patients was also
performed: (#1) RTOF patients without PVR; (#2) RTOF patients
with concurrent CPET parameters and (#3) RTOF patients
with concurrent 4D flow data. Correlations between continuous
variables were assessed using Pearson’s correlation coefficient
(21). Bland-Altman analysis was used to compare percentage
difference of root mean square between cine-derived HDF and
4D-flow derived HDF. The time profiles between the cine-derived
HDF and 4D-flow derived HDF were compared and reported
as mean correlation coefficients in each direction. Additionally,
the values at each reconstructed cardiac phase were compared
to identify discrepancies between the two methods. Probability
values< 0.05 were considered statistically significant.

RESULTS

Sixty-eight RTOF studies (body surface area 1.7 ± 0.36 m2, age
23.4 ± 11.2 years) and twenty normal control studies (body
surface area 1.5 ± 0.49 m2, age 14 ± 5.8 years) were included
(Table 1). RTOF patients consisted of 63 with TOF-PS and 5 with
TOF-PA; 50 had transannular patch repair, 7 had infundibular
patch repair, and 11 underwent RV-PA conduit repair. The

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 July 2022 | Volume 9 | Article 929470

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-929470 July 9, 2022 Time: 18:19 # 5

Loke et al. HDF in Tetralogy of Fallot

mean age of initial surgical repair was 1.56 months (IQR 0.31–
2.0 months). 12 RTOF patients were status-post PVR at the
time of CMR (Table 1). There was selection bias in that RTOF
patients were older compared to control patients, albeit with
similar body surface area. When compared to normal control
(Table 2), the RTOF cohort had lower RV-EF%, higher RVEDVi,
and moderate degree of PR% (27 ± 17%). The mean QRS
duration was 143± 22 ms.

Quantitative Comparison of Diastolic
Hemodynamic Force Between Repaired
Tetralogy of Fallot and Control
Overall comparison of diastolic HDF amplitude and impulse are
summarized in Figures 3A,B. When compared to controls, RTOF
patients had increased diastolic HDF amplitude in all three HDF
axes and global HDF amplitude (Figure 3A). There were also
alterations to the global diastolic HDF impulse, as well as the
Apical-to-Basal and Septal-to-Free Wall direction (Figure 3B).
For the Septal-to-Free Wall direction, this was a negative change
(therefore, a larger impulse directed in the Free Wall-to-Septal

TABLE 1 | Overall demographics.

RTOF patients
(n = 68)

Controls
(n = 20)

p

Demographics

Age (years),
IQR

23.4 (15.1–30.7) 13.9
(11.7–18.4)

0.038

Age of repair
(months), IQR

1.56 (0.31–2.0)

Female gender 36 (52%) 9 (45%)

BSA (m2) 1.7 ± 0.36 1.5 ± 0.49 ns

Native anatomy

TOF-PS 63 (92%)
TOF-PA 5 (8%)

CMR data

RV-EF% 49.9% ± 6.2% 54.2% ± 5.4% < 0.0001

PR% 27.5% ± 17.2% 0.0 ± 0.03% < 0.0001

RVEDVi
(mL/m2)

137 ± 35 86 ± 21 < 0.0001

RVESVi
(mL/m2)

69 ± 21 41 ± 12 < 0.0001

Sixty-eight repaired Tetralogy of Fallot (RTOF) patients and twenty controls were
included. There was selection bias in that RTOF patients tended to be older and
larger than normal controls.

TABLE 2 | Demographics of repaired Tetralogy of Fallot (RTOF) cohort.

Type of surgery TOF-PS (n = 63) TOF-PA (n = 5)

Transannular Patch 49 (78%) 1 (20%)

Infundibular Patch 7 (11%) 0 (0%)

Right ventricle-to-pulmonary artery conduit 7 (11%) 4 (80%)

Subsequent pulmonary valve replacement 11 (16%) 1 (20%)

The cohort consisted of patients with either Tetralogy of Fallot-Pulmonary Stenosis
(TOF-PS) or Tetralogy of Fallot-Pulmonary Atresia (TOF-PA). Ten patients already
had pulmonary valve replacement.

direction). The mean diastolic HDF vector in RTOF was slightly
altered along the Septal-to-Free wall angle (102.3 ± 13.7 vs.
95.0 ± 10.6, p = 0.03), with no change in Diaphragm-to-RVOT
angle (90.9± 21.8 vs. 84.0± 15.8, p = ns) or Apical-to-Basal angle
(22.7± 11.7 vs. 20.7± 13.6, p = ns).

Qualitative Comparison of Diastolic
Hemodynamic Force Between Repaired
Tetralogy of Fallot and Control
The alterations in diastolic HDF are elaborated in a representative
RTOF patient and control of similar size/age, as demonstrated in
by Figures 4A, 5. In early diastole during initial rapid filling, the
RTOF patient has a larger negative amplitude in the Diaphragm-
to-RVOT direction and Septal-to-Free Wall direction, likely in
the same direction as PI (Figure 5). HDF then reverses into a
positive amplitude along the Diaphragm-to-RVOT and Apical-
to-Basal direction, corresponding to deceleration of flow. For
controls, diastolic HDF predominantly is oriented along the
Apical-to-Basal direction in early diastole. Finally, in diastasis
(late diastole), in RTOF there is persistence of HDF in both higher
RVOT-to-Diaphragm direction and Apical-to-Basal direction
(likely due to continued presence of PI), whereas HDF is
largely diminished in control cases by this phase of the cardiac
cycle. Figure 4B demonstrates the mean value of HDF of both
cohorts over time, along with their respective standard deviation,
demonstrating the general alterations in the RTOF cohort.

Correlations With RV-EF and PR%
Diastolic HDF correlations with RV-EF and PR% are
demonstrated in Table 3 and Figure 6. Overall PR% correlated
with Diaphragm-RVOT HDF amplitude/impulse/angle
(r = 0.578, p < 0.0001, r = 0.508, p < 0.0001 and –
0.4468, p = 0.0007, respectively), followed by Global HDF
amplitude/impulse (r = 0.4431, p = 0.0008 and 0.423, p = 0.001,
respectively) and Apical-to-Basal HDF amplitude/impulse
(r = 0.294, p = 0.031 and r = 0.351, p = 0.009, respectively).
RV-EF% modestly correlated with global HDF amplitude
(0.2916, p = 0.031), Apical-to-Basal HDF amplitude (r = 0.298,
p = 0.027) and Septum-to-Free Wall impulse (r = 0.284,
p = 0.034). There were no diastolic HDF correlations with
RVEDVi (HDF measurements are normalized against volume).
QRS duration only modestly correlated with Diaphragm-RVOT
Angle (r = –0.299, p = 0.046).

Correlation to Exercise Capacity Testing
Among the RTOF cohort, 24 patients had CPET performed
within 1.2 ± 6.1 months of CMR study. This subgroup cohort
consisted of 20 with TOF-PS and 4 with TOF-PA; 20 had
transannular patch, 4 had conduit repair. The mean PR% was
32 ± 17 % and mean RV-EF% was 51 ± 7%. The mean
VO2−max and % predicted VO2−max was 28 ± 7 mL/kg/min and
72 ± 19%, respectively. There were no significant correlations
between VO2−max and % predicted VO2−max with conventional
CMR measurements of the RV (Table 4). Meanwhile, CPET
parameters such as VO2−max modestly correlated with Apical-to-
Basal HDF impulse (r = –0.408, p = 0.047), Septal-to-Free Wall
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FIGURE 3 | Comparison of diastolic hemodynamic force (A) amplitude and (B) impulse, between repaired Tetralogy of Fallot (RTOF) patients and normal controls.
∗∗p < 0.01; ∗∗∗p < 0.001.

HDF impulse (r = 0.536, p = 0.007) and Global HDF Impulse
(–0.407, p = 0.043).

Hemodynamic Force Measurements of
Repaired Tetralogy of Fallot Patients
With Follow-Up CMR After Pulmonary
Valve Replacement
A total of 9 RTOF patients had follow-up CMR after PVR,
as demonstrated in Table 5. After PVR, there was an overall
decrease in PR% and RV size. There was also decrease in RVOT-
to-Diaphragm HDF amplitude, increase in Septal-to-Free Wall
angle and decrease in Apical-to-Basal HDF impulse. There was

also an overall decrease in the global HDF amplitude/impulse.
There were otherwise no statistically significant changes in
other HDF parameters.

Correlations and Comparisons With 4D
Flow
A total of 40 RTOF patients had 4D flow datasets for analysis and
comparison. Total diastolic vorticity correlated with Apical-to-
Basal HDF (r = 0.407, p = 0.009) and RVOT vorticity correlated
with Diaphragm-to-RVOT HDF (r = 0.4997, p = 0.001, Figure 7).
The comparison of HDF derived by cine vs. 4D flow are shown
in Figure 8. In general, there was underestimation of systolic
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FIGURE 4 | (A) Hemodynamic force (HDF) comparison between one representative control case and representative repaired Tetralogy of Fallot (RTOF). In normal
control, HDF is predominantly in the Apical-to-Basal axis. In RTOF, the HDF is distributed toward both the Diaphragm-RVOT axis and Apical-to-Basal axis during
early filling and persists through diastasis. (B) Hemodynamic force comparison of mean values between RTOF patient cohort and control cohort. The same patterns
described in panel (A) is also noted across the cohort.

FIGURE 5 | Qualitative comparison between one representative control case and representative repaired Tetralogy of Fallot (RTOF). In normal control, there is
alignment of the global hemodynamic force (HDF) vector in the Apical-to-Basal axis. In RTOF, the HDF is distributed toward both the Diaphragm-RVOT axis and
Apical-to-Basal axis during early filling and persists through diastasis.
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TABLE 3 | Subgroup correlation analysis of repaired Tetralogy of Fallot (RTOF)
patients who had no subsequent pulmonary valve replacement (n = 56).

RV-EF% p PR% p

Conventional

RV-EF% –0.210 ns

PR% –0.210 ns

RVEDVi (mL/m2) –0.341 < 0.0001 0.588 < 0.0001

RVESVi (mL/m2) –0.639 < 0.0001 0.535 < 0.0001

Diastolic HDF

Diaphragm-RVOT amplitude (N/L) 0.145 ns 0.578 < 0.0001

Diaphragm-RVOT impulse (N/L) –0.087 ns 0.508 < 0.0001

Diaphragm-RVOT angle (deg) 0.1377 ns –0.4468 0.0007

Septal-free wall amplitude (N/L) 0.298 0.027 0.137 ns

Septal-free wall impulse (N/L) 0.067 ns –0.065 ns

Septal-free wall angle (deg) –0.034 ns –0.043 ns

Apical-basal amplitude (N/L) 0.284 0.034 0.294 0.031

Apical-basal impulse (N/L) 0.250 ns 0.351 0.009

Apical-basal angle (deg) –0.044 ns 0.0136 ns

Global amplitude (N/L) 0.2916 0.031 0.4431 0.0008

Global impulse (N/L) 0.2545 ns 0.423 0.001

Bolded terms are statistically significant results.

HDF along Diaphragm-RVOT direction using the cine-derived
methodology, as well as slight underestimation of diastolic HDF
in late diastole (during atrial systole). The difference in root mean
squares between cine and 4D flow by Bland-Altman analysis
was –6.72% (95% limits of agreement: –61.5 to 48.1%) for
Diaphragm-to-RVOT direction, 4.97% (95% limits of agreement:
–76.6 to 86.5%) for Septal-to-Free Wall direction, 1.23% (95%
limits of agreement: –58.7 to 61.6%) for Apical-to-Basal direction
and –3.01 (95% limits of agreement: –56.6 to 50.1%) for global
HDF (Figure 9). The mean correlation coefficient between cine
and 4D flow were 0.797 ± 0.103 (p < 0.0001) for Diaphragm-
to-RVOT direction, 0.535 ± 0.22 (p < 0.0001) for Septal-to-Free
Wall direction, and 0.776 ± 0.108 (p < 0.0001) for Apical-to-
Basal direction.

DISCUSSION

This study retrospectively analyzed conventional CMR datasets
to quantify HDF in RTOF patients and normal controls. The

main findings of this study include: (#1) Diastolic HDF of the
RV can be quantified by wall motion analysis instead of 4D flow;
(#2) RTOF patients have alterations to diastolic HDF, particularly
along the Diaphragm-to-RVOT direction and Apical-to-Basal
direction; and (#3) diastolic HDF is correlated with PR, RV
dysfunction, vorticity and exercise capacity. To our knowledge,
this is the first RTOF study to derive HDF exclusively from
conventional CMR cine imaging.

Currently, CMR metrics such as RVEDVi and RV-EF% are
useful in guiding PVR therapy for RTOF, however there are still
challenges in detecting subclinical dysfunction (22, 23). These
conventional measurements assess RV cardiac performance in
the classic framework of a pressure-volume loop, and do
not account for the complex, physics-based biomechanical
parameters of RV function (11). This is evident by CMR studies
that demonstrate an inability for conventional measurements to
predict improvement after PVR or prevent exercise intolerance
(5, 22, 24–26). To date, only overt RV systolic dysfunction (a
late presentation) has been predictive of low peak oxygen update
(VO2−max or % predicted VO2−max) (24).

The intraventricular and deformation parameters not
traditionally considered in pressure-volume analysis are
pertinent to the pathophysiology of RTOF. 4D flow studies
of RTOF have demonstrated unique flow and deformation
patterns that are related to PR, independent of RV size (5, 6, 27).
Abnormalities in global longitudinal strain and circumferential
strain, including biventricular dis-synchrony in RTOF have been
well-documented (25, 28). More recently, the flow topologies
by 4D flow have been directly correlated to exercise capacity
(5, 29). These RTOF studies point to the concept of cardiac
function as a multi-parameter, three-dimensional phenomena.
In our study, we used a combination of 3D modeling and strain
data to derive parameters that correlated with PR, vorticity
and exercise capacity. HDF may be the potential link between
PI and the altered intracardiac flow environment, abnormal
RV wall motion, and clinical dysfunction in RTOF. These
biomechanical markers and their physiologic effect warrant
further investigation.

As a link between intracardiac flow and wall motion, HDF may
have utility as an early indicator for biomechanical dysfunction in
RTOF patients. Previous studies have shown that HDF represents
a sensible indicator of ventricular function that may show

FIGURE 6 | Correlation of Diaphragm-to-RVOT HDF and Apical-to-basal HDF amplitude with pulmonary insufficiency in repaired tetralogy of fallot (RTOF) patients.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 July 2022 | Volume 9 | Article 929470

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-929470 July 9, 2022 Time: 18:19 # 9

Loke et al. HDF in Tetralogy of Fallot

TABLE 4 | Subgroup correlation analysis of repaired Tetralogy of Fallot (RTOF) patients with exercise stress test results (n = 24).

VO2−max p % Predicted VO2−max p O2 pulse p VE/VCO2−max p

Conventional

RV-EF% –0.153 ns –0.337 ns 0.066 ns 0.110 ns

PR% –0.262 ns 0.204 ns 0.079 ns –0.095 ns

RVEDVi (mL/m2) –0.103 ns –0.094 ns 0.087 ns –0.197 ns

RVESVi (mL/m2) 0.008 ns –0.136 ns 0.068 ns –0.178 ns

Diastolic HDF

Diaphragm-RVOT amplitude (N/L) –0.311 ns –0.148 ns –0.315 ns 0.166 ns

Diaphragm-RVOT impulse (N/L) –0.107 ns –0.185 ns –0.084 ns 0.174 ns

Diaphragm-RVOT angle (deg) –0.154 ns 0.081 ns –0.099 ns –0.106 ns

Septal-free wall amplitude (N/L) –0.158 ns –0.141 ns –0.283 ns –0.113 ns

Septal-free wall impulse (N/L) 0.536 0.007 0.444 0.029 0.448 0.028 0.253 ns

Septal-free wall angle (deg) –0.411 0.041 –0.241 ns –0.167 ns –0.135 ns

Apical-basal amplitude (N/L) –0.275 ns –0.401 ns –0.514 0.029 0.006 ns

Apical-Basal Impulse (N/L) –0.408 0.047 –0.419 0.04 –0.636 0.005 0.012 ns

Apical-basal angle (deg) 0.060 ns –0.170 ns –0.0752 ns –0.046 ns

Global amplitude (N/L) –0.323 ns –0.299 ns –0.4686 0.028 0.030 ns

Global impulse (N/L) –0.407 0.043 –0.387 ns –0.511 0.015 0.042 ns

Bolded terms are statistically significant results.

early alterations of ventricular function (11). HDF analysis can
differentiate heart failure patients with preserved ejection fraction
compared to controls with similar ejection fraction (11), reveal
subclinical dysfunction due to cardiotoxicity from anthracycline
chemotherapy (30), and it was the first left ventricular parameter
to testify the impact of precapillary pulmonary hypertension
on cardiac function (31). As HDF drives the intraventricular
pressure gradient exchanged within the myocardium, stimulation
of mechanoreceptors may provoke activation of intracellular
pathways involved in cardiac adaptation and remodeling (32,
33). Identification of subtle kinetic dysfunction is also possible

TABLE 5 | Subgroup comparison of diastolic hemodynamic force (HDF) in
repaired Tetralogy of fallot (RTOF) patients, before and after pulmonary valve
replacement (PVR) (n = 9).

Before PVR After PVR p

Conventional

RV-EF% 47 ± 4.6 46 ± 5.4 ns

PR% 36 ± 12 8.6 ± 6.4 0.0003

RVEDVi (mL/m2) 178 ± 27 127 ± 24 0.0002

RVESVi (mL/m2) 92 ± 14 69 ± 13 0.0004

Diastolic HDF

Diaphragm-RVOT amplitude (N/L) 0.492 ± 0.015 0.280 ± 0.091 0.0056

Diaphragm-RVOT impulse (N/L) 0.051 ± 0.063 0.027 ± 0.060 ns

Diaphragm-RVOT angle (deg) 73.5 ± 8.93 81.5 ± 7.07 ns

Septal-free wall amplitude (N/L) 0.277 ± 0.132 0.202 ± 0.078 ns

Septal-free wall impulse (N/L) –0.046 ± 0.043 –0.065 ± 0.049 ns

Septal-free wall angle (deg) 88.6 ± 7.73 98.5 ± 5.58 0.0135

Apical-basal amplitude (N/L) 0.527 ± 0.130 0.399 ± 0.189 ns

Apical-basal impulse (N/L) 0.246 ± 0.112 0.135 ± 0.058 0.0039

Apical-basal angle (deg) 55.5 ± 9.15 62.8 ± 11.1 ns

Global amplitude (N/L) 0.783 ± 0.189 0.534 ± 0.207 0.017

Global impulse (N/L) 0.626 ± 0.161 0.431 ± 0.180 0.029

Bolded terms are statistically significant results.

through HDF analysis, leading to detection of mechanical
abnormalities in asymptomatic patients (11). The observations of
HDF in our study are in line with Sjöberg et al.’s intracardiac 4D
flow analysis; furthermore, because our HDF was directly derived
from RV kinematics, there is now a direct implication between
altered intracardiac flow and HDF mechanics in RTOF.

The altered biomechanical environment in RTOF has been
elaborated on by 4D flow, ex-vivo and in-vitro studies. In
normal controls, the dominant diastolic flow in the RV is an
organized, “donut”-shaped ring-vortex surrounding the tricuspid
inflow, a result of longitudinal lengthening/retraction of the
RV myocardium (18, 34). This vortex is passively generated
instead of direct suction, which prevents the formation of
large deceleration forces (along the Apical-to-Basal direction).
However, in RTOF patients, the jet of PI directly collides
against this vortex (5, 35), leading to an overall increase
in vorticity particularly at the RVOT, as well as increased
diastolic HDF in the Apical-to-Basal direction and Diaphragm-
to-RVOT direction. The vortex interaction and resultant HDF
likely contributes to altered mechanotransductive environment,
leading to RV dilation and dysfunction (36, 37). The abnormal
HDF may also contribute to the abnormal RVOT shape geometry
found in RTOF (38). Furthermore, RV contractility is also
affected by electromechanical dis-synchrony (39), transitioning
to predominantly circumferential/radial motion and impairing
the normal tricuspid inflow vortex (i.e., larger HDF in the Apical-
to-Basal direction). Paradoxical recruitment of the septal wall
motion (septal displacement toward the RV) likely results in the
opposing Free Wall-to-Septal impulse found in our study (40,
41), and implies significant interactions with the left ventricle that
lead to exercise intolerance.

Both alterations to Septal-to-Free Wall and Apical-to-Basal
HDF appear to be relevant to RTOF, as these forces correlated
with VO2−max, % predicted VO2−max and O2 pulse in our study;
better exercise capacity was in particular associated with a net
diastolic impulse predominantly oriented toward the Free Wall
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FIGURE 7 | Correlation of diastolic HDF (cine-derived) with intracardiac vorticity (4D flow-derived).

FIGURE 8 | Hemodynamic force (4D flow-derived vs. cine-derived) comparison of mean values in the RTOF cohort over the cardiac cycle. Timepoints denoted by ∗

indicate statistical difference (p < 0.05) between the 4D flow-derived parameters and cine-derived parameters. In general, there is underestimation of systolic
hemodynamic force in the Diaphragm-to-RVOT axis using the cine-derived methodology.

and the apex. Previous CMR studies have not demonstrated any
significant correlation between RV size and PR with exercise
capacity (22, 24, 42), and exercise-based CMR studies also show
no significant changes in PR%, RV size or RV-EF% during
exercise (26). Thus, our results suggest that HDF is a better
link between PR and exercise intolerance in RTOF, compared to
PR% and RV-EF%. Since feature tracking can also be applied to
real-time CMR obtained during exercise, investigation of HDF
during exercise may lead to the development of deformation-
based biomarkers that can detect exercise intolerance and assist
in the decision of optimal timing of PVR.

Pulmonary valve replacement would likely restore the natural
diastolic vortex (43), normalizing HDF and restoring RV
function. However, in our study the post-PVR cohort still had
persistent alterations to HDF despite the resolution of PR,
similar to Sjöberg et al.’s results. This may be due to continued
impairment in RV wall motion after PVR. The lack of change
in Septal-to-Free wall HDF deserves attention, as this parameter
best correlated with exercise capacity in our study. The effect
of PVR on HDF requires further investigation, which could be
performed on larger pre-and-post PVR cohorts in multicenter
retrospective studies such as the INDICATOR trial (23).

Limitations
The study is still a single-center analysis and limited by sample
size. The RTOF cohort was heterogenous in both anatomy and
surgical repair, limiting the correlations observed in the study.
Late gadolinium enhancement was also not routinely performed,

precluding the investigation of peri-patch fibrosis in the RVOT
(44) and its effect on HDF. There was inconsistent timing of
exercise stress test in RTOF patients, although the time interval
between CMR and stress tests were still within recommended
surveillance guidelines of RTOF patients (45) and unlikely to
alter results based on previous longitudinal studies (46, 47).
As the RV kinematic reconstruction is driven by imaging, the
current methodology does not couple electrical propagation with
mechanical contraction (48, 49), which may explain the lack of
correlation between HDF and QRS duration. Most importantly,
we did not interpret the systolic HDF in this cohort – this was
partly due to concern that subtle deviations in feature tracking
during early systole were amplified by second order effects
contributing to systolic discrepancies shown in Figure 8.

Future Studies
Future work will focus on in-depth simulation of intracardiac
flow generated by the RV kinematics in RTOF (17, 18,
50), to further elaborate on the relationship between HDF,
intracardiac flow, RV dysfunction and exercise intolerance.
Further retrospective investigations using larger cohorts of pre-
and-post PVR and controls are also planned. We also plan to
prospectively use HDF analysis, 4D flow and computational
modeling to investigate intracardiac flow in RTOF patients
before-and-after PVR. We aim to further develop HDF along
with intracardiac flow as clinical biomarkers to aid in timing of
PVR for RTOF patients.
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FIGURE 9 | Bland-Altman Analysis between 4D flow-derived vs. cine-derived HDF.

CONCLUSION

In RTOF patients, there is abnormal alignment of diastolic
HDF that is correlated to PR%, RV-EF%, vorticity and exercise
capacity. As a global parameter, HDF can be captured by RV wall
motion. HDF is a potential link between RV wall motion and
intracardiac flow from PR; further studies should investigate its
role in PVR timing.
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