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Abstract

Arithmetic processing is represented in a fronto-parietal network of the brain. However, acti-

vation within this network undergoes a shift from domain-general cognitive processing in the

frontal cortex towards domain-specific magnitude processing in the parietal cortex. This is at

least what is known about development from findings in children and young adults. In this

registered report, we set out to replicate the fronto-parietal activation shift for arithmetic pro-

cessing and explore for the first time how neural development of arithmetic continues during

aging. This study focuses on the behavioral and neural correlates of arithmetic and arithme-

tic complexity across the lifespan, i.e., childhood, where arithmetic is first learned, young

adulthood, when arithmetic skills are already established, and old age, when there is lifelong

arithmetic experience. Therefore, brain activation during mental arithmetic will be measured

in children, young adults, and the elderly using functional near-infrared spectroscopy

(fNIRS). Arithmetic complexity will be manipulated by the carry and borrow operations in

two-digit addition and subtraction. The findings of this study will inform educational practice,

since the carry and borrow operations are considered as obstacles in math achievement,

and serve as a basis for developing interventions in the elderly, since arithmetic skills are

important for an independent daily life.

Introduction

Arithmetic skills are acquired in school and are later important for everyday life. Hence, it is

essential to better understand the underlying mechanisms of these skills not only in children,

who just learnt these skills, and in adults, who have already established their arithmetic skills,

but also in the elderly, because deficits in these skills have a detrimental impact on their inde-

pendent life. Therefore, the current study sets out to investigate the behavioral and neural cor-

relates of arithmetic across the lifespan.

Arithmetic is represented in a fronto-parietal network in the brain [1, for meta-analyses in

children and adults see 2, for a review in children see 3, for a model and its extensions in adults

see 4, 5], but the extent of frontal and parietal activation in this network changes during
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development. From childhood to adulthood, frontal activation in the inferior frontal gyrus

(IFG) and middle frontal gyrus (MFG) decreases, while parietal activation in the intraparietal

sulcus (IPS), supramarginal gyrus (SMG), and angular gyrus (AG) increases [6–10]. The brain

areas in this fronto-parietal network fulfill different functions during mental arithmetic [4, 5]:

Activation of the IFG and MFG is mainly associated with domain-general processes, such as

working memory required for arithmetic; however, the exact location in the prefrontal cortex

depends on the specific task demands [11]. Activation of the IPS, located at the border between

the superior parietal lobule (SPL) and the inferior parietal lobule (IPL), reflects domain-spe-

cific number magnitude processing, and thus, an age-related activation increase indicates

functional specialization [7]. Less deactivation of the SMG and AG (constituting the IPL) is

specific for arithmetic fact retrieval, i.e., the automatic mapping of single-digit arithmetic

problems to their solution [12]. Altogether, there is evidence for a developmental shift from

domain-general frontal activation towards more specific parietal activation within the fronto-

parietal network of arithmetic [6, 13], when comparing children and adults.

Moreover, the question arises how these developmental changes progress during aging.

With increasing age, there is a decline in general cognitive capacities [14, 15]. Cognitive pro-

cessing in elderly is especially limited by decreased working memory capacity and processing

speed. Although some numerical abilities are affected by age-related changes, arithmetic skills

are known to be mainly preserved in the elderly [16, 17, for a review see 18]. For instance,

arithmetic fact knowledge and automated counting procedures in the single-digit range were

shown to be equal or even superior to younger adults [18, 19]. Since neuroimaging research on

arithmetic in the elderly has never been conducted so far, this project on the behavioral and

neural correlates of arithmetic during development across the whole lifespan will open a new

research field in numerical cognition. The investigation of the mechanisms underlying arith-

metic in the elderly brain will provide insights into whether the developmental fronto-parietal

shift continues during aging, and whether arithmetic is preserved during aging or shows defi-

cits due to the general cognitive decline, thus requiring compensation.

When studying the underlying domain-general and domain-specific processes of arithme-

tic across the lifespan, the complexity of the arithmetic task plays an important role. Unfortu-

nately, the majority of neuroimaging studies on arithmetic mainly focus on single-digit

arithmetic, although after their first year of school, children mainly calculate with multi-digit

numbers, and adults need multi-digit arithmetic in their daily lives well into old age, e.g., to

handle finances, to compare prices while shopping, to manage their time, and to calculate

weights while cooking. Knowledge of the place-value system is crucial for multi-digit number

processing and consists of three levels: place identification, place-value activation, and place-

value computation [20]. Multi-digit arithmetic is especially difficult when it requires opera-

tions across place-values, i.e., place-value computation [20]. This is the case for the carry oper-

ation in addition (when the sum of the units exceeds 9 so that the decade digit of the unit sum

needs to be carried to the decade sum; e.g., 58 + 36 vs. 51 + 43) and the borrow operation in

subtraction (when the minuend unit is smaller than the subtrahend unit so that a decade digit

of the minuend needs to be borrowed for the difference of the units; e.g., 94–36 vs. 94–43).

The carry and borrow operations increase the difficulty of addition and subtraction prob-

lems as reflected by behavioral [21, 22] and neural effects [23–26]. The behavioral carry and

borrow effects were already demonstrated in children [27–29], in adolescents [8, 30], in young

adults [21, 22, 31], and in the elderly [32, 33]. The difficulty, as indicated by increases in reac-

tion time and error rate, is attributed to higher working memory load, reflecting domain-gen-

eral processes when comparing problems with carry and borrow operations to problems

without them, i.e., the categorical carry and borrow effects [22, 34, 35]. While the categorical

carry and borrow operations require place-value computation–the highest level of place-value
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processing–the continuous carry and borrow operations instead require place-value activation

[20]. Continuous processing characteristics of the carry operation are indicated by the unit

sum (e.g., 58 + 36 has a unit sum of 8 + 6 = 14), which theoretically ranges from 0 to 18 (carry

operation necessary when unit sum� 10); continuous processing characteristics of the borrow

operation are indicated by the unit difference (e.g., 94–36 has a unit difference of 4–6 = –2),

which theoretically ranges from –9 to +9 (borrow operation necessary when unit

difference < 0). The carry operation is characterized by both categorical and continuous pro-

cessing characteristics [31, 36]. The nature of the borrow operation, however, remains unclear,

since continuous processing characteristics might not necessarily increase the difficulty of sub-

traction in a similar way as it is the case for addition [37].

During development, children get better in arithmetic and place-value processing [38, for a

review see 39]. Children learn the carry and borrow operations for single-digit and two-digit

arithmetic in the first two years of elementary school and afterwards are able to use these skills

[27]. Place identification, the first level of place-value processing, serves as a precursor for

arithmetic performance and place-value computation later in elementary school [29]. The

carry and borrow effects decrease during adolescence from grade 5 to 7 and to young adult-

hood [30], but not before [8, 27, 40]. Besides general increases in reaction times and error rates

during aging, the carry and borrow operations are not impaired and might be even superior in

older as compared to younger adults, as reflected by similar or smaller carry and borrow effects

[32, 33, 41]. This reflects a general decrease in the carry and borrow effects during lifespan

development with increasing proficiency in place-value processing. Furthermore, the underly-

ing processing characteristics for these effects might change, since the carry and borrow effects

seem to be categorical effects in elementary school children [27], while the carry effect in

young adults relies on continuous processing characteristics as well, as assessed by the unit

sum [26, 31, 36]. This suggests that primarily domain-general processes are driving the carry

and borrow effects in children, while in young adults, domain-specific processes are addition-

ally driving the carry effect. Considering the general cognitive decline during aging, the carry

and borrow effects might be mainly driven by domain-specific processes in the elderly, but

empirical evidence is still missing. The next step is now to replicate the developmental changes

of arithmetic in general and place-value computation in particular (i.e., carry and borrow

effects), to identify the underlying processing characteristics (i.e., categorical and continuous

aspects) across the lifespan, and to complement the behavioral findings by neural data.

The neural representation of the carry and borrow effects is located in the fronto-parietal

network of arithmetic processing [26]. Mainly, carry and borrow effects are associated with

higher prefrontal activation in the left IFG and bilateral MFG [23–26, 42, 43], mostly reflecting

domain-general demands like working memory for task difficulty due to the categorical effects

[44, 45]. Additionally, parietal activation, particularly in the left IPS, was observed with

increasing unit sum or when carry and borrow effects were confounded with problem size,

mostly reflecting domain-specific magnitude processing associated with the continuous effects

[23, 24, 26]. Furthermore, the only study on the neural correlates of the carry and borrow

effects that was not conducted in young adults found the left AG to be reversely related to the

carry effect in adolescents, reflecting the role of arithmetic fact retrieval for decomposed addi-

tion [8]. Taken together, the carry and borrow effects are associated with increases in frontal

and parietal activation. Due to the developmental fronto-parietal shift in brain activation for

arithmetic in general, the neural activation might also change for processing arithmetic com-

plexity. For instance, frontal activation associated with the carry and borrow operations might

decrease during lifespan development due to automatization, since the use of domain-general

processes becomes more efficient from childhood to adulthood, and the general cognitive

decline restricts further efficient use of domain-general processes during aging. On the other
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hand, a study on interindividual differences in math ability showed that smaller behavioral

carry and borrow effects might be associated with larger neural effects (in high- as compared

to low-skilled individuals), since high-skilled individuals efficiently used the frontal resources

for the carry and borrow operations whereas low-skilled individuals needed these resources

even for problems without carry or borrow operation [25]. Thus, a decrease of the behavioral

carry and borrow effects during lifespan development–with individuals getting better in the

carry and borrow operations–might be associated with an increase in the neural carry and bor-

row effects in frontal brain regions. The current study aims to investigate the behavioral and

neural correlates of the carry and borrow effects in children, young adults, and the elderly, and

to explore developmental changes.

Arithmetic processing in general and the carry and borrow effects in particular are repre-

sented in a fronto-parietal network of arithmetic processing. Here, we address the question of

how arithmetic and the underlying brain activation in the arithmetic network change during

development across the lifespan. The study will target crucial stages of development: elemen-

tary school children in grades 3 and 4, because they just acquired the skills for two-digit arith-

metic and thus serve as a starting point of lifespan development, young adults, because they

have already established their arithmetic skills and thus serve as a reference for development,

and the elderly, because they are experienced in using their arithmetic skills but might show a

general cognitive decline and thus serve as a final point of lifespan development. A neural acti-

vation shift is hypothesized from frontal activation, mostly representing domain-general pro-

cesses, to parietal activation, mostly representing domain-specific numerical processes, during

development. Using three different approaches [29], we address the following hypotheses on

behavioral and neural levels:

• H1: In a task-based approach, arithmetic performance is expected to be better in young

adults than in children and in the elderly. According to the developmental fronto-parietal

shift for arithmetic processing, children should show increased frontal activation (left IFG

and bilateral MFG) and less parietal activation (left IPS) in comparison to young adults, rep-

licating previous research. Moreover, the neural correlates of arithmetic will be explored in

the elderly: if the developmental fronto-parietal shift generalizes to the whole lifespan, the

elderly might show less frontal activation (left IFG and bilateral MFG) and increased parietal

activation (left IPS) in comparison to young adults; however, if arithmetic is not affected by

aging or is affected and needs compensation, the elderly might show similar or increased

frontal activation and similar or less parietal activation in comparison to young adults.

• H2: In an effect-based approach, the carry and borrow effects are expected to decrease arith-

metic performance on a behavioral level (i.e., reaction times and error rates) and to be asso-

ciated with larger frontal activation (left IFG and bilateral MFG) on a neural level in all age

groups. Regarding the lifespan development, the behavioral carry and borrow effects are

expected to be larger in children than in young adults and larger or similar in young adults

as compared to the elderly, replicating previous research. The neural development of the

effects will be explored here for the first time: the neural carry and borrow effects might

either decrease during the lifespan, reflecting the fronto-parietal activation shift particularly

for complex arithmetic, or increase during the lifespan, reflecting the more efficient use of

frontal resources with increasing performance.

• H3: In an effect-based approach on the underlying processing characteristic, the carry and

borrow effects are expected to be rather categorical in children, both categorical and contin-

uous in young adults, and rather continuous in the elderly. On a neural level, the continuous
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carry and borrow effects (unit sum and unit difference) should rely on parietal activation

(left IPS) in all age groups.

The carry and borrow effects will be investigated concerning arithmetic complexity in two-

digit addition and subtraction, respectively. The processes underlying these arithmetic opera-

tions are similar, while subtraction is more difficult than addition [25]. However, there is not

yet evidence for operation-specific differences in relation to lifespan development. To assess

brain activation during two-digit arithmetic, the optical neuroimaging method fNIRS will be

used. Compared to fMRI, fNIRS is less restrictive, allows an upright body position, and is rela-

tively insensitive to motion artifacts–but at the cost of a lower spatial and depths resolution

[46]. The current study makes use of the advantages of fNIRS to study arithmetic in an ecologi-

cal valid task paradigm (verbal production) in critical populations such as children and the

elderly.

Methods

Participants

Three age groups will be considered: children (3rd and 4th grade), young adults (18–34 years),

and the elderly (above 60 years). Each age group will be characterized by age (M, SD, Range),
gender, and education. All subjects will be right-handed, native German speakers (or at least

school education in German), with no history of neurological or mental disorders, and without

a disease that influences brain metabolism. Informed consent will be obtained from all adult

participants, from the parents of the participating children, and from the participating children

in a simplified way. For participation, all subjects will receive monetary compensation and the

children additionally a little present. The study was approved by the Ethics Committee for Psy-

chological Research of the University of Tuebingen.

To emphasize the focus on healthy aging in the current study, elderly subjects will addition-

ally be assessed by the Montreal Cognitive Assessment [MoCA; 47], which is a brief cognitive

screening tool for mild cognitive impairment. This instrument measures cognitive abilities

such as short-term memory, visuo-spatial and executive functions, attention, language, and

orientation to time and space. A cut-off score of� 26 (Theoretical Range = 0–30 with correc-

tion in case of education years� 12) will be used to exclude cognitive impairment in elderly.

Additionally, processing speed, working memory, and verbal and non-verbal intelligence will

serve as control measures to compare general cognitive abilities between the age groups.

Arithmetic task

The arithmetic task will consist of two-digit addition and subtraction problems with two oper-

ands resulting in a two-digit solution [https://osf.io/6emdy/]. The carry and borrow operations

will be manipulated categorically, i.e., addition problems with and without carrying (e.g., 51

+ 43 vs. 58 + 36) as well as subtraction problems with and without borrowing (e.g., 94–43 vs.

94–36), and continuously, i.e., unit sum in addition (e.g., 14 in 58 + 36) and unit difference in

subtraction (e.g.,– 2 in 94–36).

The stimulus set consists of 128 arithmetic problems with 32 trials per condition, i.e., addi-

tion with/without carrying and subtraction with/without borrowing. The stimulus generation

will consider unit sum in addition and unit difference in subtraction to be relatively equally

distributed. This means that addition problems (a + b = r) cannot be directly transformed by

inversion into subtraction problems (r–b = a). Nevertheless, the numerical properties will be

matched across conditions: a and b will be closely matched in their numerical magnitude and
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parity; the position of the larger operand will be counterbalanced; pure decades as well as ties

within and between a, b, and r will be excluded [25, 42, for decades see 48, for ties see 49].

The task will be computerized in the program OpenSesame [50]. Each arithmetic problem

will be presented centered in white against a black background. In an oral production para-

digm, the subjects will be asked to mentally solve the problem as quickly and accurately as pos-

sible and to respond while pressing the space bar. Button press and button release will be

recorded and the experimenter will blindly note the given responses. Each stimulus will be pre-

sented with a time limit of 30 s and disappear upon button press to emphasize mental arithme-

tic before responding. In the inter-trial interval, a black screen will be shown with a duration

of 4–7 s (jittered in steps of 0.5 s, mean of 5.5 s), including a white fixation point in the last 0.5

s. The 128 trials will be presented in 4 runs of 32 trials each (8 trials per condition) and the trial

order will be pseudorandomized for every subject with no more than two trials of the same

condition presented consecutively. As dependent variables, error rates (ER) are defined as the

number of incorrectly solved and time-out trials divided by the total number of completed tri-

als, and reaction times (RT) as the duration between stimulus onset and button press.

Cognitive tests

Processing speed will be assessed by the subtest symbol search of the German version of the

Wechsler Adult Intelligence Scale IV [WAIS-IV; 51]. In this paper-pencil test, subjects will be

asked to decide whether or not two target symbols are present among a group of five symbols.

The overall time limit is 120 s for a maximum of 60 items. The raw score (Theoretical Range =

0–60) is defined as the number of correctly solved items minus the number of incorrectly

solved items (unsolved items are not considered). The retest reliability of the German version

is good (rtt = .81).

Working memory will be assessed by a verbal 2-back paradigm with letters [https://osf.io/

6emdy/; 52]. The task is computerized in the program OpenSesame [50]. In this task, subjects

will be asked to determine for every letter (consonants in lower and upper case) whether it

matches the letter presented two positions before or not by a button press. The 92 trials consist

of 30 match trials (match to the letter presented two positions before), 48 mismatch trials (no

match to a letter presented one to five positions before), 6 1-back lures (match to the letter pre-

sented one position before), 6 3-back lures (match to the letter presented three positions

before), and 2 start letters (presented first). Each stimulus will be presented until the button

press with a time limit of 2.5 s followed by an SOA of 3 s. Accuracy (ACC) will be defined as

the number of correct trials divided by the total number of trials, and RT as the duration

between stimulus onset and button press. Note that the comparison between the groups will

focus on ACC.

Intelligence will be assessed by the German version of the Reynolds Intellectual Screening

Test [RIST; 53], consisting of subtests for verbal and nonverbal intelligence. Depending on

age, each subtest is started at a certain item (with the option of going back to preceding items

until two consecutive items are correctly solved in the first attempt) and stopped when three

consecutive items are not correctly solved. In the subtest “guess what”, indicating verbal intelli-

gence, subjects are orally asked to find out the concept that matches the given two to four

clues. With a maximum of 62 orally presented items, the raw score (Theoretical Range = 0–62)

is defined as the sum of all correctly solved items (including the unsolved items before the age-

dependent start item). In the subtest “odd item out”, indicating nonverbal intelligence, subjects

are asked to choose the picture that does not belong to the set of five to seven pictures. The

time limit is 30 s for the first attempt and 20 s for the second attempt (if incorrectly or unsolved

in the first attempt), with a maximum of 51 visually presented items. The raw score
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(Theoretical Range = 0–102) is calculated as the double sum of all correctly solved items in the

first attempt (including the unsolved items before the age-dependent start item) and the single

sum of all correctly solved items in the second attempt. Raw scores for both subtests will be

further transformed into T scores (M = 50, SD = 10) dependent on German age norms and

converted into IQ scores (M = 100, SD = 15). The reliability of the German version is good

(Cronbach’s α of .92 for verbal intelligence and .90 for nonverbal intelligence).

Procedure

During the fNIRS measurements, the arithmetic task will be conducted in a light-attenuated

room. Afterwards, processing speed, working memory, and intelligence will be assessed. Each

test is preceded by instructions and practice items. The practice phase of the arithmetic task

will consist of 12 trials to familiarize the subjects with the response format (which can be

repeated). In the end, a screening of cognitive abilities will be conducted for older adults only.

fNIRS data acquisition

The fNIRS data will be acquired using the continuous wave ETG-4000 Optical Topography

System (Hitachi Medical Corporation, Tokyo, Japan). This fNIRS device uses wavelengths of

695 ± 20 nm and 830 ± 20 nm as light sources and a sampling rate of 10 Hz. The optodes (10

sources and 8 detectors) will be embedded in a cap (Brain Products GmbH, Herrsching, Ger-

many) with an inter-optode distance of 30 mm. The probesets will consist of 4 parietal chan-

nels (IPS, SMG, AG) and 5 frontal channels (MFG, IFG) per hemisphere (see Fig 1), which is a

Fig 1. fNIRS probesets covering frontal and parietal areas of the left and right hemisphere. The probesets were fixed at P3/

P4 and oriented towards F3/F4; the positions of channels and optodes (sources and detectors) including empty positions are

marked [cf. 25]. Abbreviations of the channel labels: IFG–inferior frontal gyrus, MFG–middle frontal gyrus, SPL/IPS–superior

parietal lobule/intraparietal sulcus, SMG–supramarginal gyrus, AG–angular gyrus.

https://doi.org/10.1371/journal.pone.0256232.g001
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subset of channels that were previously used as a probeset [for more details on the location

about the probeset see 25]. The correspondence of fNIRS channels to the underlying cortical

areas was estimated based on a virtual registration method [54–56] and labeled according to

the automated anatomic labeling (AAL) atlas [57].

Data analysis

Data exclusion for subjects. Subjects will be excluded from all analysis when the inclu-

sion criteria are not met (regarding age, handedness, language, health, and, for elderly subjects,

cognition), when more than 50% of the behavioral data of the arithmetic task is missing (due

to drop out or experimental or technical problems), or when the error rate in the arithmetic

task is larger than 50% (because of the exclusion of incorrectly solved trials). Moreover, an out-

lier analysis will be conducted specific to the respective age group to exclude subjects deviating

more than 3 median absolute deviations from the group’s median in RT of the arithmetic task

from all analysis [58]. Subjects will be excluded only from neural data analysis in case of more

than 50% missing neural data of the arithmetic task (due to drop out, experimental or technical

problems, trial exclusion and artifact rejection), or in case of more than 3 noisy channels

(restricting channel interpolation to a maximum of 3 channels). Furthermore, a case-wise

exclusion of subjects from the respective analysis of the demographic variables (age, gender,

education) or control measures (processing speed, working memory, and verbal and non-ver-

bal intelligence) applies in case of missing or incomplete data, or an ACC below 33% in the

working memory task.

Data exclusion for trials. Trials will be excluded from the RT analysis (arithmetic and

working memory task) as well as from the fNIRS analysis (arithmetic task) when the trial was

not correctly solved, when the RT was below 200 ms (anticipations), when the RT deviates

more than 3 median absolute deviations from the subject’s median in the respective task, and

when the duration between button press and button release deviates more than 3 median abso-

lute deviations from the subject’s median in the arithmetic task [58].

fNIRS data preprocessing. The relative concentration changes of oxygenated (O2Hb)

and deoxygenated hemoglobin (HHb) will be calculated for every fNIRS channel. The fNIRS

signal will be preprocessed by using the temporal derivative distribution repair [TDDR; 59] to

correct for high-amplitude motion artifacts and by applying a bandpass filter of 0.005–0.2 Hz.

To reduce low-amplitude motion artifacts, correlation-based signal improvement [CBSI; 60]

will be used, which is based on the negative correlation between O2Hb and HHb and is consid-

ered one of the best artifact correction methods [61]. Next, remaining noisy channels will be

interpolated by surrounding channels, and incorrectly solved trials as well as trials containing

uncorrectable artifacts will be excluded.

To analyze the fNIRS data within a model-based approach, the peak latency of the hemody-

namic response function will be determined by the overall maximum across channels, subjects,

and conditions [in the interval between 4 and 10 s rounded to half a second; 25]. In the model-

based approach, a general linear model will be computed for each channel, subject, and condi-

tion according to the hemodynamic response function. For every region of interest (10 ROIs:

IFG, MFG, IPS, AG, SMG on the left and right hemisphere), the channel with the highest

resulting beta value based on the grand average across conditions and subjects will be used for

the statistical analysis of the neural data.

Statistical data analysis. This study applies Bayesian hypothesis testing and thus Bayes

factors (BF) are calculated that determine how much more likely the observed data will be

under the alternative hypothesis (H1) as compared to the null hypothesis (H0) for BF10 (evi-

dence for a difference when BF10> 1) and vice versa for BF01 (evidence for no difference when
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BF01> 1), whereby BF01 = 1/BF10 [62]. BFs can be interpreted to provide anecdotal evidence

for 1–3, moderate evidence for 3–10, strong evidence for 10–30, and very strong evidence for

30–100, and extreme evidence above 100 in favor of one hypothesis [63, 64].

The statistical analyses in terms of Bayesian t-tests, Bayesian ANOVAs and Bayesian linear

regressions will be performed with JASP (Jeffreys’s Amazing Statistics Program, JASP Team,

2016). The analysis prior will be set to a Cauchy prior scale of 0.707 in Bayesian t-tests, reflect-

ing that H0 and H1 are equally likely to occur, to the default Cauchy prior of r = 0.5 for the

fixed effects in Bayesian ANOVAs, to the default Jeffreys–Zellner–Siow prior of r = 0.354 for

regression coefficients, and to a uniform model prior in Bayesian linear regressions. Bayesian

ANOVAs and linear regressions will set out to compare each model to the null model and

Bayesian model averaging will compare the models with the respective effect to equivalent

models without the effect (analysis suggested by Sebastiaan Mathôt).

Prior to the analyses of the arithmetic task, cognitive abilities will be analyzed: children and

the elderly will be compared to young adults regarding processing speed (raw scores), working

memory (ACC), and verbal and non-verbal intelligence (IQ scores) by two-sided Bayesian

independent samples t-tests. Next, the arithmetic task will be analyzed in 3 age (children,

adults, elderly) × 2 operation (addition, subtraction) × 2 complexity (with, without carry/bor-

row) Bayesian repeated measures ANOVAs [analysis over subjects, averaged over trials]. For

effects with BF10 or BF01� 6, post-hoc two-sided tests will be conducted for the contrast chil-

dren vs. young adults and the contrast young adults vs. the elderly by means of Bayesian inde-

pendent samples t-tests, or for contrasting different conditions by means of Bayesian paired t-
tests. Finally, multi-model Bayesian regressions will be conducted with the categorical predic-

tor carry/borrow (with, without) and the continuous predictor unit sum/difference separately

for addition and subtraction and for every age group [analysis over trials, averaged over sub-

jects]. All confirmatory analyses will be conducted on the dependent variables RT, indicating

behavioral performance, and beta values, indicating neural activation for each ROI separately

(left/right IFG, MFG, IPS). Planned exploratory analyses will be conducted on ER and beta val-

ues for neural activation in the other ROIs (left/right AG, SMG).

Bayes factor design analysis

For sample size estimation, the sequential Bayes factor design with maximal n will be used [65,

66]. In this design, data collection (1) will start with a minimum sample size of nmin = 20 per

group, (2) will continue until a BF10 or BF01� 6 is obtained for all effects of interest, or (3) will

be stopped when a maximum sample size of nmax = 60 per group has been reached. The prop-

erties of the planned research design were estimated with Monte Carlo simulations according

to Schönbrodt and Wagenmakers [65]: The minimum sample size was set for reducing false

positive rates, and the maximum sample size was set to ensure feasibility, while 80% of studies

with an infinite sequential sampling stop earlier than nmax. If sampling is terminated because

of reaching nmax, only with a probability of 5% will the study obtain misleading evidence. This

design detects an expected medium effect size of δ = 0.5 with a probability of 61% before the

nmax is reached. The chosen medium effect size accounts for the bias of small samples in the

reported large effect sizes (Z2
p � .5) for differences between children, young adults, and the

elderly in the neural distance effect [67, for large effect sizes (d� 1.2–1.6) see also for children

vs. adults: 68, for younger adults vs. the elderly: 69].

The effects of interest according to the hypotheses include the main effect of age (ANOVAs)

for RT and activation in left IFG, bilateral MFG, and left IPS according to H1; the main effect

of complexity and the interaction effect of complexity and age (ANOVAs) for RT and activa-

tion in left IFG and bilateral MFG according to H2; the categorical carry/borrow effect and the
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continuous effect of unit sum/difference in each age group (regressions) in RT and neural acti-

vation in left IPS according to H3.

Proposed timeline

After in-principle-acceptance of the registered report in stage I, data collection can start when-

ever the current global pandemic situation permits testing with children and elderly subjects.

Data collection is estimated to last 1 year (planned for September 2021 –August 2022), fol-

lowed by approximately 3 months for data analysis and preparation of the registered report for

stage II (planned for September–November 2022).
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