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Aim: Hepatic insulin resistance is a hallmark of type 2 diabetes
and non-alcoholic fatty liver disease. Dysregulation of microRNA
(miRNA) expression in insulin-resistant livers might coordinate
impaired hepatic metabolic function. Here, we aimed to discover
miRNAs and their downstream targets involved in hepatic insu-
lin resistance.

Methods: We determined miRNA expression profiles by small
RNA sequencing of two mouse models of impaired hepatic insu-
lin action: high-fat diet-induced obesity and liver-specific insulin
receptor knockout. Conversely, we assessed the hepatic miRNA
expression profile after treatment with the antidiabetic hor-
mone, fibroblast growth factor 21 (FGF21). Ontology analysis of
predicted miRNA gene targets was performed to identify regu-
lated gene pathways. Target enrichment analysis and miRNA
mimic overexpression in vitro were used to identify unified pro-
tein targets of nodes of regulated miRNAs.

Results: We identified an array of miRNA species regulated by
impaired liver insulin action or after fibroblast growth factor 21

treatment. Ontology analysis of predicted miRNA gene targets
identified pathways controlling hepatic energy metabolism and
insulin sensitivity. We identified a node of two miRNAs downreg-
ulated in the livers of liver-specific insulin receptor knockout
mice, miR-883b and miR-205, which positively regulate the ex-
pression of transcription factor zinc finger E-box-binding homeo-
box 1 (ZBED1). We found another node of two miRNAs
upregulated in the livers of fibroblast growth factor 21-treated
mice, miR-155-3p and miR-1968-5p, which canonically
downregulates the caveola component, polymerase | and tran-
script release factor (PTRF), a gene previously implicated in he-
patic energy metabolism.

Conclusions: This study identifies two nodes of coregulated

miRNAs that might coordinately control hepatic energy metabo-
lism in states of insulin resistance.

Key words: FGF21, high-fat diet, insulin receptor, insulin
resistance, liver, microRNA

INTRODUCTION

EPATIC INSULIN RESISTANCE is a hallmark of met-
abolic syndrome and type 2 diabetes. The insulin re-
sistant liver is characterized by excessive lipogenesis and
accumulation of lipids in hepatocytes, which forms the

pathological basis for non-alcoholic fatty liver disease
(NAFLD)."? Currently, the molecular mechanisms driving
the development of hepatic insulin resistance and NAFLD
are incompletely defined, yet liver insulin resistance and
NAFLD appear to be tightly linked.*?
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Fibroblast growth factor 21 (FGF21) is a peptide hor-
mone produced by several organs functioning to regulate
fasted- and fed-state whole-body energy metabolism.
FGF21 is a promising target for treatment of human
metabolic disease because of its beneficial pharmacologi-
cal effects on energy homeostasis in rodent and non-
human primate models of obesity and type 2 diabetes.
FGF21 administration induces weight loss, normalizes hy-
perglycemia and hyperinsulinemia, and restores insulin
sensitivity. In the liver, FGF21 increases lipid turnover to
reduce hepatic steatosis and improve insulin sensitivity.*

MicroRNAs (miRNAs) are small non-coding RNA mole-
cules controlling gene expression. Although the canonical
view is that miRNAs are negative regulators that destabilize
target mRNA molecules and/or inhibit their translation
into protein,” miRNAs can also regulate target gene expres-
sion by several alternative mechanisms,®” including gene
upregulation through direct activation of translation.’

MicroRNAs regulate various physiological processes, in-
cluding energy metabolism in skeletal muscle, adipose tis-
sue and in the liver,'® and are implicated in different
pathophysiological states of the liver, for instance hepati-
tis B and C infection, and liver fibrosis.'’ Hepatic miRNA
expression patterns are altered in states of insulin resis-
tance, and these alterations may coordinate an impair-
ment of liver metabolic function. Studies have identified
a number of individual miRNA species that are altered in
the insulin-resistant liver and have characterized their
downstream targets. For instance, miR-802 is upregulated
in livers of obese mice and humans, and impairs hepatic
metabolic function by targeting hepatocyte nuclear factor 1
beta.'? In contrast, miR-206 expression is reduced in the
livers of obese mice and in fatty acid-treated primary hu-
man hepatocytes, and was suggested to enhance liver me-
tabolism by simultaneously de-repressing insulin
signaling and inhibiting lipogenesis through its target pro-
tein tyrosine phosphatase, non-receptor type 1."> How-
ever, miRNAs often function in concert, where nodes of
several miRNA species cooperatively target common
downstream genes and pathways.'*'°

Here, we used small RNA sequencing (RNA-seq) to
identify miRNAs regulated in two mouse models of im-
paired hepatic insulin action and upon improvement of
liver metabolism by FGF21 treatment. We identified sev-
eral miRNA species showing an opposite regulation with
impairment of insulin action and improved metabolic
function. We also identified candidate transcription factors
for the control of miRNA regulation, and downstream tar-
get genes and pathways through which the regulated
miRNAs could affect hepatic energy homeostasis. The pres-
ent results identify, using varying models of insulin
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sensitivity, two miRNA nodes that potentially participate
in the regulation of liver metabolic function.

METHODS

DDITIONAL INFORMATION CAN be found in Sup-
plemental Experimental Procedures.

Animals

We analyzed miRNAs in livers harvested from a cohort of
mice from a previously published study.'” The cohort
was used in the original study for generating tissue gene ex-
pression and signaling data, liver triglyceride, and glycogen
data, as well as plasma cholesterol, free fatty acid, and tri-
glyceride data. The cohort consisted of eight groups of mice
comprising two genotypes, two diets, and pharmacological
treatment versus control (67 mice in total, n =5-11): male
control (IRlox) and liver-insulin receptor knockout
(LIRKO) mice were fed a chow or high-fat diet (HFD) for
7 weeks starting at 7 + 1 weeks-of-age and treated with sub-
cutaneous infusions of saline or recombinant human
FGF21 (1 mg/kg/day) for the last 2 weeks of the diet.
Mouse livers were harvested after 2 h of fasting.'”

Small RNA-sequencing

RNA-seq was performed for five randomly selected mice in
each of the eight experimental groups (n=>5). Total RNA
(10 pg) was used as input for each library prepared using
the NEBNext Multiplex Small RNA Library Prep Set for
Illumina (New England Biolabs, Ipswich, MA, USA),
where acrylamide gel electrophoresis was used for selec-
tion of small ncRNA molecules of approximately 15-40
nucleotides in length. Libraries were size-checked and
quantified using the Agilent Bioanalyzer 2100 system with
DNA 1000 chips (Agilent Technologies, Santa Clara, CA,
USA) and the Qubit dsDNA high-sensitivity assay (Life
Technologies, Carlsbad, CA, USA). Libraries were sub-
jected to 50-bp single-end sequencing on the HiSeq 2500
sequencer (Illumina, San Diego, CA, USA) at the Danish
National High-Throughput DNA Sequencing Center.

MicroRNA mimic transfection

Hepa-1clc7 mouse hepatoma cells (ATCC CRL-2026) were
grown in MEM alpha without nucleosides (Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% fe-
tal bovine serum (Sigma-Aldrich, St. Louis, MO, USA) and
1% penicillin/streptomycin (Thermo Fisher Scientific). Spe-
cific miRNA mimics or negative control (miRCURY LNA
miRNA mimics; Qiagen, Hilden, Germany) were intro-
duced into cells by reverse transfection in six-well plates
(50 nmol/L mimic, 200 000 cells per well) with Opti-MEM I
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Reduced-Serum Medium and Lipofectamine RNAiMax
(Thermo Fisher Scientific). Cells were harvested after 48 h
for isolation of total cellular protein as described in
Supplemental Experimental Procedures.

Bioinformatics and statistics

Hierarchical clustering analysis

LIRKO-HFD-FGF21, HFD-LIRKO, HFD-FGF21, and
LIRKO-FGF21 main contrast intersection sets of differen-
tially regulated miRNAs were selected by hierarchical clus-
tering analysis. Log, fold changes were used to generate the
matrices, and hierarchical clustering analysis was per-
formed by using the Canberra distance and ward.D2 clus-
tering algorithm.

Functional enrichment analysis for miRNA target genes

For the enrichment analysis of Gene Ontology terms asso-
ciated with targets of the differentially expressed miRNAs,
we used a method of “integrated gene set analysis for
microRNA studies”'® and focused on experimentally vali-
dated miRNA-target interactions with the strongest level
of evidence from the miRTarBase database (Release 7.0)."”

MicroRNA target enrichment analysis

Inferred downstream targets of miRNAs differentially
expressed in each of the three main contrasts (HFD vs.
chow, LIRKO vs. control, and FGF21 vs. saline) were ex-
tracted from the RNA-protein Association and Interaction
Network database.?® Each individual target gene was then
tested for enrichment among the regulated miRNAs in
each contrast in comparison with the non-differentially
expressed miRNAs using the geometric test with the
Benjamini-Hochberg correction. Enrichment tests were
conducted in parallel for up- and downregulated miRNAs.

Promoter motif enrichment analysis

The miRNA gene promoter site was defined as flanking
windows (500 or 2000 nucleotides) around the transcrip-
tion start site of the precursor (for intergenic miRNAs: the
5’ end of the precursor, for intragenic miRNAs: transcrip-
tion start site of host gene). Promoter motifs enriched
among the differentially expressed miRNAs were identified
using MEME-ChIP from the MEME suite v.4.11.2.2" The
two flanking window sizes were used as trade-offs between
sensitivity and specificity in the motif search. The
TOMTOM tool was used for identifying transcription fac-
tor binding motifs matching the enriched miRNA pro-
moter motifs.*?
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Statistical analysis

To test for main effects of HFD, insulin receptor KO, and
FGF21 treatment on liver zinc finger E-box binding ho-
meobox 1(ZEB1) and polymerase I and transcript release
factor (PTRF) mRNA and protein levels, quantitative re-
verse transcription polymerase chain reaction (QRT-PCR)
and western blotting data were subjected to linear model
fitting and selection with the step function in R followed
by ANOVA. For PTRF protein levels, ANOVA was followed
by Tukey’s multiple comparison testing. For further details,
see Supplemental Experimental Procedures.

MicroRNA mimic transfection experiments were ana-
lyzed in Prism 8 (GraphPad, La Jolla, CA, USA) using a
mixed-effects analysis (repeated measures 1-way ANOVA
equivalent) followed by multiple comparison testing
(each specific miRNA mimic vs. negative control) with
Dunnett’s correction.

For all qRT-PCR and western blotting analyses, P < 0.05
was used as significance cut-off, and individual data points
were plotted together with 95% confidence intervals (CI).

RESULTS

ICRORNA SIGNATURE OF hepatic insulin resis-
tance and FGF21-improved metabolism

Dysregulation of liver miRNA expression may partici-
pate in altered liver function and whole-body insulin-
resistance. To determine the miRNA expression profile of
the insulin-resistant liver, we used two mouse models of
impaired hepatic insulin action previously described by
our group:'” (i) HFD-induced obesity, which mimics he-
patic insulin resistance in metabolic syndrome and type 2
diabetes; and (ii) LIRKO.** Additionally, the effects of
treatment with the antidiabetic hormone, FGF21, which
improves liver energy metabolism, on miRNA expression
profiles were assessed in each of the models. In total, eight
groups of mice were included, comprising all combina-
tions of the two genotypes, the two diets, and the two treat-
ments (experimental setup described in Fig. 1).

We subjected total liver RNA to small RNA-seq, and spe-
cifically focused on miRNA expression levels. Multidimen-
sional scaling analysis showed separation of the eight
groups of mice into two main clusters of control and
LIKRO mice, with no distinct separation of mice based
on either diet or treatment (Fig. 2). The observed genotype
effect on miRNA expression levels was supported by hier-
archical clustering analysis (Fig. S1).

We examined the effects of HFD feeding, lack of liver in-
sulin receptor expression, and FGF21 treatment on hepatic
miRNA expression. For this, differentially expressed
miRNA species were identified in each of the three
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Figure 2 Hepatic microRNA expression signature of insulin resis-
tance and after fibroblast growth factor 21 (FGF21) treatment.
Multidimensional scaling analysis of microRNA expression data
showing segregation of the microRNA samples from each group
of mice. The distances correspond to leading log, fold change
(FC), which is defined as the root mean square of the largest
500 log, FCs between each pair of samples. Groups of mice:
ICF: control (IRlox)/Chow/FGF21; ICS: IRlox/Chow/Saline; IHF:
IRlox/High-fat diet (HFD)/FGF21; IHS: IRlox/HFD/Saline; LCF:
Liver-insulin receptor knockout (LIRKO)/Chow/FGF21; LCS:
LIRKO/Chow/Saline; LHF: LIRKO/HFD/FGF21; LHS: LIRKO/
HFD/Saline. [Color figure can be viewed at wileyonlinelibrary.
com|
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Figure 1 Schematic overview of study de-
sign. MicroRNAs (miRNAs) were exam-
ined in livers harvested from a cohort of
mice used in a previously published study
by our group. Control (IRlox) or liver-in-
sulin receptor knockout (LIRKO) mice
were fed a chow or high-fat diet (HFD)
for 7 weeks and treated with subcutaneous
infusions of saline or 1 mg/kg/day human
recombinant fibroblast growth factor 21
(FGF21) for the last 1 week of the diet, af-
ter which livers were harvested. Total RNA
was extracted from the liver and prepared
libraries for small RNA sequencing (RNA-
seq) to assess regulation of miRNA expres-
sion with HFD- or LIRKO-induced hepatic
insulin resistance or with FGF21 treat-
ment. [Color figure can be viewed at
wileyonlinelibrary.com]|

miRNAs E

paradigms: (i) HFD feeding, irrespective of genotype and
FGF21 treatment (HFD vs. chow); (ii) lack of insulin recep-
tor signaling, irrespective of diet and FGF21 treatment
(LIRKO vs. control); and (iii) FGF21 treatment irrespective
of genotype and diet (FGF21 vs. saline). Across the three
paradigms, a total of 386 unique, mature miRNA species
were differentially expressed. Validation of the sequencing
data was performed by qRT-PCR on a set of miRNAs (se-
quences of primers are provided in Table S1), showing a
range of relative expression levels (logCPM) and differen-
tial expression in at least one of the three paradigms with
an absolute log, fold change >0.5. A strong correlation be-
tween small RNA-seq- and qRT-PCR-derived results for
HFD versus chow (r=0.92; P=0.026), LIRKO versus con-
trol (r=0.98; P=0.003), and FGF21 versus saline
(r=0.94; P=0.016) validated our results (Fig. S2).

We identified 167 and 171 miRNAs to be up- and down-
regulated, respectively, in LIRKO versus control mice. In
contrast, just 12 miRNAs were upregulated and 12 down-
regulated by HFD feeding, and 43 upregulated and 49
downregulated by FGF21 treatment (Fig. 3a; Table S2), in-
dicating that the lack of insulin receptor expression in the
liver had a stronger overall effect on miRNA expression
than HFD feeding or FGF21 treatment. This notion was
supported by the multidimensional scaling analysis
(Fig. 2) and by the hierarchical clustering analysis (Fig. S1).

Hierarchical clustering analysis was then used to assess
which miRNAs were regulated across the models of im-
paired hepatic insulin action and with improved energy me-
tabolism induced by FGF21 treatment. Seven miRNA
species were found differentially expressed in both models
of impaired hepatic insulin action and with FGF21

Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology
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Figure 3 Identification of liver microRNAs (miRNAs) differentially expressed across conditions. (a) Venn diagram showing the number
of differentially expressed miRNAs in the three paradigms of high-fat diet (HFD) feeding, liver-insulin receptor knockout (LIRKO), and
fibroblast growth factor 21 (FGF21) treatment, and the intersections according to the small RNA sequencing data. (b-e) Heatmaps
based on hierarchical clustering of miRNAs differentially expressed in (b) all of the three paradigms or (c) miRNAs showing differential
expression both with HFD feeding and in LIRKO control mice (d) or both with FGF21 treatment and in HFD- versus chow-fed mice, (e)
or in LIRKO versus control mice. [Color figure can be viewed at wileyonlinelibrary.com]|

treatment, of which six miRNAs

of regulation in all three paradigms (Fig. 3a,b). Of the 19
miRNAs regulated by both HFD feeding and in LIRKO ver-
sus control mice, eight miRNAs were upregulated and eight

showed the same direction

miRNAs downregulated. In contrast, three miRNAs, miR-
210-3p, miR-193b-3p, and miR-324-5p, showed opposite
directions of regulation in these two models (Fig. 3a,c).
Eight miRNAs that were regulated in the same direction

© 2019 The Authors.
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and a single miRNA species, miR-582-3p, showed opposite
regulation with HFD feeding and FGF21 treatment (Fig. 33,
d). A total of 47 differentially expressed miRNAs were
shared between LIRKO versus control mice and FGF21- ver-
sus saline-treated mice, of which 28 miRNA species showed
the same and 19 miRNAs showed opposite directions of
regulation in the two models (Fig. 3a,e).

Upstream factors controlling regulation of miRNAs of
hepatic insulin resistance

Knowledge on the upstream mechanisms driving
miRNA expression, in particular in hepatic energy metabo-
lism and insulin resistance, is sparse. To identify upstream
factors that could be responsible for controlling miRNA ex-
pression in hepatic insulin resistance and after FGF21
treatment, we searched for enriched transcription factor
binding motifs in the promoter regions of the miRNAs dif-
ferentially expressed with HFD feeding, LIRKO, or FGF21
treatment using the MEME and DREME motif discovery
tools.2"?* The identified motifs were used to search for po-
tential binding transcription factors using the MEME suite
tool, TOMTOM.?* We discovered two motifs significantly
enriched in the promoters of miRNAs regulated in HFD-
fed mice (Figs 4,S3a). Two transcription factors, RREB1
and EPAS1, were found as potential binders of the long,
AC-rich motif. Of note, despite an extensive match be-
tween the consensus DNA binding motifs for these factors
and the identified enriched motif, false discovery rate for
binding probability exceeded 10%. However, because of
the link between RREB1 and hyperinsulinemia and hyper-
glycemia,”® and the importance of EPAS1 for hepatic mito-
chondrial function,?® these transcription factors could
indeed function to regulate hepatic energy metabolism
through control of miRNA expression. Several both long
(MEME) and short (DREME) motifs were found to be
enriched in the promoter regions of miRNAs regulated in
LIRKO versus control mouse livers (Figs 4,S3b) or miRNAs
regulated by FGF21 treatment (Figs4,S4). Many transcrip-
tion factors appeared as potential binders of the G-rich,
long motif most highly enriched among miRNAs upregu-
lated in LIRKO versus control mouse livers, including sev-
eral transcription factors and families that control hepatic
lipid metabolism or have been implicated in hepatic insu-
lin resistance and NAFLD. These included the SP family,
which regulate hepatic gene expression in response to in-
sulin signaling,”” and Kriippel-like factor 15, a protein sug-
gested to be part of the transcription factor network driving
NAFLD development and progression.”® The most highly
enriched A-rich, long motif among FGF21-upregulated
miRNA promoters is highly similar to the reverse comple-
ment of the T-rich long motif identified for the group of
FGF21-downregulated miRNAs (Fig. 4), suggesting that

© 2019 The Authors.
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common pathways mediate the miRNA response to
FGF21. In line with this, many of the same transcription
factors, including several forkhead box (FOX) family
members and interferon regulatory factor proteins, are po-
tential binders of the motifs. Interestingly, FOXQ1 and
FOXO proteins are key regulators of hepatic energy metab-
olism, and FOXOs protect against diet-induced fatty
liver disease.>”*° Interferon regulatory factor proteins are
implicated in obesity-associated inflammation and insulin
resistance. The known functions of the identified transcrip-
tion factors potentially controlling the expression of the
sets of FGF21-regulated miRNAs are thus consistent
with the role of FGF21 as a positive modulator of hepatic
energy metabolism.'” Taken together, the present results
identified potential upstream regulators of hepatic energy
metabolism through a coordinated transcriptional regula-
tion of miRNA expression.

Regulated miRNAs target energy metabolism
and inflammation

To identify downstream gene pathways affected by altered
miRNA expression in hepatic insulin resistance or after
FGF21 treatment, we performed a functional enrichment
analysis of Gene Ontology terms for already experimen-
tally validated miRNA targets." For this, we used a newly
developed methodology for “integrated gene set analysis
for microRNA studies” to take into account the possibility
that several differentially expressed miRNAs might target
the same gene.'® Of interest, we observed that miRNAs
regulated both with HFD feeding or in LIRKO versus con-
trol mice targeted genes and signaling pathways relevant
for hepatic energy metabolism and insulin resistance, in-
cluding pathways related to glucose and lipid metabolism,
mitochondrial function, oxidative stress/ER stress, and in-
flammation (Fig. 5ab; Table S3). Strikingly, although
showing lower enrichment levels, biological processes
enriched among the miRNAs regulated by FGF21 treat-
ment were generally of the same categories as those identi-
fied for miRNAs regulated by HFD feeding or in LIRKO
versus control mice (Fig. 5¢; Table S3). Taken together,
the present results show that hepatic miRNA expression
changes after HFD, or with a lack of insulin receptor ex-
pression or FGF21 treatment affect key pathways in liver
energy metabolism, and suggest that differentially
expressed miRNAs contribute to liver dysfunction in meta-
bolic syndrome and type 2 diabetes.

Identification of microRNA nodes sharing
downstream targets

MicroRNAs can function in nodes where several miRNA
species cooperate to target common downstream

Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology
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Figure 4 Transcription factor binding motifs enriched in promoters of regulated mictroRNAs (miRNAs). Consensus motifs most highly
enriched in the promoter regions of miRNAs upregulated with high-fat diet (HFD), upregulated in liver-insulin receptor knockout
(LIRKO) versus control livers or up- or downregulated by fibroblast growth factor 21 (FGF21) treatment. Motifs were identified using
MEME. For each motif, the E-value of the enrichment statistics is shown, and listed are the transcription factors (TF) identified as statis-
tically significant potential binders (false discovery rate <0.1). Note that for the motif enriched in promoters of miRNAs upregulated by
HED, the false discovery rate (FDR) for the listed transcription factors exceeds 0.1. [Color figure can be viewed at wileyonlinelibrary.com]|
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Figure 5 Biological processes associated with hepatic microRNA (miRNA) expression changes. Biological pathways represented as bi-
ological process Gene Ontology (GO) terms either induced or repressed by miRNAs differentially expressed in the three paradigms of
(a) high-fat diet (HFD)- or (b) liver-insulin receptor knockout (LIRKO)-induced impairment of liver insulin action or (c) fibroblast
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proteins and pathways.'*"'® Accordingly, even small
changes in levels of each individual miRNA species in
such a node can translate into significant effects on tar-
get protein levels and activity of the biological process
in question. We aimed to identify groups of miRNAs
that could coordinately regulate the same protein tar-
gets. First, we predicted the target genes of the sets of
miRNAs differentially expressed in the models of im-
paired hepatic insulin action or with FGF21 treatment
using the RNA-protein Association and Interaction Net-
work database. RNA-protein Association and Interaction
Network integrates four sources of ncRNA-protein inter-
action, including in silico prediction data from several
prediction algorithms and published experimental vali-
dation.”® Then, to identify shared miRNA targets, we
tested each protein target identified in the initial predic-
tion step for enrichment among the individual sets of
regulated miRNAs compared with the entire group of
detected miRNA species. From this analysis, two pro-
teins, ZEB1 and PTRF, were found to be significantly
enriched (false discovery rate <0.012 and 0.098, respec-
tively) among targets of two groups of coregulated
miRNAs.

Zeb1 is a potential unified miRNA target in
LIRKO livers

Target enrichment analysis identified a group of nine
miRNA species downregulated in livers of LIRKO mice
to all target ZEB1 (Fig. 6a-c). ZEB1 is a transcription
factor best known for its role as a driver of epithelial
to mesenchymal transition during cancer metastasis
and in a number of developmental processes.>' Interest-
ingly, ZEB1 has been associated with type 2 diabetes
through its link with insulin signaling and adipocyte dif-
ferentiation.’®>* To examine the regulation of ZEB1 ex-
pression in LIRKO mouse livers, we measured Zebl
mRNA and protein levels with qRT-PCR and western
blotting, respectively. Although Zebl mRNA levels were
only slightly reduced (Fig. 6d), protein levels were sig-
nificantly decreased in LIRKO versus control mouse
livers. Strikingly, this alteration was of the same direc-
tion as the regulation of the nine ZEBI-targeting
miRNAs (average fold change=0.6; P=0.00049;
Figs 6e,S5a), suggesting a role of these miRNA species
as positive post-transcriptional regulators of ZEB1 pro-
tein expression.

miR-883b and miR-205 upregulate ZEB1
expression in liver cells in vitro

To examine the potential of the nine identified miRNAs
to target ZEB1, we transfected cultured mouse hepatoma
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cells with the respective miRNA mimics. After 48 h,
ZEB1 protein levels were changed by some of the tested
miRNA mimics. Although miR-429 caused a borderline
significant reduction in ZEB1 protein levels (P=0.063),
both miR-883b and miR-205 increased ZEB1 protein
levels (Fig. 7fg), supporting a role of miR-883b and
miR-205 as positive post-transcriptional regulators of he-
patic ZEB1 expression.

PTRF is a potential target of three
FGF21-induced hepatic miRNAs

In livers treated with FGF21, target enrichment analysis
identified a group of three upregulated miRNAs, miR-
155-3p, miR-292b-3p, and miR-1968-5p, to all poten-
tially target polymerase 1 and transcript release factor
(PTRF, alternatively named Cavin-1; Fig. 7a-c). PTRF is
involved in RNA-polymerase I-catalyzed rRNA transcrip-
tion,>>° and it is essential for the formation of caveo-
lae, a type of lipid rafts found at the plasma
membrane of many cell types, including hepato-
cytes.>”~3? Interestingly, studies in Ptrf /~ mice have im-
plicated PIRF in the control of hepatic lipid
metabolism.***! Although Ptrf mRNA levels were un-
changed between livers of FGF21- versus saline-treated
mice (Fig. 7d), there was a clear effect of FGF21 treat-
ment on PTRF protein levels, but only in control mice
(P=0.03 for the interaction between genotype and
FGF21 treatment). FGF21 treatment resulted in a
marked upregulation of PTRF levels in livers of FGF21-
treated control mice on chow diet (median fold
change=4). We found a similar, though reduced, in-
crease in PTRF in HFD-fed control mice in response to
FGF21 treatment (median fold change=1.9; (adjusted
P=0.04 for FGF21 vs. saline in control mice, irrespective
of diet). Strikingly, this effect of FGF21 was absent in
LIRKO mice (Figs 7e,S5b). These results suggest that
PTRF could be a new target of FGF21 action in the liver
controlled by the three miRNAs miR-155, miR-292b,
and miR-1968. As PTRF was regulated in the same
way by FGF21 treatment as the three miRNAs, the pres-
ent results suggest that these miRNAs act as positive
post-transcriptional ~ regulators of  hepatic PTRF
expression.

miR-155 and miR-1968 downregulate PTRF
protein in liver cells in vitro

To examine the potential of miR-155, miR-292b, and miR-
1968 to regulate liver PTRF expression, we transfected cul-
tured mouse hepatoma cells with the respective miRNA
mimics. Although miR-292b-3p mimics had no effect on
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miR-155 and miR-1968 downregulate PTRF protein
levels in liver cells.

DISCUSSION

ERE, WE PERFORMED small RNA-seq in the livers

from two mouse models of impaired hepatic insulin
action and mice treated with the antidiabetic hormone
FGF21, and discovered miRNAs regulated by HFD- or
LIRKO-induced impairment of liver insulin action or with
improvement of liver metabolic function induced by
FGF21 treatment. Our promoter sequence analysis identi-
fied DNA-binding motifs and putative transcription factors
as candidates for upstream control of miRNA expression
in hepatic energy metabolism. Functional enrichment
analysis of predicted targets identified downstream bio-
logical processes likely affected by the observed changes
in miRNA expression profiles. We identified the tran-
scription factor ZEB1 and the caveola component PTRF
as targets of two different nodes of miRNAs regulated
in liver insulin resistance or with FGF21 treatment,
respectively.

A total of 16 miRNAs were regulated in the same direc-
tion with HFD feeding and in LIRKO versus control mice
(Fig. 3c). Among these are miRNA species previously
shown to be upregulated in states of hepatic insulin resis-
tance in both mice and humans; for example, miR-802
and miR-107.'%*? In contrast, the hepatic function of most
of the remaining miRNA species regulated in the same di-
rection with HFD feeding and in LIRKO appears vastly un-
known. However, many of these miRNAs are conserved in
mammals.*® Thus, it would be interesting to address their
role in human insulin resistance, focusing on the concerted
actions of the clusters of coregulated miRNA species on
liver metabolic function.

We identified 19 miRNAs with opposite regulation in
LIRKO versus control mice and with FGF21 treatment
(Fig. 3e). In contrast, only miR-582-3p was differentially
expressed with opposite directions of regulation after
HFD feeding and FGF21 treatment (Fig. 3d). Differences
between the two comparisons might reflect the fact that
FGF21 has partly distinct actions in LIRKO versus control
mice. Although FGF21 reduces total bodyweight and fat
mass, and normalizes glycemia regardless of genotype, its
beneficial effects on plasma cholesterol and liver triglycer-
ide levels observed in HFD-fed control mice is completely
abolished in LIRKO mice.'” We speculate that the set of 19
miRNAs oppositely regulated with LIRKO-induced lack of
hepatic insulin signaling and FGF21 treatment could be of
particular importance in the control of hepatic lipid
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metabolism and its dysregulation in states of insulin
resistance.

Target enrichment analysis identified nine downregu-
lated miRNA species as potential targeting molecules for
the transcription factor ZEB1 in LIRKO mouse livers
(Fig. 6a-c). We found that hepatic ZEB1 protein levels
were regulated in the same direction as the nine miRNA-
species (Fig. 6d,e), suggesting that these miRNAs could
act as positive regulators of hepatic ZEB1 expression. In
line with these findings, our miRNA mimic experiments
showed that miR-883b (the most downregulated of the
nine miRNA species) and miR-205 both upregulate ZEB1
protein levels in mouse liver cells in vitro (Fig. 6f,g). These
results could be due to indirect effects of miR-883b and
miR-205 on ZEB1 protein levels through downregulation
of other targets. However, since an initial report from
2007 of miR-369-3p acting either as an activator or a re-
pressor of tumor necrosis factor-o. expression depending
on the cell cycle state,** many studies have shown how
specific miRNAs can function as direct activators of target
gene translation by interacting with (partially) comple-
mentary sites in the 3’ or 5’ UTR of the target tran-
script.*>~>% Not much is known about the mechanism of
miRNA-mediated translational activation, but similar to
miRNA-mediated repression, it appears to take place
through AGO2-containing micro-ribonucleoprotein com-
plexes.*#4922455 Indeed, the 3'UTR of the Zebl mRNA
molecule contains two predicted binding sites for miR-
883b-3p and one site for miR-205-5p binding (Fig. S6a,
b). By binding to these sites, miR-883b and miR-205 could
upregulate hepatic ZEB1 expression by activating Zebl
mRNA translation into protein.

To the best of our knowledge, we are the first to identify
a downstream target for miR-883b. Most studies on miR-
205 deal with its role as a driver of epithelial to mesenchy-
mal transition in cancer, where miR-205 functions as a
negative regulator of ZEB1 expression.’® In contrast, just
a few studies have examined its role in liver energy metab-
olism. Langlet et al. reported recently that hepatic miR-
205-5p expression is increased in liver-specific Foxo1, -3a,
-4 triple-knockout mice.”” miR-205 gain- and loss-of-
function experiments showed that miR-205 targets
components of the insulin signaling pathway to enhance
insulin sensitivity and modulate hepatocyte glucose pro-
duction.”” The effects of miR-205-5p mimics on Zeb1 ex-
pression in primary mouse hepatocytes was also assessed
and no effects were observed (Suppl. Data in Langlet
et al.>”). However, only Zeb1 mRNA levels were measured,
and in the present study, we observed no effects of the
miRNA mimics on Zebl mRNA expression levels (not
shown), and only a slight reduction in Zebl mRNA, but a
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more pronounced decrease in ZEB1 protein, expression in
LIRKO versus control mouse livers (Fig. 6d,e). We specu-
late that miR-205, as well as miR-883b, could function to
control hepatic energy metabolism through preferential
regulation of ZEB1 protein levels.

Literature supports a role of ZEB1 in regulating liver en-
ergy metabolism. ZEB1 is a novel pro-adipogenic tran-
scription factor and a central, upstream component of
the gene regulatory network driving both mouse and hu-
man fat cell differentiation, a network comprising several
transcription factors also controlling liver energy metabo-
lism.>? Recently, it was shown in cancer cells that ZEB1 in-
duces expression of nicotinamide N-methyltransferase
(NNMT), an enzyme of NAD metabolism.>® Interestingly,
hepatic NNMT expression correlates with various meta-
bolic parameters in both mice and humans, and NNMT
functions as a regulator of liver glucose, lipid, and choles-
terol metabolism through stabilization of sirtuin 1 pro-
tein.> ZEB1 expression has also been linked directly to
insulin signaling. Consistent with our findings of reduced
ZEB1 levels in the LIRKO liver, insulin receptor silencing
in cancer cells implanted in hyperinsulinemic mice de-
creases ZEB1 expression levels.>* Thus, loss of insulin sig-
naling in LIRKO livers could be hypothesized to
downregulate the identified miRNA species. These
miRNAs, in turn, could act as positive regulators of ZEB1
protein abundance and, through this regulation, contrib-
ute to altered glucose and lipid metabolism in the liver
by targeting pathways, such as the NNMT/sirtuin 1
pathway.

Three miRNAs upregulated in the livers of FGF21- versus
saline-treated mice, miR-155-3p, miR-292b-3p, and miR-
1968-5p, were identified by target enrichment analysis to
potentially target the protein PTRF (Fig. 7b). Western blot-
ting showed that PTRF protein levels were increased in
livers of FGF21-treated control mice (Fig. 7e), suggesting
that the three miRNA-species function as positive post-
transcriptional regulators of PTRF protein expression.
However, our in vitro miRNA mimic experiments support
a function of miR-155 and miR-1968 to downregulate
PTRF protein levels in mouse liver cells. Thus, together
with the in vitro miRNA mimic experiments, our in vivo
data showing a net upregulation of hepatic PTRF after
FGF21 exposure, despite the concomitant upregulation
of miR-155 and miR-1968, suggest that these miRNAs
do not drive PTRF upregulation. Instead, miR-155 and
miR-1968 could act as counterregulatory molecules to
fine-tune hepatic PTRF expression as part of the meta-
bolic response to FGF21 treatment. In vivo studies with
miRNA loss-of-function combined with FGF21 treat-
ment of mice will be required to test if miR-155 and
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miR-1968 are indeed involved in the control of hepatic
PTRF protein expression as part of the metabolic re-
sponse to FGF21 treatment.

PTRF may be a novel intrahepatic mediator of the meta-
bolic actions of FGF21. Indeed, studies link PTRF to regu-
lation of hepatic energy metabolism. Ptrf /~ mouse livers
are characterized by mild steatosis and increased expres-
sion of lipogenesis genes, even when mice are fed a chow
diet.*® Furthermore, these mice show an impaired hepatic
response to prolonged fasting being unable to activate per-
oxisome proliferator-activated receptor-o. and its target
genes of fatty acid oxidation and ketogenesis.*' Interest-
ingly, our data show that the regulation of PTRF protein
levels by FGF21 requires an intact hepatic insulin signaling
pathway. PTRF protein levels were only increased in con-
trol, not in LIRKO, mice treated with FGF21. Furthermore,
HFD-fed control mice showed a diminished response to
FGF21 treatment compared with chow-fed control mice
(Fig. 7e). In line with these observations, we previously
showed that intact intrahepatic insulin actions are required
for FGF21 to control lipid metabolism in these mice.'” Fu-
ture studies should address whether PTRF is required for
FGF21 to enhance hepatic oxidative metabolism and nor-
malize intrahepatic lipid levels.

In conclusion, states of impaired insulin action are char-
acterized by alterations in the expression patterns of a large
number of miRNAs, of which several miRNA species ap-
pear to be counterregulated by treatment with the antidia-
betic hormone FGF21. The present results identified
potential mechanisms by which a coordinated miRNA ex-
pression change controls energy metabolism in the liver.
Targeting the upstream factors regulating these miRNA
networks may be used therapeutically to ameliorate he-
patic function in metabolic disease.
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