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Abstract: Effective shielding area is a crucial indicator for the evaluation of the infrared
smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the
shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking
precision. Therefore, an efficient and convincing technique for testing the effective shielding area
of the smoke screen has great potential benefits in the smoke screen applications in the field trial.
In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR) range of 3 to 5 µm
was first used to capture the target scene images through clear as well as obscuring smoke, at regular
intervals. The background subtraction in motion detection was then applied to obtain the contour
of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour
was interpolated based on the data that was collected from the image. Finally, the smoke effective
shielding area was calculated, based on the accumulation of the effective shielding pixel points.
One advantage of this approach is that it utilizes only one thermal infrared sensor without any
other additional equipment in the field trial, which significantly contributes to the efficiency and its
convenience. Experiments have been carried out to demonstrate that this approach can determine
the effective shielding area of the field infrared smoke both practically and efficiently.

Keywords: infrared thermography; infrared sensor; field trial; effective shielding area; background
subtraction; transmittance interpolation

1. Introduction

The use of infrared thermography in civil and military applications has been growing considerably
over the last few decades [1–3]. As a result of its fast inspection time, high sensitivity, and large
spatial resolution, infrared sensors have been widely utilized in the fields of target detection,
military reconnaissance, and missile guidance [4]. The evolution of the infrared sensor and its ability to
suppress interference, continually accelerate the development of the electro-optical countermeasures.
As one of the primary electro-optical countermeasures used throughout this century, the smoke screen
is able to relea‘se obscurants over a large area so as to absorb and reflect the target infrared radiation,
thus degrading the effectiveness of the sophisticated guided missiles [5–9]. Consequently, the study on
the effective shielding area of the smoke in the infrared bands has caused widespread interest [10–14].

The effective shielding area of the infrared smoke is an important parameter for evaluating the
obscuring performance of the infrared smoke in the field trial. In order to study the infrared extinction
characteristics of the smoke screen, infrared sensors are widely applied in practice so as to observe and
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record the motion of the smoke, which can simulate the battlefield scene [15]. Previous studies have
developed a considerable number of methods to detect the smoke screen, such as wavelets, support
vector machines, image fusion techniques, color features, and motion detection [16–20]. In addition,
Yang et al. [21] proposed a test method of the geometric smoke area, which is based on the number
of image pixels. Zhu et al. [22] suggested an approach to predict the smoke shielding area using the
diffusion equation. However, because of the factors of the wind speed, air turbulence, and smoke
diffusion characteristics, the dispersion of the smoke screen can lead to large differences in obscuring
the performance within different parts of the smoke cloud [23]. This causes clear distinctions between
the geometric area and the effective shielding area of the smoke screen. Currently, the most commonly
used method for obtaining the effective shielding area involves the subjective evaluation through
naked eyes, which cannot guarantee precision. Therefore, a universal and convincing method to
determine the effective shielding area of the smoke is strongly desired.

In this paper, we have proposed a practical approach in order to measure the effective shielding
area of the field infrared smoke, with the help of an infrared sensor. Firstly, the infrared sensor was
utilized to capture the video sequence of the target scene, during the field experiment. Secondly,
the geometric contour of the dynamic smoke cloud from each image frame was obtained using the
motion detection techniques. After this, according to the grayscale smoke transmittance model [24]
and the spatial resolution of the infrared sensor, the smoke transmittance of each pixel within the
smoke contour was determined by a linear interpolation. Finally, when compared with the input
smoke transmittance threshold, the effective shielding area was calculated using the accumulation of
the effective shielding pixel points. This approach is capable of measuring the effective shielding area
of the smoke in the field trial, with advantages in the economy, convenience, and efficiency.

2. Experimental Setup

The experimental setup consisted of three parts, namely: (1) an infrared radiation target array;
(2) a smoke release site; and (3) a measurement system site [24]. The test site was chosen in order to get
enough distance between the radiation sources and the measurement system. The distance between
the targets and the sensor was selected as 500 m in the field trial, in order to obtain the best spatial
resolution for the imaging systems. In addition, the weather conditions, especially the wind speed and
temperature, could determine the atmospheric stability, which would thus have influenced the results
of the observed quantities. Consequently, the experiment was carried out under stable meteorological
conditions when the temperature was approximately 10–30 ◦C and the wind speed was under 5 m/s.
The schematic diagram of the field experiment in this study is shown in Figure 1.
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Figure 1. Schematic diagram of the field experiment. MWIR—mid-wavelength infrared. 

The Standard blackbodies (SR-800N Superior Accuracy Blackbody, CI System Ltd., Migdal 

HaEmek, Israel) that emitted the infrared radiation were fixed in lines and columns vertically, in 

order to form an infrared signal array. Each blackbody had a radiation surface of 20 cm × 50 cm for 

the thermal sensor measurements and could maintain the preset temperatures in the range of −25 °C 

to 100 °C. In this experiment, the temperature of the blackbody was set as 37 °C, so as to simulate the 

human body temperature. The radiation from the targets could be reflected, scattered, and absorbed 

by the smoke screen during the smoke diffusion process. The thermography images were collected 

using a commercial mid-wavelength infrared (MWIR) sensor (SZJ-2 Cooling FPA Thermal Imager, 

Figure 1. Schematic diagram of the field experiment. MWIR—mid-wavelength infrared.

The Standard blackbodies (SR-800N Superior Accuracy Blackbody, CI System Ltd.,
Migdal HaEmek, Israel) that emitted the infrared radiation were fixed in lines and columns vertically,
in order to form an infrared signal array. Each blackbody had a radiation surface of 20 cm × 50 cm
for the thermal sensor measurements and could maintain the preset temperatures in the range of
−25 ◦C to 100 ◦C. In this experiment, the temperature of the blackbody was set as 37 ◦C, so as to
simulate the human body temperature. The radiation from the targets could be reflected, scattered,
and absorbed by the smoke screen during the smoke diffusion process. The thermography images were
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collected using a commercial mid-wavelength infrared (MWIR) sensor (SZJ-2 Cooling FPA Thermal
Imager, Kunming North Infrared Technology Co. Ltd., Kunming, China). The sensor had a cooled
InSb focal plane array detector with a resolution of 320 × 240 pixels, which captured the spectra with a
wavelength of 3–5 µm. The field of view (FOV) of the sensor was 11◦ × 8.25◦ and the lens focal length
was 50 mm. In this study, the approach to calculate the effective shielding area of the field infrared
smoke was based on the images that were captured from the MWIR sensor, which could approximately
simulate the battlefield scene from the infrared seeker within the range of 3–5 µm.

3. Methodology

3.1. Background Subtraction

Many of the traditional methods were proposed in a long-term study of the motion detection
in a continuous video stream, including background subtraction, frame difference, and optical
flow [25]. In this section, the background subtraction was applied to detect and track the motion of the
smoke cloud.

Background subtraction was a conventional method for detecting moving objects in a static
background scene, through a pixel-by-pixel comparison of the current image with a background image,
pixel by pixel [26]. The basic idea is expressed in Equation (1) as follows:

∆I(i, j) = I1(i, j)− I0(i, j) (1)

where ∆I(i, j) is the difference in the image intensity between the current and background image
frames, at a certain pixel point (i, j); and I1(i, j) and I0(i, j) represent the image intensities of certain
pixels at the position (i,j) in the current and background frames, respectively. We first stored the
image frame that only contained of the static target scene as the background image. ∆I(i, j) was then
compared with the input threshold value. The choice of threshold was very important in determining
the success of the motion detection. The selection of the threshold in this algorithm was based on
Otsu’s binarization method [27]. Finally, if ∆I(i, j) exceeded the threshold value, it meant that there
was a smoke motion in the area that was being monitored. The algorithm could be described by the
flowchart shown in Figure 2.
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Figure 2. The algorithm flowchart of the background subtraction method.

The background subtraction technique had the advantages of easy implementation and fast
detection, in addition to being able to provide the complete feature data of the target scene. However,
this method was vulnerable and particularly sensitive to the variations in the dynamic scenes,
including the sudden illumination changes in the background, shadows, and camera shakes [28].
Therefore, it was suggested that the experiment needed to be carried out under stable meteorological
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conditions. The infrared target array and MWIR sensor also needed to remain immovable during the
field trial.

Figure 3 presents an example of the smoke motion, using the background subtraction method.
The original image and smoke extraction image at frames 42, 64, 130, 328, and 691 are presented.
The result proved that the background subtraction could be applied to output the location of the smoke
contour practically in real-time.
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Figure 3. Original infrared image and smoke extraction image at frame 42, 64, 130, 328, and 691.
The images in the first line represent the infrared images from the sensor, while the images in the
second line represent the images after the background subtraction processing.

3.2. Transmittance Interpolation

Smoke transmittance has been defined as the fraction of the incident electromagnetic radiation,
which passes through smoke obscurants [29]. In this section, the smoke transmittance of each pixel
within the research area was investigated by the transmittance interpolation. The algorithm flowchart
is shown in Figure 4. The motion of the smoke cloud was first tracked, while the smoke contour was
drawn by the background subtraction method, as mentioned above. The targets within the smoke
contour were then positioned and the smoke transmittance of these targets were calculated as the
known data by the grayscale smoke transmittance model [24]. Finally, the transmittance of each
pixel within the research area was obtained, based on the transmittance linear interpolation. In the
mathematical field of the numerical analysis, interpolation was used to construct additional data
points within the range of a discrete set of known values [30]. In the proposed method, an empty
two-dimensional matrix, which included the smoke contour, was created. Based on the known
smoke transmittance of the study targets, a linear interpolation was applied to fill in the smoke
transmittance matrix.
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3.3. Effective Shielding Area

The effective shielding area of the smoke referred to the area that the smoke cloud could cover
when the smoke transmittance met the threshold for shielding [21]. Using the background subtraction
and transmittance interpolation methods that were mentioned above, a two-dimensional matrix that
contained the smoke transmittance of each pixel was determined. If the smoke transmittance of a
certain pixel was more than the input transmittance threshold, the pixel was defined as the effective
shielding point. By the accumulation of all of the effective shielding points within the matrix, the total
amount of the effective shielding points could be obtained. When combined with the parameters of the
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thermal infrared imager and field trial, the effective shielding area was calculated using Equation (2),
as follows [31]:

S = n∆[R×d/(f× cosα)]2 (2)

where S stands for the effective shielding area, n is the total number of effective shielding points,
R refers to the distance between the thermal infrared imager and the smoke explosion site, f is lens
focal length d is the pixel spacing, and α is the horizontal observation angle.

In the field trial, the lens focal length, f, and the pixel spacing, d, were constants for the same
model of the thermal infrared imager. The distance between the thermal infrared imager and smoke
explosion site, R, was chosen according to the spatial resolution of the sensor. α was the horizontal
observation angle. With all of these parameters that were obtained above, the effective shielding area
of the smoke could finally be accurately calculated.

4. Results and Discussion

Using the aforementioned methodology to calculate the effective shielding area of the smoke,
a field trial example will be illustrated and discussed in this section.

In the field trial, a smoke ammunition was detonated between the thermal infrared sensor and
the target array. The thermal infrared sensor was used to track and record the smoke motion process
in the infrared spectra, with wavelengths of 3–5 µm. The results from the frame-by-frame analysis of
the images are shown in Figure 5
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Figure 5. Smoke area curves during the smoke diffusion process. The blue line represents the smoke
geometric area, the red line represents effective shielding area of the smoke, and the green dashed line
represents the threshold for effective shielding area (ESA) of the smoke.

As shown in Figure 5, the blue line, red line, and green dashed line referred to the smoke
geometric area, effective shielding area, and effective shielding area threshold, respectively. At first,
a smoke screen with a strong infrared radiation was formed shortly after the detonation of the smoke
ammunition. As a result of the effect of the atmospheric turbulence and the increase in the smoke
concentration, the smoke screen started to diffuse and enlarged gradually until it reached its maximum
shielding extent. After this, the smoke shielding area began to reduce and completely vanished in
the end, because of a decrease in the smoke temperature and a decline in the smoke concentration.
In Figure 5, the two area curves almost overlapped with each other during the period of 0–15 s.
This was caused by the high temperature of the smoke screen at the beginning. Thus, the smoke screen
could emit a strong infrared radiation and the geometric area was almost equal to the effective shielding
area during this time. From 15 s to 60 s, since the smoke screen started to diffuse, the effectiveness of
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the smoke in obscuring the area, began to reduce. Therefore, during this period of time, the value of
the effective shielding area of the smoke was less than the geometric area.

In addition, the green dashed line in Figure 5 provides a threshold for the effective shielding area.
The threshold was an input parameter, which could be adjusted based on the different requirements
for the smoke obscuring capability. In this experiment, according to the target size, the threshold
for the effective shielding area of the smoke was set as 150 m2 in Figure 5, as an example to conduct
further analysis. The smoke screen could only provide an adequate shielding area for the potential
targets if the effective shielding area was more than the threshold. Based on the effective shielding area
of the smoke curve and the input threshold for the effective shielding area of the smoke, the maximum
effective shielding area and average effective shielding area could be calculated in order to better
evaluate the field infrared smoke shielding performance, as follows.

The maximum effective shielding area of the smoke was the maximum value that was obtained
from all of the effective shielding areas. In Figure 5, according to the effective shielding area curve,
the maximum was 251 m2. The average effective shielding area was the average value for the effective
shielding area of the smoke, during the period of time when the effective shielding area met the
threshold. In Figure 5, the average effective shielding area is 198 m2. The results are shown in Table 1.

Table 1. Area parameters for smoke shielding performance.

Maximum effective shielding area/m2 251

Average effective shielding area/m2 198

According to the effective shielding area of the smoke, which was calculated by the proposed
approach in this study, the military researchers could efficiently determine the number of smoke
ammunitions and smoke-releasing time on the battlefield, which contributed greatly to the
military tactics.

5. Conclusions

This paper has investigated a new approach for the effective shielding area of the field infrared
smoke. The approach combines the techniques of background subtraction with the transmittance
interpolation. The results from the experiment demonstrate that this approach can facilitate the
evaluation work of the field infrared smoke screen performance. According to the findings of the
study, the conclusions are as follows:

(1) With the help of the thermal infrared sensor and the motion detection technique, the background
subtraction can be applied to efficiently display the contour of the smoke cloud in real-time.

(2) Based on the contour of the smoke cloud, a smoke transmittance matrix can be created by the
linear interpolation method.

(3) The effective shielding area can be calculated by the accumulation of the effective shielding
pixel points in the transmittance matrix and allows for the evaluation of the field smoke
shielding performance.
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