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Abstract
Purpose: We aim at developing a model-based algorithm that compensates for
the effect of both pulse pileup (PP) and charge sharing (CS) and evaluates the
performance using computer simulations.
Methods: The proposed PCP algorithm for PP and CS compensation uses
cascaded models for CS and PP we previously developed, maximizes Poisson
log-likelihood, and uses an efficient three-step exhaustive search. For compar-
ison, we also developed an LCP algorithm that combines models for a loss of
counts (LCs) and CS. Two types of computer simulations, slab- and computed
tomography (CT)-based, were performed to assess the performance of both
PCP and LCP with 200 and 800 mA, (300 µm)2 × 1.6-mm cadmium telluride
detector,and a dead-time of 23 ns.A slab-based assessment used a pair of adi-
pose and iodine with different thicknesses,attenuated X-rays,and assessed the
bias and noise of the outputs from one detector pixel; a CT-based assessment
simulated a chest/cardiac scan and a head-and-neck scan using 3D phantom
and noisy cone-beam projections.
Results: With the slab simulation, the PCP had little or no biases when the
expected counts were sufficiently large, even though a probability of count loss
(PCL) due to dead-time loss or PP was as high as 0.8. In contrast, the LCP had
significant biases (>±2 cm of adipose) when the PCL was higher than 0.15.
Biases were present with both PCP and LCP when the expected counts were
less than 10–120 per datum, which was attributed to the fact that the maximum
likelihood did not approach the asymptote. The noise of PCP was within 8%
from the Cramér–Rao lower bounds for most cases when no significant bias was
present. The two CT studies essentially agreed with the slab simulation study.
PCP had little or no biases in the estimated basis line integrals, reconstructed
basis density maps, and synthesized monoenergetic CT images. But the LCP
had significant biases in basis line integrals when X-ray beams passed through
lungs and near the body and neck contours, where the PCLs were above 0.15.
As a consequence,basis density maps and monoenergetic CT images obtained
by LCP had biases throughout the imaged space.
Conclusion: We have developed the PCP algorithm that uses the PP–CS
model. When the expected counts are more than 10–120 per datum, the PCP
algorithm is statistically efficient and successfully compensates for the effect
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of the spectral distortion due to both PP and CS providing little or no biases in
basis line integrals, basis density maps, and monoenergetic CT images regard-
less of count-rates. In contrast, the LCP algorithm, which models an LC due to
pileup, produces severe biases when incident count-rates are high and the PCL
is 0.15 or higher.
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1 INTRODUCTION

Photon counting detector (PCD)-based X-ray com-
puted tomography (CT) has great potential in many
clinical applications,1–3 and prototype systems have
shown excellent performances in phantom and clinical
studies.1,4–6 One of the challenges with PCDs, how-
ever, is spectral distortion due to pulse pileup (PP) and
charge sharing (CS).2,7 It is critical to address the effect
of the spectral distortion, because many clinical appli-
cations rely on accurate spectral information PCDs are
expected to output. It is impossible for the current PCDs
using pulse height analysis to address both PP and CS
simultaneously by tweaking their design parameters and
specifications, because two major parameters, the pixel
size and the pulse shaping time,have an opposite effect
on PP and CS.1–3 For example, a smaller pixel size mit-
igates PP but worsens CS. A desirable strategy is to (i)
design a PCD that balances the effects of PP and CS
and (ii) employ an algorithm to compensate for the effect
of the (remaining) spectral distortion.2

Several algorithms, both model-8–11 and data-
based,12,13 were developed to explicitly address the
CS problem with low count-rates, and a few data-based
methods14–16 were developed to address both PP and
CS implicitly. To our knowledge, however, there is no
model-based algorithm that can address both PP and
CS altogether. We suspect that the main reason for the
absence is the complexity of models. CS is better char-
acterized than PP. A few CS models were developed
and showed good agreement with physical PCDs or
Monte Carlo simulators.17–20 One of them, available
to academic researchers, allows us to compute the
expected spectrum using a simple matrix for the spec-
tral distortion and a vector for the incident spectrum.19

Several PP models showed good agreement with
physical PCDs or Monte Carlo simulators21–25; how-
ever, they are nonlinear and shift-variant and a lot
more complex than the CS models. We have devel-
oped both PP and CS models and are ready for the
challenge.

Both model- and data-based methods have different
strengths and weaknesses. For example, model-based
methods can compute PCD data at any desirable con-
ditions;however, they may not match the measured data
completely if the model is inaccurate.Data-based meth-
ods, on the other hand, better represent a PCD with a

specific configuration and predict measured data at a
specific condition; however, the accuracy of computed
data at unmeasured conditions is unknown. It makes
sense to combine both of the approaches eventually,
and therefore, it is desirable to have a model-based algo-
rithm that can address both PP and CS to prepare for the
integration.

The purpose of this study was to develop a model-
based algorithm that compensates for the effect of both
PP and CS and evaluate the performance using com-
puter simulations. The paper is structured as follows. In
Section 2, we outline the proposed algorithm and sim-
ulation methods. We present the results in Section 3,
discuss relevant issues in Section 4, and conclude the
paper in Section 5. Acronyms are listed in Table 1.

2 METHODS

We outline the proposed algorithm and an algorithm
to compare within Section 2.1 and the assessment
schemes in Section 2.2.

2.1 PP and CS compensation (PCP)
algorithms

The proposed algorithm integrated the PP and the CS
models and used an optimization framework to estimate
line integrals of basis functions from measured PCD
data while compensating for the effects of PP and CS.
For the comparison purpose, we also combined mod-
els for a loss of counts (LC) and the CS and developed
an algorithm that can address not the spectral distor-
tion but the dead-time loss (i.e., scaling) due to pileup
(the spectral distortion due to the CS was modeled cor-
rectly). Figure 1 presents the expected spectra of the
PP–CS, the LC–CS, and the CS models only, at two dif-
ferent count-rates (hence, at two different probabilities
of count loss [PCLs] due to dead-time loss or PP; see
Appendix for the precise definition of PCL). The algo-
rithm that used the PP–CS model was called PCP for
PP and CS compensation, and the one that used the
LC–CS model was called LCP for LC and CS compen-
sation.In the following,we outline the three key elements
for both the PCP and the LCP: the system model, the
cost function, and the optimization algorithm.
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TABLE 1 Acronyms

Acronyms, variables Meaning

CS Charge sharing

CT Computed tomography

LC A loss of counts

LCP LC and CS compensation algorithm

nSD Normalized standard deviation

PCD Photon counting detector

PCL Probability of count loss

PCP PP and CS compensation algorithm

PP Pulse pileup

XCAT extended NURBS-based cardiac-torso phantom

x(r, E), x(E) A linear attenuation coefficient of a voxel at a position r and energy E. Bold letters indicate
vectors.

𝚽 (E) = [𝚽1(E),𝚽2(E)] A set of basis functions used in material decomposition

w1(r), w2(r), w1, w2,
w = [w1, w2]T

A set of characteristic coefficients of basis functions Φ1(E) and Φ2(E)

v1, v2, v = [v1, v2]T Line integrals of characteristic coefficients (i.e., dimension-less relative densities) of basis
functions Φ1(E) and Φ2(E)

yn Noisy PCD data (counts) with multiple energy windows

2.1.1 Object and system modeling

We start with modeling an object. Let x(r, E) denote
a linear attenuation coefficient (1/cm) of a voxel at a
position r and an energy E. Bold letters denote vec-
tors in this paper. Using the material decomposition, x(r,
E) can be expressed as a linear combination of basis
functions:

x (r, E) = w1 (r)Φ1 (E) + w2 (r)Φ2 (E) , (1)

where w1(r) and w2(r) are characteristic coefficients
(i.e., dimensionless relative densities) of basis functions
Φ1(E) and Φ2(E) (1/cm), respectively, at the position
r. A set of bases can be chosen from either physics
phenomena, such as photoelectric effect and Comp-
ton scattering,or representative materials such as water
and bone. Two basis functions suffice if the object
does not contain materials with K-edge within an X-ray
energy range and three with a K-edge material. The line
integrals of the object, p, can then be computed by

p (E) = ∫ x (r, E) dr = ∫ w1 (r) dr Φ1 (E)

+ ∫ w2 (r) drΦ2 (E) = v1 Φ1 (E)

+ v2Φ2 (E) = 𝚽 (E) v, (2)

where v = [v1, v2]T are called basis line integrals (cm),
and 𝚽 (E) = [Φ1(E),Φ2(E)].

Now, we model PCDs. In previous studies, we devel-
oped the CS model and the PP model separately and

showed that cascading multiple models for different pro-
cesses could approximate the expected PCDs spectra
accurately.26 For this study, we used the PP21,22 and
the CS models19 under an assumption that flat-field X-
rays were incident onto PCDs. Let hPPCS be a function
that outputs a vector of expected PCD counts for multi-
ple energy windows, y, with the effects of both PP and
CS given a set of line integrals of basis functions, v:
y = hPPCS(v). A function hLCCS that outputs a vector of
expected PCD counts with both LC and CS was also
constructed by combining the LC and CS models. Both
hPPCS and hLCCS will reduce to CS only at an extremely
low incident count-rate. We assumed that there was
no correlation between neighboring PCD pixels nor
between multiple energy windows within the same pixel
and that noisy PCD data yn were Poisson-distributed:

yn ∼ Poisson (hPPCS (vt)) , (3)

where vt is the true basis line integrals. More details are
provided in Appendix.

2.1.2 Cost function

The cost function for PCP and LCP, respectively, is the
Poisson log-likelihood (LL) of the corresponding PCD
data with the expectation computed by the PP–CS and
the LC–CS models, respectively:

𝚯PCP = LL(yn|hPPCS (vt)), (4)
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F IGURE 1 The 140-kVp spectra at the probability of count loss
(PCL, due to dead-time loss, defined by Equation A11) of 0.15 (a)
and 0.30 (b) after attenuation by 10 cm of adipose and charge
sharing (CS). The spectra were computed by (i) the pulse pileup
(PP)–CS model that takes into account the effects of PP, CS, and
attenuation on both the X-ray intensities and spectral distortion; (ii)
the loss of count (LC)–CS model, which takes into account an LC
due to PP and spectral changes due to CS and attenuation; and (iii)
the CS model, which takes into account the attenuation and CS. The
difference between (ii) and (iii) denotes the dead-time loss (or an
LCs) due to PP, whereas the difference between (i) and (ii) shows the
spectral distortion due to PP. More details of the simulation settings
are provided in Sections 2.2.1 and 2.2.2; both PP–CS and LC–CS
models are outlined in Section 2.1.1. Results presented in Section 3
show that biases were significant with LC–CS model when PCL was
higher than 0.15.

𝚯LCP = LL(yn|hLCCS (vt)). (5)

2.1.3 Optimization algorithm

With PCP and LCP, we wish to find the maximizer that
maximizes the corresponding function:

vPCP = argmaxv LL(yn|hPPCS (vt)), (6)

vLCP = argmaxv LL(yn|hLCCS (vt)). (7)

The function hPPCS (or its partial derivative) for the
cascaded systems model PP–CS is computationally too

(a) (b)

F IGURE 2 The proposed optimization algorithm using a
multistep exhaustive search. Step 1 is to find the maximizer v(1)

among vs along the diagonal axis and Step 2 is to find the maximizer
v(2) among vs in a banana-shaped region Ω(v(1)) (a); and Step 3 is to
find the maximizer v(3) among vs in a rectangular region Σ(v(2)) (b).
Note that Δv1 and Δv2 are the original sampling pitch used in Steps 1
and 2, whereas Δv1/10 and Δv2/10 are used in Step 3.

expensive to evaluate on the fly and be used as a
part of an iterative optimization algorithm. Thus, we pre-
computed the expected counts y at grid points v with
an increment of Δv1 and Δv2 along v1- and v2-axes,
respectively, and employed a computationally efficient
exhaustive search that takes the following three steps
(see Figure 2 for pictorial description):

Step 1. Candidate points v along the diagonal line
in the v1–v2 plane (Figure 2a) were used to com-
pute LL values. The maximizer, v(1), was then
selected.

Step 2. Candidate points were those in Ω(v(1)), a
“banana-shaped” region, which was a group of
points in the v1–v2 plane that results in v(1) as
the maximizer in Step 1.Ω(v(1)) was determined
using noisy PCD data. The maximizer of the LL,
v(2), was selected.

Step 3. Candidate points were those from Σ(v(2)),
a small rectangular region centering at v(2) with
10 times denser samples than those used in
Step 2 (i.e., with an increment of Δv1/10 and
Δv2/10, respectively, over a range of (−1.2Δv1,
1.2Δv1) and (−1.2Δv2, 1.2Δv2), respectively;
see Figure 2b). The point v(3) that maximizes
the LL was selected and called the global
maximizer.

The banana-shaped regionΩ(v(1)) used in Step 2 was
preconstructed as follows.First,we generated 100 noisy
data for each grid point in the v1–v2 plane. Second, we
performed an exhaustive search along the diagonal line
in the v1–v2 plane, which is the same as Step 1 outlined
earlier. Let us call the maximizer v(diag). Third, we per-
formed an exhaustive search of the global maximum
using all of the grid points in the entire v1–v2 plane.
Let us call the maximizer v(global). Fourth, we added the
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point v(global) to the set Ω′(v(diag)). By repeating the pre-
vious process for all of the noisy data, we get a set of
Ω′(v(diag)) for each v(diag). Finally, we treated Ω′(v(diag))
as a binary region in the v1–v2 plane and performed
a morphological dilation operation to enlarge Ω′(v(diag))
and obtained Ω(v(diag)).

2.2 Computer simulation study

We outline the common settings and two assessment
schemes in the following: slab- and CT-based schemes.

2.2.1 Common settings

We used a cadmium telluride PCD with a pixel size of
(300 µm)2,a thickness of 1.6 mm,four energy thresholds
at (20,45,70,and 95 keV),charge cloud size of 48 µm in
full-width-at-half -maximum, electronic noise of 2.0 keV,
and non-paralyzable detection with a dead-time of 23 ns.
The X-ray spectrum was 140 kVp. Using the CS model
and the other parameters presented in Ref. [19] and the
PP model in Ref. [22], the expectation of the PCD out-
puts for both PP–CS and LC–CS models was computed
for a set of basis materials v attenuating the X-rays.See
Figure 1 for two spectra at two different count-rates. A
set of basis materials was adipose for representing soft
tissue materials and iodine for high-Z materials in this
study; the densities were 0.92 g/cm3 for adipose and
4.94 g/cm3 for iodine; for Steps 1 and 2, the range of
thicknesses was (−18 cm,126 cm) with an increment of
0.45 cm for adipose and (−0.180 cm, 1.800 cm) with an
increment of 6.0 × 10−3 cm for iodine. Negative thick-
nesses were included to minimize the boundary effect
of the search range. When the true v is on or near a
boundary, estimation results will be biased because an
exhaustive search, such as PCP or LCP, functions as
constrained optimization, truncates the probability dis-
tribution and produces biases (with reduced noise). For
Step 3, the expected counts were linearly interpolated to
create 10 times denser samples (i.e., with an increment
of 0.045 cm for adipose and 6.0 × 10−4 cm for iodine).
It took 2.5 days in total per one tube current setting to
compute hPPCS(v) for the PP–CS model for all of the
sample points for Steps 1 and 2 using a 3-GHz 6-core
Intel Core i5 2018 CPU chip with 64-GB memory. The
computation of hLCCS(v) for the LC–CS model was sig-
nificantly faster.The expectation for Step 3 was obtained
by linearly interpolating hPPCS(v) or hLCCS(v) generated
for Steps 1 and 2.

As will be discussed later, we simulated a sce-
nario with 4 × 4-superpixel processing in this study,
which added the outputs of 16 pixels to create one
large PCD pixel. Some prototype research PCD-CT
systems (SOMATOM CounT system; Siemens Health-
ineers; Forchheim, Germany) output superpixel data

by default, and it reduces a computational burden
significantly.

2.2.2 Slab-based assessment

We generated noisy data at off -grid points not sampled
in Section 2.2.1, used tube current values of 200 and
800 mA, a time duration of 400 µs per reading, and
repeated the measurement 160 000 times for each v.
Sixteen noise realizations were then added, resulting in
10 000 noisy data for each v. We performed both PCP
and LCP to estimate v and assessed the bias and stan-
dard deviation over multiple noise realizations. Biases
larger than 2.0 cm of adipose and 2.0 × 10−2 cm of
iodine were considered significant,because it was found
later in the CT-based assessment that they produced
noticeable biases and artifacts. For a reference esti-
mation noise level, the Cramér–Rao lower bound was
computed for each condition using a formula for a multi-
variate normal distribution with off -diagonal covariance
elements being zeros. Standard deviations >10% larger
than the square root of the Cramér–Rao lower bound is
considered significantly large.

2.2.3 CT-based assessment

We used the four-dimensional extended NURBS-based
cardiac-torso (XCAT) phantom version 2.027,28 and gen-
erated CT images of the chest and head-and-neck
areas, xXCAT(E), at energy E = 40, 50, …, 140 keV. Mate-
rial decomposition was then applied to each voxel to
compute a density of adipose and iodine, wXCAT, for
each voxel. Cone-beam projections vt (i.e., line inte-
grals of wXCAT) were then computed by the ASTRA
Toolbox29,30 using a PCD with 4000 channels,640 rows,
and 1250 projections over one gantry rotation, to which
basis line integrals of a bowtie filter, vb, was added to
produce (vt + vb). The bowtie filter consists of Teflon
and two bowtie shapes were used: The one used for
the chest/cardiac scan was thinner and the thicknesses
increased slowly toward the peripheral rays, whereas
the one for the head-and-neck scan was thicker and the
thicknesses increased quickly. The bowtie filter designs
were similar to those used in clinical CT systems for
body and head scans, respectively, except for the use
of Teflon. Teflon was chosen for this study to make the
beam hardening effect similar to soft tissue materials in
contrast to metals, for example, aluminum.

The true PCD data were computed by hPPCS(vt + vb)
with the tube current of 800 mA and the acquisition time
of 200 µs per reading (simulating 0.25 s/rot scan) for the
chest/cardiac scan and 200 mA and 400 µs (simulating
0.50 s/rot) for the head-and-neck scan. Noisy PCD data
yn were then calculated using the Poisson probability
function with hPPCS(vt + vb) as the expectation. For the
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reasons previously outlined, a 4 × 4-pixel binning was
employed on yn to create PCD data with 1000 channels,
160 rows, and 1250 projections.

We estimated (vPCP + vb) by performing PCP with
yn and then computed vPCP by subtracting the (known)
line integrals of the bowtie filter vb. We reconstructed
the basis function density maps wPCP by performing fil-
tered backprojection on vPCP using the ASTRA Toolbox
and synthesized CT images xPCP(E) at E = 40, 70, and
130 keV.

For comparison, we performed LCP and obtained
vLCP, wLCP, and xLCP(E). In addition, we binned the true
cone-beam projection vt, reconstructed the true basis
function density maps, wt, and synthesized the true CT
images xt(E). All of the datasets included the effect of
the system’s sampling and resolution, which allowed for
a side-by-side comparison.

3 RESULTS

3.1 Slab-based assessment

Figure 3a,b presents biases of adipose thicknesses (v1)
estimated by PCP and LCP, respectively, with 800 mA.
Very little bias was present with PCP even when the
attenuation was smaller (e.g., v1 < 20 cm) and the inci-
dent count-rates were higher (curved arrow, Figure 3a),
and PCL was as high as 0.8 (arrow, Figure 3g). In con-
trast, negative biases were present with LCP under the
conditions (arrow, Figure 3b). This demonstrated the
difference between the PP model that fully modeled
the spectral distortion due to PP and the LC model
that modeled an LCs only. It appeared that biases
in v1 were significant (>±2 cm) with LCP when PCL
was higher than 0.13–0.15 (see Figure 3b,g), depend-
ing on the amount of iodine. We originally anticipated
that the “threshold” would be ∼0.30, because the spec-
tral distortion due to PP appeared to be minor at
PCL of 0.15 (see Figure 1). It demonstrated that the
impact of PP spectral distortion on spectral tasks was
stronger than it appeared in spectra. Both PCP and
LCP had significant biases (>±2 cm) when the expected
counts per 16-pixel binned datum were 10–120 or fewer
(Figure 3h),depending on the amount of iodine (i.e., sig-
nal strengths). We do not think that these biases were
related to PP and believe that they were attributed to
the fact that the maximum likelihood did not approach
the asymptote31 due to fewer counts, a finite number
of energy windows, and degraded signal-to-noise ratios
(thus, needing more photons and energy windows).

Figure 3c,d presents the biases in the iodine thickness
estimation (v2s). We made observations similar to the
adipose estimation results previously described, except
that biases at high count rates were positive for v2, not
negative. The kink observed in Figure 3d was due to
clipping at the search boundary (i.e., v1 = −18 cm).

F IGURE 3 Results with 800 mA. Very little bias was present with
pulse pileup (PP) and charge sharing (CS) compensation (PCP)
(arrow, a) even when the attenuation was smaller (v1 < 20 cm), the
incident count-rates were higher, and probability of count loss (PCL)
was higher than 0.8 (arrow, g). In contrast, negative biases were
present with loss of count (LC) and CS compensation (LCP) under
the conditions (arrow, b). Biases in v2 (c,d) had similar results, and
noise (e,f) were comparable. In (h), the corresponding count-rates
were 27.8 × 106 counts/s/mm2 for 103 counts per reading and
277.8 × 106 counts/s/mm2 for 104 counts. nSD, standard deviation
normalized by square root of Cramér–Rao lower bound

Figure 3e,f shows the normalized standard deviation
(nSD) values, that is, the standard deviation of adipose
thickness estimation normalized by the Cramér–Rao
lower bound at the corresponding condition. The results
for the iodine estimate were very similar to the adipose
estimation, thus, not presented. The nSD values of PCP
were between 0.94 and 1.08 (except for two exceptions
discussed later) when the expected counts were larger
than 400 events,which indicated that the PCP algorithm
was statistically efficient.The nSD value was erratic with
(v1 ≤ 10 cm and v2 = 0 cm) (Figure 3e). This may be
attributed to a severe spectral distortion due to PP, but
other conditions with higher PCL had nSDs close to 1
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F IGURE 4 Results with 200 mA. Very little bias was present with
pulse pileup (PP) and charge sharing (CS) compensation (PCP)
(arrow, a) even when the attenuation was smaller (v1 < 20 cm), the
incident count-rates were high, and probability of count loss (PCL)
was high (g). In contrast, negative biases were present with loss of
count (LC) and CS compensation (LCP) under the conditions (arrow,
b). Biases in v2 (c,d) had similar results, and noise (e,f) were
comparable. In (h), the corresponding count-rates were 27.8 × 106

counts/s/mm2 for 103 counts per reading and 277.8 × 106

counts/s/mm2 for 104 counts. nSD, standard deviation normalized by
square root of Cramér–Rao lower bound

(e.g., the nSD was 0.96 for a PCL of 0.56 with v1 = 0 cm
and v2 = 0.05 cm, whereas the nSD was 1.42 for a
PCL of 0.43 with v1 = 10 cm and v2 = 0.00 cm). We
are investigating the reason for this observation. The
nSD values were larger than 1 when counts were fewer;
biases were present under these conditions, and PCP
was not an unbiased estimator. The computed Cramér–
Rao lower bounds, which denote the minimum variance
of unbiased estimator, were not meaningful under these
conditions when the presence of unbiased estimator
was in doubt.

Figure 4 shows the results with 200 mA. The PCP
had no or little biases at higher count-rates, whereas
the LCP had significant biases, albeit smaller than with

800 mA due to lower count-rates (compare Figure 4a for
PCP with Figure 4b for LCP; Figure 4b for 200 mA with
Figure 3b for 800 mA). With the PCL < 0.02 at the same
adipose thicknesses, the bias with both PCP and LCP
was larger with 200 mA than with 800 mA due to four
times fewer counts per reading.

3.2 CT-based assessment

3.2.1 Chest/cardiac scan

Figure 5 shows the true and estimated basis line inte-
grals of a projection from the chest/cardiac scan. Both
vPCP,1 for adipose and vPCP,2 for iodine estimated by
PCP had little or no biases, whereas both vLCP,1 and
vLCP,2 estimated by LCP had biases when rays had high
count-rates (arrows, Figure 5c,g). The corresponding
PCLs were ≥0.15 (Figure 5i) for the X-ray beams with
large biases. We did not observe biases due to fewer
counts in the CT scans because most data had suffi-
cient counts with basis line integrals being v1 ≤ 25 cm
and v2 ≤ 0.02 cm even with the bowtie filter. The noise
levels of PCP and LCP were comparable to each other.

Figure 6 presents basis density maps with a slice
thickness of 2.8 mm reconstructed from the correspond-
ing basis line integrals. Both the adipose (wPCP,1) and
the iodine maps (wPCP,2) of PCP were very accurate
for the entire imaged area, whereas those of LCP had
biases almost throughout the images. The adipose map
of LCP (Figure 6c,g) shows that even though large
biases in projections were present for the limited areas
only (arrows, Figure 5c,g), they were propagated to the
entire image during the image reconstruction process.

Figure 7 shows monoenergetic CT images synthe-
sized from the basis density maps. The PCP images
appeared very similar to the true images with no visi-
ble bias nor artifacts except for noise and streaks in the
posterior wall at 40 keV,which appeared to be caused by
fewer photons detected in the lateral views. Subtraction
images did not present any unnatural patterns (not pre-
sented). In contrast, the LCP images had severe biases
throughout the 40- and 130-keV images (Figure 7c,i),
and shading artifacts were observed near the body
contours in the 70-keV image (Figure 7f).

It took 68.7 ± 4.0 min per scan for PCP to compute
vPCP using a 3-GHz 6-core Intel Core i5 2018 CPU
chip with 64-GB memory. Biases and noise measured
over multiple noise realizations and subtraction images
essentially yielded no new findings, thus, not presented.

3.2.2 Head-and-neck scan

Figure 8 presents the true and estimated basis line inte-
grals of a projection from the head-and-neck scan. Both
vPCP,1 and vPCP,2 estimated by PCP had little or no



PCP: MODEL-BASED PP AND CS COMPENSATION 5045

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

F IGURE 5 Results of the chest/cardiac
scan. The true and estimated basis line
integrals, v1 (a–c) and v2 (d–f). The profiles of
the center row of v1 (g), v2 (h), and the
probability of count loss, PCL (i). The pulse
pileup (PP) and charge sharing (CS)
compensation (PCP) algorithm had no visible
biases (b, e, g, and h), whereas the loss of
count (LC) and CS compensation (LCP)
produced negative biases in v1 in lung
regions and near the body contour (c and g,
arrows) and positive biases throughout the v2
image (f and h). The PCL values for the X-ray
beams with biased LCP estimates were
higher than 0.15 (i). The counts were in the
range of 2.7 × 103–6.5 × 104 per datum and
the maximum PCL was 0.46. The window
width/center was 26/10 (cm) for v1 and
0.04/0.00 (cm) for v2, respectively.

F IGURE 6 Results of the chest/cardiac scan. The true and estimated relative density maps of basis functions, w1 (a–c) and w2 (d–f).
Horizontal profiles of 35 mm above the center for w1 (g) and w2 (h). The pulse pileup (PP) and charge sharing (CS) compensation (PCP)
algorithm had no visible biases, whereas the loss of count (LC) and CS compensation (LCP) images had positive biases in the w1 map (c and g)
and negative biases in the w2 map (f and h). The window width/center was 1.0/1.0 (d.l.) for w1 maps and 0.50 × 10−3/0.15 × 10−3 (d.l.) for w2
maps. Biases (d.l.) with PCP were (b) 8.3 × 10−4 and (e) −1.0 × 10−5 for ROI 1 [indicated by a circle in (a)] and (b) 5.1 × 10−3 and (e)
−4.0 × 10−5 for ROI 2. Biases (d.l.) with LCP were significantly larger and were (c) 1.5 × 10−1 and (f) −1.2 × 10−3 for ROI 1, and (c) 3.3 × 10−1

and (f) −3.0 × 10−3 for ROI 2. Standard deviations (d.l.) with PCP were (b) 6.7 × 10−2 and (e) 5.4 × 10−4 for ROI 1 and (b) 6.8 × 10−2 and (e)
5.2 × 10−4 for ROI 2. Those with LCP were comparable to PCP and were (c) 6.7 × 10−2 and (f) 5.5 × 10−4 for ROI 1, and (c) 7.3 × 10−2 and (f)
6.0 × 10−4 for ROI 2, respectively.

biases. In contrast, those estimated by LCP had biases
just outside the neck when the count-rates were high
and PCL was higher than 0.15.Note that the tube current
was modest at 200 mA, and the thick bowtie filter suit-
able for the head scans was used for this scan. We did

not observe biases due to fewer counts in the CT scans
because most data had sufficient counts with basis line
integrals being v1 ≤ 20 cm and v2 ≤ 0.01 cm even with
the bowtie filter. The noise levels of PCP and LCP were
comparable to each other.
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F IGURE 7 Results of the chest/cardiac scan. Monoenergetic chest/cardiac computed tomography (CT) images synthesized from the true
density maps (a, d, g), the pulse pileup (PP) and charge sharing (CS) compensation (PCP)-estimated maps (b, e, h), and the loss of count (LC)
and CS compensation (LCP)-estimated maps (c, f, i). The synthesized energies were 40 keV for (a–c), 70 keV for (d–f), and 130 keV for (g–i).
The window width/center was 600 HU/0 HU. Biases (HU) with PCP were (b) −2.2, (e) −0.2, and (h) 0.5 for ROI 1 (indicated by a circle in (a)) and
(b) −12.3, (e) −0.7, and (h) 3.4 for ROI 2. Biases (h) with LCP were significantly larger and were (c) −381.0, (f) −26.6, and (i) 97.8 for ROI 1 and
(c) −929.8, (f) −82.8, and (i) 214.5 for ROI 2. Standard deviations (HU) with PCP were (b) 167.3, (e) 20.0, and (h) 45.1 for ROI 1, and (b) 158.8,
(e) 21.5, and (h) 47.1 for ROI 2. Those with LCP were comparable to PCP and were (c) 170.5, (f) 20.6, and (i) 45.0 for ROI 1, and (c) 189.3, (f)
25.9, and (i) 49.1 for ROI 2, respectively.

Figure 9 shows basis density maps with a thick-
ness of 3.4 mm reconstructed from the correspond-
ing basis line integrals. Both the adipose and the
iodine maps of PCP were very accurate throughout
the imaged area, whereas those of LCP had biases
almost throughout the images. The adipose map of
LCP (Figure 9c,g) shows that large biases outside the
neck in projections (Figure 8c,g) were propagated to
the entire image during the image reconstruction pro-
cess, which was consistent with the chest/cardiac scan
(Figures 5 and 6).

Figure 10 shows monoenergetic CT images obtained
by PCP and LCP. Similar to the chest/cardiac scan, the
PCP images had neither biases nor artifacts, whereas
the LCP images at 40 and 130 keV (Figure 10g,i)
had biases throughout the head and inconsistent
shading/whitening artifacts near carotid arteries
on the posterior side. To our surprise, the 70-keV
LCP image displayed very little biases (Figure 10f).
This was a coincidence as positive biases in adi-
pose density images and negative biases in iodine
density images canceled out each other via a
weighted summation when the 70-keV CT image was
synthesized.

4 DISCUSSION

Using the PP–CS model, there was no model–data mis-
match in the PCP algorithm. The PCP compensated the
effect of both PP and CS successfully as long as the
number of detected events was larger than 10–120 per
datum (pixel), producing no or very little biases in basis
line integrals even though count-rates were high and
PCL was high (e.g., >0.5). As most of the rays in the
CT-based assessment satisfied the condition, no mea-
surable biases were present in both basis density maps
and monoenergetic CT images. In contrast, the use of
an LC–CS model with the LCP algorithm had model–
data mismatch and, therefore, resulted in biases when
incident count-rates were higher, the PCL was ≥0.15,
and the mismatch was more significant. The “threshold”
for 2.0 cm of adipose bias came at the PCL of 0.15,
which was lower than we originally anticipated (which
was 0.30). Biases may be present with a small fraction
of projection data only;however, the biases were spread
over the entire image via the image reconstruction
process. One could use a nonlinear image reconstruc-
tion method to suppress the spread; however, a better
and more robust solution is to eliminate a model–data
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F IGURE 8 Results of the head/neck scan.
The true and estimated basis line integrals, v1
(a–c) and v2 (d–f). The profiles of the 50th row
of v1 (g), v2 (h), and the probability of count
loss, PCL (i). The pulse pileup (PP) and charge
sharing (CS) compensation (PCP) algorithm
had no visible biases (b, e, g, and h), whereas
the loss of count (LC) and CS compensation
(LCP) produced negative biases in v1 in lung
regions and near the body contour (c and g,
arrows) and positive biases throughout the v2
image (f and h). The PCL values for the X-ray
beams with biased LCP estimates were higher
than 0.15 (i). The counts were in the range of
6.8 × 103–7.4 × 104 per datum and the
maximum PCL was 0.27. The window
width/center was 26/6 (cm) for v1 and
0.01/0.00 for v2, respectively.

F IGURE 9 Results of the head-and-neck scan. The true and estimated relative density maps of basis functions, w1 (a–c) and w2 (d–f).
Horizontal profiles of 35 mm above the center for w1 (g) and w2 (h). The pulse pileup (PP) and charge sharing (CS) compensation (PCP)
algorithm had no visible biases, whereas the loss of count (LC) and CS compensation (LCP) images had positive biases in the w1 map (c and g)
and negative biases in the w2 map (f and h). The window width/center was 1.0/1.0 (d.l.) for w1 maps and 0.50 × 10−3/0.15 × 10−3 (d.l.) for w2
maps. Biases (d.l.) with PCP were (b) 8.9 × 10−4 and (e) −1.0 × 10−5 for ROI 1 (indicated by a circle in (a)) and (b) 8.5 × 10−4 and (e) 0.0 for
ROI 2. Biases (d.l.) with LCP were significantly larger and were (c) 2.5 × 10−2 and (f) −1.9 × 10−4 for ROI 1 and (c) 1.3 × 10−1 and (f)
−9.2 × 10−4 for ROI 2. Standard deviations (d.l.) with PCP were (b) 2.3 × 10−2 and (e) 1.4 × 10−4 for ROI 1, and (b) 2.2 × 10−2 and (e)
1.3 × 10−4 for ROI 2. Standard deviations (d.l.) with LCP were somewhat larger than those with PCP and were (c) 3.0 × 10−2 and (f) 1.9 × 10−4

for ROI 1, and (c) 2.8 × 10−2 and (f) 1.9 × 10−4 for ROI 2, respectively.
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F IGURE 10 Results of the head/neck scan. Monoenergetic
chest/cardiac computed tomography (CT) images synthesized from
the true density maps (a, d, g), the pulse pileup (PP) and charge
sharing (CS) compensation (PCP)-estimated maps (b, e, h), and the
loss of count (LC) and CS compensation (LCP)-estimated maps (c, f,
i). The synthesized energies were 40 keV for (a–c), 70 keV for (d–f),
and 130 keV for (g–i). The window width/center was
600 HU/−100 HU. Biases (HU) with PCP were (b) −0.7, (e) 0.3, and
(h) 0.7 for ROI 1 (indicated by a circle in (a)), and (b) −0.5, (e) −0.4,
and (h) −0.7 for ROI 2. Biases (h) with LCP were significantly larger
and were (c) −541.7, (f) −1.8, and (i) 18.6 for ROI 1, and (c) −267.4,
(f) −1.7, and (i) 92.5 for ROI 2. Standard deviations (HU) with PCP
were (b) 38.3, (e) 6.7, and (h) 17.1 for ROI 1, and (b) 37.7, (e) 5.8, and
(h) 15.9 for ROI 2. Those with LCP were somewhat larger than with
PCP, and they were (c) 54.3, (f) 6.8, and (i) 24.0 for ROI 1, and (c)
54.2, (f) 6.0, and (i) 20.8 for ROI 2, respectively.

mismatch by using the PP–CS model (hence, the PCP
algorithm).

Modeling the spectral distortion due to PP is more
challenging in general than modeling for CS. Conse-
quently, accurate PP models are more computationally
expensive to evaluate than accurate CS models. It
makes it extremely challenging to develop a model-
based iterative PCP method by integrating two models
and using it as a part of the forward imaging process
during iterations.The proposed PCP algorithm allows us
to use the complex PP–CS model, efficiently performs
an exhaustive search with three steps, and maximizes
the Poisson likelihood of PCD data while compensating
for the effect of both PP and CS. The PCP algorithm
is a statistically sound method when pre-sampling inter-
vals are sufficiently small. Because the maximizer is

one of the sampled points in Ω and Σ, the PCP is
essentially the nearest neighbor operation and, there-
fore, adds the effect of discretization to the estimation
results. It is essential to use sufficiently small sampling
intervals.

One can improve the computational efficiency of
the PCP. A one-step exhaustive search would have
required Poisson LL evaluation at 10 890 000 data
points [hPPCS(v)] for every noisy dataset, which would
have required 160 days per CT scan. The three-step
PCP computes the Poisson LL at ∼3200 data points only,
resulting in 68 min per CT scan.Nonetheless,3200 data
points may still be large.One could decrease the number
of data points by limiting the search range and eliminat-
ing unnecessary points in both Ω and Σ. Alternatively,
one could construct an iterative maximum likelihood
method that computes Poisson LL at any point by inter-
polating precomputed data at grid points. Even though
evaluating the cost function may take long time for each
iteration, the number of iterations may be small and the
overall computational cost for the iterative method may
be less than that for the current three-step exhaustive
search.

We included the effect of a bowtie filter in the sim-
ulation using the scheme outlined in Section 2.2.3:
estimating basis line integrals for both the object and
the bowtie filter (vPCP + vb), subtracting the (known)
line integrals of the bowtie filter vb, and obtaining those
for the object only, vPCP. We think it is a clever way
to use single PP–CS model and include PCD pixel-
dependent incident X-ray intensities and spectra due
to the bowtie filter, instead of creating a pixel-specific
PP–CS model for thousands of pixels. When the pro-
posed PCP is applied to a physical PCD-CT system,
pixel-to-pixel variations and condition-specific deviation
from the expected counts (due to, e.g., sensitivity vari-
ations) may become an issue. One may need to use
pixel-specific model parameters and develop a wrap-
per that absorbs such variations and converts pixel-
and condition-specific outputs to a standard pixel’s
outputs, similar to sensitivity normalization methods
used for many sensors32; then single PP–CS model
for the standard pixel will be applied to all of the
(converted) pixels, including the effect of a bowtie
filter.

The study has a few limitations. First, we did not use
physical PCD data nor PCD-CT system data. Develop-
ing a method with controlled data and applying it to an
actual system poses two different challenges and one
needs to accomplish each work carefully. The PP–CS
model used in this study showed excellent agreement
with a few physical PCDs and Monte Carlo simulation
programs in the previous studies. As discussed in the
previous paragraph, we will need to use pixel-specific
model parameters and develop an effective wrapper
to absorb pixel-to-pixel variations and condition-specific
deviations. It requires a substantial amount of effort
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based on our previous experiences; we shall leave it for
the future work. Second, tube current modulation was
not employed during CT scans for simplicity.To use PCP
with the tube current modulation, one will need to gen-
erate multiple PP–CS models at different tube current
values, perform inter-model interpolation to compute
a PP–CS model for the tube current for each projec-
tion, and run PCP using the projection-specific PP–CS
models. Third, Poisson data with no correlation were
used and the correlation between neighboring pixels
and multiple energy windows of the same pixel was
not simulated. As a consequence, this study could not
assess the potential noise penalty of the PCP algo-
rithm that used Poisson LL and ignored the correlation.
We believe that the assessment of biases due to PP
was valid, because the expectations of PCD data were
accurate and recorded counts were very high because
X-rays were intense (e.g.,>40 000 counts per superpixel
per reading). To generate PCD data with such complex
correlations, we would need to use a Monte Carlo sim-
ulator. A limited speed of Monte Carlo simulators would,
in turn, limit the number of PCD pixels and projections
that could be used in a study and that would have made it
impossible to simulate a CT scan with a large number of
PCD pixels and projections. We decided to use Poisson
data with no correlation because we were interested in
studying the biases and artifacts in basis density maps
and monoenergetic CT images. We plan to perform the
Monte Carlo simulation study as the next step.

5 CONCLUSIONS

We have developed the PCP algorithm that uses the
PP–CS model. The PCP algorithm successfully com-
pensates for the effect of the spectral distortion due to
both PP and CS and provides little or no biases in basis
line integrals, basis density maps, and monoenergetic
CT images even though the PCL is higher than 0.8 with
very intense X-rays in some cases. In contrast, the LCP
algorithm, which models an LC due to pileup, produces
severe biases when incident count-rates are high and
the PCL is 0.15 or higher.
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APPENDIX A
In the Appendix, we concisely describe the cascaded
model for the spectral distortion process, the models for
each process, and the probability of count loss, PCL.

Interested readers should consult with the correspond-
ing references for more detailed descriptions and study
results.

A.1 Cascaded model
Let nX be the spectrum vector as the output of operation
X, that is, the number of photons (or counts or pulses)
per reading time Δt per Photon counting detector (PCD)
pixel within a hypothetical 1-keV-width energy window
centering at energy E and E = (1, 2,…)T keV, where
superscript T indicates a transpose. Let ΨCS+PP(n) be
a distortion operation that models the combined effect
of both charge sharing (CS) and pulse pileup (PP),
and ΨCS(n) and ΨPP(n) be the distortion operation
for CS alone and PP alone, respectively. Finally, let
ΨA(n, vb + vt) be the attenuation due to the bowtie fil-
ter vb and the object vt. The operation ΨA(n, , vb + vt)
is completed prior to the x-rays incident onto PCDs, and
mostΨCS(n) andΨPP(n) occurs within PCD sensors and
electronics, respectively. Therefore, the spectrum that a
PCD outputs, nPPCS, can be computed by cascading the
three operations:

nPPCS = ΨCS+PP (ΨA (n0)) = ΨPP (ΨCS (ΨA (n0, vb + vt))) ,
(A1)

where n0 is the spectrum exiting the X-ray tube. By
replacing the PP model by the loss of count (LC) model,
ΨLC(n), the spectrum, nLCCS, can be computed as

nLCCS = ΨLC (ΨCS (ΨA (n0, vb + vt))) . (A2)

Let ΨB(n) be the integral operation on the spectrum n
over the corresponding energy range for multiple energy
windows and the PCD data vector y can be computed
by y = ΨB (n). Therefore,

yPPCS = hPPCS (vb + vt)

= ΨB (ΨPP (ΨCS (ΨA (n0, vb + vt)))) , (A3)

yLCCS = hLCCS (vb + vt)

= ΨB (ΨLC (ΨCS (ΨA (n0, vb + vt)))) . (A4)

A.2 Attenuation model
Let nA be the spectrum vector after attenuation, which
can be calculated by using basis functions 𝚽 shown in
Equation (2) as

nA = n0 exp (−p) = n0 exp (−𝚽 (vb + vt)) . (A5)

A.3 CS model
Let nCS be the spectrum that is incident onto anode
after CS, which can be computed using the CS model

https://doi.org/10.1002/mp.15779
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in Ref. [19] for ΨCS: nCS = ΨCS (nA). The operation ΨCS
takes into account both (i) no interaction (i.e., a photon
passing through the PCD with no interaction) and (ii)
one-time photoelectric effect interaction per photon (i.e.,
an event I).Compton scattering is not taken into account.
Either of the three sub-phenomena occurs following
one photoelectric effect interaction: (i) total absorption;
(ii) fluorescence X-ray emission that escapes from the
PCD entirely; or (iii) fluorescence X-ray emission and
its reabsorption by either the primary PCD pixel or one
of its neighboring pixels. CS, a split of charge cloud
energy among adjacent pixels, occurs for both the pri-
mary cloud and the secondary cloud. Note that due
to spill-in crosstalk from neighbor PCD pixels (which
is a half of CS events), the number of pulses created
at the pixel-of -interest per reading is larger than the
number of photon interactions:

∑
E

nCS(E) > P(I)
∑
E

nA(E),

where P(I) is the probability of photon interaction (i.e.,an
event I). Notice that nCS(E) is the number of pulses, not
photons, per anode per reading per 1-keV width.

A.4 PP model
The PP model presented in Refs. [21,22] uses a product
of three functions:

1. P(R), the probability of one count being recorded,
which is an event R,

2. pmf (m|R), the probability mass function of mth order
PP given that one count was recorded,

3. pmf (E|m, R), the probability mass function of one
count being recorded at an energy E with mth order
PP,

where mth order PP means that (m + 1) pulses con-
tributed to produce one count at the pixel-of -interest.
The recorded spectrum nPPCS(E) is then given by

nPPCS (E) = ΨPP (nCS)

= P (R)
∞∑

m=0

[pmf (m|R)pmf (E|m, R)] ×
∑
E

nCS (E) .

(A6)

The first two functions for the non-paralyzable model
have been discussed in Ref. [33] and are

P (R) = 1∕ (1 + aCS𝜏) , (A7)

and

pmf (m|R) = (aCS𝜏)
m exp (−aCS𝜏) ∕m!, (A8)

respectively, where aCS =
∑
E

nCS(E)∕Δt is the rates

of pulses generated at the pixel-of -interest, and 𝜏

is the dead-time of the detector. The third function
pmf (E|m, R) starts with the probability mass function
of the incident spectrum, nCS(E)∕

∑
E

nCS(E), for pileup

order m = 0, and uses a sequential recursive scheme
to compute the spectrum recorded with mth order
pileup,pmf (E|m > 0, R), from one order lower spectrum,
pmf (E|m − 1, R).

A.5 LC model
The LC model scales the CS spectrum using the
following probability of one count being recorded:

nLCCS (E) = ΨLC (nCS) = P (R) nCS (E) . (A9)

The LC model is essentially the PP model with
restricting pileup order to m = 0.

A.6 Energy binning process
The function ΨB(n) is used to compute the output of
multiple energy windows y

y = ΨB (n) = SB n, (A10)

where SB is an Nk × NE matrix with its elements being
either 1 or 0,where Nk is the number of energy windows
and NE is the length of the energy vector n.

A.7 Probability of count loss (PCL)
The PCL can be computed from P(R) as

PCL = 1 − P (R) . (A11)
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