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Abstract: Metalloporphyrins (and porphyrins) are well known as pigments of life in nature, since
representatives of this group include chlorophylls (Mg-porphyrins) and heme (Fe-porphyrins).
Hence, the construction of chemistry based on these substances can be based on the imitation
of biological systems. Inspired by nature, in this article we present the preparation of five dif-
ferent porphyrin, meso-tetraphenylporphyrin (TPP), meso-tetra(p-anisyl)porphyrin (TpAP), tetra-
sodium meso-tetra(p-sulfonatophenyl)porphyrin (TSTpSPP), meso-tetra(m-hydroxyphenyl)porphyrin
(TmHPP), and meso-tetra(m-carboxyphenyl)porphyrin (TmCPP) as well as their N-pincer Pd(II)-
complexes such as Pd(II)-meso-tetraphenylporphyrin (PdTPP), Pd(II)-meso-tetra(p-anisyl)porphyrin
(PdTpAP), Pd(II)-tetrasodium meso-tetra(p-sulfonatophenyl)porphyrin (PdTSTpSPP), Pd(II)-meso-
tetra(m-hydroxyphenyl)porphyrin (PdTmHPP), and Pd(II)-meso-tetra(m-carboxyphenyl)porphyrin
(PdTmCPP). These porphyrin N-pincer Pd(II)-complexes were studied and found to be effective in
the base-free self-coupling reactions of potassium aryltrifluoroborates (PATFBs) in water at ambient
conditions. The catalysts and the products (symmetrical biaryls) were characterized using their
spectral data. The high yields of the biaryls, the bio-mimicking conditions, good substrate feasibility,
evading the use of base, easy preparation and handling of catalysts, and the application of aqueous
media, all make this protocol very attractive from a sustainability and cost-effective standpoint.

Keywords: porphyrin N-pincer Pd(II)-complexes; water; nature-inspired conditions; potassium
aryltrifluoroborates; self-coupling; symmetrical biaryls

1. Introduction

Synthetic and natural metalloporphyrins are well-known examples of nitrogen-bridged
polycyclic compounds and are largely distributed in nature. Metalloporphyrins display a
critical role in numerous biological tasks including oxygen transport, health sustainment,
bio-organic transformations, and light-harvesting [1–3]. Metalloporphyrins display vital
catalytic significance in the basic reactions of life; for example, as heme (a cofactor of
hemoglobin) in oxygen transport [1,4] and as chlorophyll (which is able to convert sunlight
to energy) in photosynthesis of plants [4,5] (Scheme 1). Several examples of heme and
chlorophylls are displayed in Figure 1. Despite these efficient biochemical, photochemical,
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and enzymatic functions, the connectivity and controlled rigidity of metalloporphyrins
allow highly ordered arrangements in their crystalline frameworks; for example, metal-
organic frameworks (MOFs) encompassing an exciting area of research for over a decade
in chemical science and technology disciplines [1,5,6].
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and is due to the wide selection of metal-ions that can form complexes with porphyrins 
[2]. The metalloporphyrins have been reported for their catalytic efficiency in 
cross-coupling reactions [2,8–12], epoxidations of alkenes [7,13,14], oxidation of alco-
hols/thiols/benzylic groups/aldehydes [15–17], cycloaddition reactions [18,19], reductions 
of multiple bonds [20,21], aziridinations of olefins [22,23], and olefin cyclopropanations 
[24,25]. These metalloporphyrins have also been reported as effective catalysts in large 
scale organic transformations [7] which is an additional benefit together with their in-
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Besides the biological-catalytic functions of metalloporphyrins, their aptness to a
large number of organic transformations as effective catalysts is well-documented [2,7]
and is due to the wide selection of metal-ions that can form complexes with porphyrins [2].
The metalloporphyrins have been reported for their catalytic efficiency in cross-coupling
reactions [2,8–12], epoxidations of alkenes [7,13,14], oxidation of alcohols/thiols/benzylic
groups/aldehydes [15–17], cycloaddition reactions [18,19], reductions of multiple
bonds [20,21], aziridinations of olefins [22,23], and olefin cyclopropanations [24,25]. These
metalloporphyrins have also been reported as effective catalysts in large scale organic
transformations [7] which is an additional benefit together with their inherent safeness and
biomimicking properties [2,12]. Hence, the application of metalloporphyrins as catalysts in
further organic reactions is interesting and imitates organic reactions of nature.
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Self-coupling is an important strategy among the existing procedures for symmetri-
cal biaryl synthesis and is a straightforward and convenient process [26]. This method
avoids the requirement of two different substrates that are normally required in cross-
coupling procedures [27]. Aryldiazonium salts [26,28,29], aryl halides [26,30–32], aryl-
boronic acids [26,27,33–35], arylboronates [26,35–43], arylmagnesium compounds [26,44,45],
aryllithium compounds [26,46,47], arylmercury salts [26,48,49], aryl mesylates [26,50–52],
aryl tosylates [26,52], aryl triflates [26,52,53], arylsilanes [26,54,55], arylcarboxylic
acids [26,56,57], and tetraarylborates [58–61] are the substrates used for this self-coupling
process. In this connection, aryl halides, arylcarboxylic acids, arylboronic acids, arylsi-
lanes, and arylboronates seem to be stable substrates [26,27]. Among these self-couplings,
the couplings of arylcarboxylic acids, arylsilanes, and aryl halides require harsh condi-
tions like oxidants, high temperature, and co-catalysts [26,27], but the self-coupling of
arylboron substrates can be performed at room temperature (rt) and (or) using mild con-
ditions [26,27,33–43]. The application of aryltrifluoroborates in self-coupling reactions is
underdeveloped despite the high stability, fair water solubility, and good reactivity of these
substrates [10,39–43].

The catalysts based on transition-metals such as Pd [26,27,33–39,41,43], Au [40,62–64],
Cu [42,65–68], Rh [69], Ru [70], and Fe [71] have been reported for the self-coupling
transformations of arylboron compounds but most of the Au, Cu, Rh, Ru, and Fe-based
reactions suffer from drawbacks such as the requirement of an external oxidant, a base,
organic solvent, low product yields, formation of by-products, and high temperature [26,27].
The Pd-promoted methods, on the other hand, can be performed at rt using mild reaction
conditions in a safer solvent such as water [27]. Hence, we undertook the development
of a new Pd-based protocol for the synthesis of biaryl using a self-coupling strategy, and
found N-pincer Pd(II)-porphyrin complexes as efficient catalysts for this purpose in water,
employing PATFBs as attractive substrates. The present protocol using water as reaction
media (which is nature′s preferred solvent instead of flammable, volatile, and toxic organic
solvents [72]), together with metalloporphyrins as catalysts (which are the catalysts of
several significant functions in biology), at ambient conditions in open-air can become a
nature mimicking protocol for the synthesis of symmetrical biaryls.

2. Results and Discussion

The porphyrins, TPP, TpAP, TSTpSPP, TmHPP, and TmCPP, and their N-pincer
Pd(II)-complexes, PdTPP, PdTpAP, PdTSTpSPP, PdTmHPP, and PdTmCPP (Figure 2)
were synthesized according to our previous reports [2,10–12] (Sections 3.1.2 and 3.1.3). The
characterization data of these compounds were revealed in our published data [10].

Initially, potassium 4-methoxyphenyltrifluoroborate (1a) was found to participate in
self-coupling to give 98% of biaryl, 2a (in 15 min) using 0.1 mol% of PdTSTpSPP, 4 mL
of water at rt in open-air (entry 1, Table 1). This transformation using PdTPP, PdTpAP,
PdTmHPP, and PdTmCPP, each with 0.1 mol% in 4 mL 1:1, vol:vol mixture of water and
DMF was observed to provide 2a in 21%, 39%, 58%, and 67% in 4h and indicated that the
catalyst, PdTSTpSPP was highly suitable for the self-coupling of 1a (entries 2–5, Table 1).
Further, the catalyst loading studies, using 0.07 mol%, 0.05 mol%, and 0.03 mol% showed
the formation of 2a in 98%, 98%, and 82% in 15 min, 15 min and 60 min (entries 6–8, Table 1),
suggesting the requirement of 0.05 mol% PdTSTpSPP as catalyst for the self-coupling of
1a. The investigations using other arylboron compounds such as, 4-methoxyphenyboronic
acid (2), neopentylglycol, and pinacol esters of 4-methoxyphenylboronic acid (3 and 4)
and the diethanolamine derivative of 4-methoxyphenylboronic acid (5) showed 92%,
14%, 17%, and 73% yields of 2a (entries 9–12, Table 1), indicating that potassium 4-
methoxyphenyltrifluoroborate (1a) is the best substrate for the current self-coupling process.
This may be due to the high water solubility of the aryltrifluoroborates.
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The applicability of this nature-inspired procedure has also been studied using a
variety of aryltrifluoroborates (1a–1u). The PATFBs with electron-releasing functionalities
(ERFs) such as -OMe, -Me, -Br, -OH, -SMe, and -tBu at p-, m- and o-positions delivered
excellent yields (88–98%) of the self-coupling products, 6a–6f, 6l, 6m and 6p with high
turnover number (TON) (1760–1960) and turnover frequency (TOF) (2347–7840) values
(entries 1–6,12,13,16, Table 2). Electron withdrawing functionalities (EWFs) containing
PATFBs at all the p-, m-, and o-positions were found as the best substrates to give 91–99%
of self-coupled products, 6g–6k, 6n, 6o, and 6q with large values of TON as 1820–1980 and
TOF as 3680–11880 (entries 7–11,14,15,17, Table 2). Unsubstituted PATFB such as 1r and
potassium salts of heteroaryltrifluoroborates, 1s–1u also provided excellent isolated yields
of self-coupled products under N-pincer Pd(II)-porphyrin, PdTSTpSPP catalyzed reactions
in water with excellent yields (86–96%) of products, 6r and 6s–6u with TON, 1720–1920 and
TOF, 1720–7680 (entries 18–21, Table 2). This study revealed that the current PdTSTpSPP
catalyzed self-coupling of PATFBs shows a large substrate scope irrespective of position
and nature of the functional groups. The structures of all the symmetrical biaryls were
confirmed using their 1H NMR, 13C NMR and mass (LCMS) spectral data (Section 3.2)
and the copies of the 1H NMR and 13C NMR spectra has been provided at Supplementary
Materials with this article.
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1 Arylboron substrate (1 mmol) and 4 mL of solvent were used and the reactions conducted in open-air at rt.

We also studied the hetero-coupling reaction of PATFBs, 1a and 1r (each with 0.5 mmol)
under the present conditions, and observed the formation of self-coupling products 6a
and 6r along with the hetero-coupling product 7, in 19%, 21%, and 57% yields in 15 min
(Scheme 2). This study indicated that the developed method shows some selectivity in the
formation of hetero-coupling products over self-couplings, and hence a detailed investi-
gation may be undertaken towards a complete understanding of the hetero-couplings of
arylboron compounds using metalloporphyrin-based catalysts.

The plausible mechanistic futures of PdTSTpSPP catalyzed self-coupling of PATFBs is
sketched in Scheme 3 based on previous reports [10–12,27,39,73]. The reduction-dissociation
process of PdTSTpSPP delivers the Pd(0)-porphyrin intermediate A [10–12]. The Pd(0)-
porphyrin species A is involved in oxidative addition with PATFB 1 and atmospheric
oxygen to give Pd(II)-species B, which is on transmetallation with 1 gives the diarylPd(II)
intermediate C [27,39,73]. Intermediate C forms symmetrical biaryl 6 and Pd(0)-porphyrin
active catalytic principal A on reductive elimination.
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Table 2. Cont.

Entry Aryltrifluoroborate (1) Time
(min) Product (6) Yield (%) 2 TON TOF
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ucts 6a and 6r along with the hetero-coupling product 7, in 19%, 21%, and 57% yields in 
15 min (Scheme 2). This study indicated that the developed method shows some selec-
tivity in the formation of hetero-coupling products over self-couplings, and hence a de-
tailed investigation may be undertaken towards a complete understanding of the het-
ero-couplings of arylboron compounds using metalloporphyrin-based catalysts. 
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[10–12]. The Pd(0)-porphyrin species A is involved in oxidative addition with PATFB 1 
and atmospheric oxygen to give Pd(II)-species B, which is on transmetallation with 1 
gives the diarylPd(II) intermediate C [27,39,73]. Intermediate C forms symmetrical biaryl 
6 and Pd(0)-porphyrin active catalytic principal A on reductive elimination. 
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A comparison of reported self-coupling procedures of aryltrifluoroborates [39–43]
is shown in Table 3 and evidences the clear merits of the present nature-mimicking
method over the reported protocols using Pd NPs/Te-Dps [39], Au nanoclusters:poly(N-
vinyl-2-pyrrolidine) [40], Pd(OAc)2–electrolysis [41], Cu(OAc)2–ultra sound [42], and Pd
NPs@Al(OH)3 [43] which require organic solvent [41], base/additive [39–43], heating [39–43],
long process time [39,40,42,43] or suffer from low biaryl yield with some aryltrifluorobo-
rates [39–43]. Hence, the present N-pincer Pd(II)-porphyrin catalyzed process is advanta-
geous over the reported aryltrifluoroborate self-couplings. In view of global sustainability,
the elimination/decrease of the application of volatile organics, the use of benign/nature-
mimicking catalysts, and conducting the chemical reactions at ambient conditions can
make a significant contribution [74–78].
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Table 3. Comparison of self-couplings of aryltrifluoroborates.

Entry Catalyst Solvent Base/Additive Temp. Time (h) Yield (%) Ref.

1 Pd NPs/Te-Dps 1 Water Tris-HCl buffer 100 ◦C 10–24 60–87 [39]

2 Au nanoclusters:poly(N-
vinyl-2-pyrrolidine) Water pH 6.86 buffer 47 ◦C 24 14–quant. [40]

3 Pd(OAc)2–electrolysis DMF p-Benzoquinone 80 ◦C 0.24–0.40 41–99 [41]

4 Cu(OAc)2–ultra sound Aq. EtOH Dowex polymer
support Ultrasound 6 0–98 [42]

5 Pd NPs@Al(OH)3 Water KOAc, Ag2O 50 ◦C 16–48 42–98 [43]
6 PdTSTpSPP Water - rt 0.17–1.0 86–99 Present

1 Pd NPs/Te-Dps; Pd nanoparticles stabilized with Dps protein of Thermosynechoccus elongatus bacterium.

3. Materials, Methods and Characterization Data
3.1. Materials and Methods
3.1.1. General

The chemical substances utilized in the present homocoupling of PABs were purchased
from Spectrochem (Mumbai, India), Alfa Aesar (Haverhill, MA, USA), Merck (Burlington,
MA, USA), AVRA (Hyderabad, India), Sigma-Aldrich (St. Louis, MO, USA), and TCI
(Tokyo, Japan). Porphyrins and Pd(II)-porphyrin complexes were made from literature
reports [2,10,79]. Pyrrole was directly purified by distillation before its use. Silica gel coated
thin layer chromatography (TLC) (Merck, Burlington, MA, USA, silica gel-60 F254) was
employed to confirm the progress of the self-couplings. Silica gel-packed glass-columns
were employed to produce the pure symmetrical biaryls using an eluent of a mixture of
EtOAc and hexanes. The Bruker Avance 400/100 MHz NMR spectrometer (Billerica, MA,
USA) was employed to record the 1H and 13C-NMR spectra and molecular mass was
recorded with a Thermo LCQ Max LCMS (Dreieich, Germany).

3.1.2. Synthesis of Porphyrins

TPP: Propanoic acid (180 mL) at 140 ◦C was added to 75 mL of pyrrole and 8.37 g
of benzaldehyde, and the mixture was heated for 1h at 140 ◦C. The reaction contents
were cooled to rt then 110 mL of EtOH was added and stirred at rt for 1 h. The reaction
mixture was filtered and the filtrate evaporated in vacuo. Finally, the residue obtained was
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used to purify the TPP using neutral alumina-packed-column chromatography (CC) with
eluent CHCl3.

TpAP, TmHPP, and TmCPP: Propionic acid (180 mL) was added to 7.30 g of its
anhydride and heated for 5 min at 140 ◦C. Then, 5.00 g of pyrrole (distilled), and 80 mmol
of p-anisaldehyde/m-hydroxybenzaldehyde/m-formylbenzoic acid were added, stirred at
140 ◦C for 1 h and the mixture cooled to rt. Then 100 mL of EtOH was added, stirred at
rt for 1 h, and filtered. The obtained residue was dried in vacuo and subjected to neutral
alumina-packed-CC with eluent CHCl3 to obtain the pure porphyrins, TpAP, TmHPP,
and TmCPP.

TSTpSPP: TPP (5 gr) in conc. H2SO4 (60 mL) was heated at 60 ◦C 16 h and cooled to
rt with 12 mL of added ice-cold water. The obtained green colored solution was adjusted
to pH between 9–10 using an aqueous solution of saturated NaHCO3. The mixture was
evaporated in vacuo and thoroughly washed using 2× 25 mL of CH2Cl2. A solid precipitate
obtained on the addition of 20 mL of MeOH:acetone (3:7) was separated, dried in vacuo,
and the TSTpSPP was subjected to purification using neutral Al2O3-packed-CC with the
eluent, MeOH:acetone (3:7).

3.1.3. Synthesis of N-pincer Pd(II)-porphyrin Complexes

PdTPP, PdTpAP, PdTmCPP, and PdTmCPP [10]: 5 mmol of porphyrin (TPP/TpAP/
TmHPP/TmCPP), 7.5 mmol of PdCl2 in 20 mL DMF were refluxed for 2 h, cooled to rt,
and filtered. The filtrate was diluted with 40 mL EtOAc, washed using 2 × 20 mL of water
and 2 × 15 mL of brine. EtOAc was evaporated in vacuo and the resultant residue of the
Pd-porphyrin complexes subjected to purification using CC with eluent, MeOH:CH2Cl2 (5:95).

PdTSTpSPP [10]: TSTpSPP (2.56 g, 2.5 mmol), PdCl2 (0.53 g, 3 mmol) in 12 mL DMF
was refluxed for 2 h and cooled to rt and subjected to evaporation to obtain a dried reaction
mass. The crude solid was employed for the purification of PdTSTpSPP using CC with
the eluent acetone:MeOH (8:2).

3.1.4. PABs Homocoupling Procedure

To PdTSTpSPP (0.05 mol%) and PATFB (1) (1.10 mmol), 4 mL of deionized water
was added and the mixture stirred at rt in open-air for the appropriate time (Table 2). To
ensure the completion of the reaction by TLC, to the reaction mixture was added 5 mL
water and it was extracted using EtOAc (2 × 5 mL). The EtOAc combined solution was
dried in vacuo and subjected to silica-gel packed-CC to obtain the pure symmetrical biaryls
(6). The products (6) structures were determined by their 1H and 13C NMR and mass
data. The characterization data of 6 (Section 3.2) was found to be similar to that of that
reported [27,30,66,67] and the copies of 1H and 13C NMR spectra has been provided as
Supplementary Materials with the manuscript.

3.2. Characterization Data of Symmetrical Biaryls

6a [27,30]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 7.46 (d, J = 7.4 Hz, 4H, Ar-H),
6.94 (d, J = 7.4 Hz, 4H, Ar-H), 3.83 (s, 6H, -OMe); 13C NMR (100 MHz, chloroform-d6) δ
(ppm) = 158.8, 133.6, 127.8, 114.2, 55.4; LCMS (m/z): 215 (M + H); Formula: C14H14O2.

6e [27]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 7.49 (d, J = 7.3 Hz, 4H, Ar-H),
7.30 (d, J = 7.3 Hz, 4H, Ar-H), 2.51 (s, 6H, -SMe); 13C NMR (100 MHz, chloroform-d6)
δ(ppm) = 137.6, 137.4, 127.2, 127.1, 16.0; LCMS (m/z): 247 (M + H); Formula: C14H14S2.

6f [27]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 7.54–7.49 (m, 4H, Ar-H),
7.46–7.42 (m, 4H, Ar-H), 1.35 (s, 18H, -tBu); 13C NMR (100 MHz, chloroform-d6) δ(ppm) = 150.0,
138.3, 126.7, 125.7, 34.6, 31.5; LCMS (m/z): 267 (M + H); Formula: C20H26.

6h [27,67]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 7.49–7.46 (m, 4H, Ar-H),
7.42–7.38 (m, 4H, Ar-H); 13C NMR (100 MHz, chloroform-d6) δ (ppm) = 138.5, 133.8, 129.3,
128.3; LCMS (m/z): 224 (M + H); Formula: C12H8Cl2.

6m [27]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 7.38 (d, J = 7.8 Hz, 4H, Ar-
H), 7.31 (t, J = 7.1 Hz, 2H, Ar-H), 7.14 (d, J = 7.3 Hz, 2H, Ar-H); 13C NMR (100 MHz,
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chloroform-d6) δ (ppm) = 141.4, 138.3, 128.7, 128.0, 127.9, 124.2, 21.4; LCMS (m/z): 183
(M + H); Formula: C14H14.

6q [27,66]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 9.83 (s, 2H, -CHO), 8.05 (d,
J = 7.4 Hz, 2H, Ar-H), 7.66 (t, J = 7.1 Hz, 2H, Ar-H), 7.59 (t, J = 7.2 Hz, 2H, Ar-H), 7.36 (d,
J = 7.4 Hz, 2H, Ar-H); 13C NMR (100 MHz, chloroform-d6) δ (ppm) = 191.2, 141.3, 134.7,
133.5, 131.8, 128.9, 128,7; LCMS (m/z): 211 (M + H); Formula: C14H10O2.

6u [27,66]: 1H NMR (400 MHz, chloroform-d6): δ (ppm) = 9.90 (s, 2H, -CHO), 7.71
(d, J = 3.8 Hz, 2H, HetAr-H), 7.41 (t, J = 3.8 Hz, 2H, HetAr-H); 13C NMR (100 MHz,
chloroform-d6) δ (ppm) = 182.6, 144.8, 144.0, 136.9, 126.4; LCMS (m/z): 223 (M + H);
Formula: C10H6O2S2.

4. Conclusions

To summarize, we developed a new, nature-inspired procedure for the aerobic self-
coupling of PATFBs in water using the nitrogen-bridged polycyclic N-pincer Pd(II)-porphyrin
complex, PdTSTpSPP, as a safe catalyst at rt in open-air. This protocol showed advantages
with the use of water as solvent, high TON and TOF values, low catalyst loading, large
substrate feasibility, and avoidance of oxidant, base, phosphine ligands, and toxic solvents.
To the best of our knowledge this is the first report on the use of metalloporphyrins for
self-couplings of arylboron compounds.

Supplementary Materials: The copies of 1H and 13C-NMR spectra of symmetrical biaryls are avail-
able online.
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