
animals

Article

Conditioned Medium from Canine Amniotic
Membrane-Derived Mesenchymal Stem Cells
Improved Dog Sperm Post-Thaw
Quality-Related Parameters

Feriel Yasmine Mahiddine 1 , Jin Wook Kim 1, Ahmad Yar Qamar 2,3, Jeong Chan Ra 4,
Soo Hyun Kim 4, Eun Joong Jung 4 and Min Jung Kim 1,*

1 Department of Theriogenology and Biotechnologies, College of Veterinary Medicine, Seoul National
University, Seoul 08826, Korea; yasmini19@snu.ac.kr (F.Y.M.); vet_chris@snu.ac.kr (J.W.K.)

2 Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University,
Daejeon 34134, Korea; ahmad.qamar@uvas.edu.pk

3 Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan,
Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan

4 Cell Physiology Research Center, Naturecell Co., Ltd., Seoul 07238, Korea; jcra@stemcellbio.com (J.C.R.);
hellena1710@braincell.co.kr (S.H.K.); eunjjan@stemcellbio.com (E.J.J.)

* Correspondence: tinia19@snu.ac.kr; Tel.: +82-2-880-1180

Received: 8 September 2020; Accepted: 14 October 2020; Published: 16 October 2020
����������
�������

Simple Summary: Mesenchymal stem cells and their derivatives are used in clinical studies for
their anti-apoptotic, anti-oxidant, immunomodulatory, and regenerative properties. Their use in
reproductive medicine is increasing as they have been proved to be beneficial for infertility treatment.
Mesenchymal stem cells can secrete factors that influence biological processes in target tissues or
cells; these factors are either directly secreted by the cells or mediated through their derivatives.
Although the amniotic membrane is easy to obtain and is a good source of stem cells, clinical trials using
amniotic membrane-derived mesenchymal stem cells are still uncommon, especially in reproductive
medicine or artificial reproductive technologies. The objective of the present study was to demonstrate
the effects of conditioned medium prepared from amniotic membrane-derived stem cells on dog
sperm cryopreservation. Our results showed that 10% of the conditioned medium enhanced the
quality-related parameters of frozen–thawed sperm cells because of the presence of antioxidants
and growth factors in the medium, which probably protected spermatozoa during the freeze–thaw
process. These results suggest that conditioned media prepared from amniotic membrane-derived
mesenchymal stem cells might have clinical applications in assisted reproductive technologies.

Abstract: This study investigated the effects of conditioned medium (CM) from canine amniotic
membrane-derived MSCs (cAMSCs) on dog sperm cryopreservation. For this purpose, flow cytometry
analysis was performed to characterize cAMSCs. The CM prepared from cAMSCs was subjected
to proteomic analysis for the identification of proteins present in the medium. Sperm samples
were treated with freezing medium supplemented with 0%, 5%, 10%, and 15% of the CM,
and kinetic parameters were evaluated after 4–6 h of chilling at 4 ◦C to select the best concentration
before proceeding to cryopreservation. Quality-related parameters of frozen–thawed sperm were
investigated, including motility; kinetic parameters; viability; integrity of the plasma membrane,
chromatin, and acrosome; and mitochondrial activity. The results showed that 10% of the CM
significantly enhanced motility, viability, mitochondrial activity, and membrane integrity (p < 0.05);
however, the analysis of chromatin and acrosome integrity showed no significant differences between
the treatment and control groups. Therefore, we concluded that the addition of 10% CM derived
from cAMSC in the freezing medium protected dog sperm during the cryopreservation process.
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1. Introduction

Sperm cryopreservation is used to store sperm samples from cancer patients or endangered
species, and for other activities such as breeding, shipping, and research; however, the post-thaw
quality obtained is low when compared with the fresh samples [1]. During cryopreservation, cold shock
and crystal formation from intra- and extra-cellular water induce cryo-injuries that disturb the sperm
plasma membrane integrity and lipid composition, resulting in the leakage of intracellular contents.
Consequently, sperm metabolism is reduced [2] and apoptotic-like changes occur in the cells [3–5].
In particular, sperm cells are more sensitive to environmental changes because of their limited protein
and lipid biosynthetic abilities [6] and the absence of DNA repair mechanism [7]. These events
ultimately result in a weakened oxidative stress defense that exposes the sperm cells to reactive oxygen
species (ROS). An increase in the ROS production during cryopreservation destroys sperm lipid matrix
structures and, subsequently, causes the loss of membrane integrity, an increase in lipid peroxidation,
and excessive DNA fragmentation [7,8].

To counteract the consequences of cryo-injuries, chemicals with protective properties can be
added to the cells prior to or during cryopreservation. Cyto-protective agents such as cryo-protectants,
anti-oxidants, or anti-apoptotic factors, act on different levels to protect cells from cryo-injuries.
Anti-apoptotic factors such as the anti-cell death fibroblast-growth-factor inducible kinase (FNK)
protein or curcumin prevent cell death [9,10]; cryo-protectants such as glycerol protect cells from
intracellular ice formation and reduce osmotic damage [11], while anti-oxidants such as vitamin E protect
the sperm ultra-structure, function, and mitochondrial DNA from oxidative stress [12,13]. Therefore,
efficient and effective cryopreservation requires the addition of protective chemicals in the freezing
media to increase cellular defenses and reduce ROS generation [10,14,15]. However, the commercial
and homemade available freezing medium does not fully satisfy the requirements needed for the
complete protection of sperm during the cryopreservation process [16]. Although Tris-egg yolk buffer is
the most commonly used diluent for mammalian sperm, many studies show that the supplementation
of anti-apoptotic factors, anti-oxidants, post-thaw enhancing chemicals, or novel cryo-protective agents
is required to get good post-thaw results [1,5,17,18]. Thus, various molecules such as metformin [19],
cholesterol [20], or α-tocopherol [21] have been successfully used in canine sperm cryopreservation to
reduce oxidative stress, DNA damage [19,20], improve motility [21], and protect plasma membrane
and acrosome integrity [20].

Mesenchymal stem cells (MSCs) and their derivatives are commonly used in regenerative medicine
and have proved their clinical efficacy in the treatment of infertility [22–24]. The MSCs enhance
anti-oxidant defenses in several tissues, including testis [24], through the secretion of proteins that
reduce ROS production by scavenging free radicals [24,25] and enhance mitochondrial function through
the Akt1 pathway [26]. They also secrete anti-inflammatory molecules and growth factors that protect
cells from apoptosis when exposed to injuries [27,28]. Amniotic membrane-derived MSCs (AMSCs)
have been isolated in dogs and humans [29,30]; although human AMSCs already proved to be useful
in regenerative medicine [31], the use of canine AMSCs in this field have only been suggested but
never applied [32,33]. In comparison with other stem cells, AMSCs are easier to obtain and isolate,
which make them an ideal candidate for clinical trials [31,34].

The effects of MSCs on live tissues are mostly due to their paracrine signaling [35], since their
secretome is rich in anti-oxidants and anti-apoptotic factors, which makes them a good alternative
to cell therapy [36,37]. The derivatives of MSCs confer the same effects as the cells from which they
originate [37], and they have regenerative and protective properties [38] that could positively affect
sperm cells. In particular, conditioned medium (CM) has been studied and used in several clinical
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trials since it is easy to get, safer than cell-based therapies [39], and has a low immunogenicity [39],
anti-oxidant and anti-apoptotic properties [40–42]. Moreover, CM can be used in many types of
research studies since it can be manipulated more easily in comparison with cells [43] and it can also
be added in solutions [44].

It is known that MSCs-derived CM obtained from starved cells consists of paracrine factors that
enhance cell defense and trigger anti-apoptotic and anti-oxidative mechanisms [45]. The use of these
factors may protect sperm from the detrimental effects of cryopreservation such as oxidative stress,
apoptosis, DNA damage, and loss of mitochondrial activity. Therefore, we hypothesized that CM
prepared from canine amniotic membrane-derived MSCs (cAMSC-CM) would have cyto-protective
effects on dog sperm during the freeze–thaw process.

2. Materials and Methods

2.1. Experimental Design

Experiment 1 focused on the characterization of cAMSCs by flow cytometric analysis and
pluripotency genes confirmation, the preparation of cAMSC-CM, and analysis of its components.
Experiment 2 was conducted using cAMSC-CM. First, high and low ranges of cAMSC-CM
concentrations were added to a freezing medium and used on dog sperm during chilling and
cryopreservation process; however, high concentrations of cAMSC-CM had deleterious effects on
sperm cells, and therefore, the experiments were conducted using a lower range of concentrations
from 0 to 15% of cAMSC-CM. The optimal concentration of cAMSC-CM was selected by evaluating
sperm kinetic parameters and viability after 4 to 6 h of chilling in the freezing medium supplemented
with cAMSC-CM. Afterwards, in experiment 3, the optimal concentration of cAMSC-CM determined
in Experiment 2 was used for dog sperm cryopreservation, and post-thaw quality-related parameters
were evaluated and compared with the control group.

2.2. Cell Culture

Canine amniotic membrane-derived mesenchymal stem cells (cAMSC) and their culture medium
were provided by Naturecell Co., Ltd. (Seoul, Korea). In brief, cAMSCs were seeded and cultured
in tissue culture dishes with RCMEP media (Stem Cell Research Center, Biostar, Seoul, Korea),
supplemented with serum and antibiotics. Cells were incubated in a humidified environment
containing 5% CO2 at 37 ◦C. The cells used for the characterization of cAMSC were cultured until
passage two at 90% confluency, and the cells used to make the (CM) were cultured until passage three.
All chemicals, unless otherwise stated, were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Flow Cytometric Analysis

Fluorescence-activated cell sorting (FACS) was used to determine cAMSC immunophenotype.
Cells were washed two times with phosphate-buffered saline (PBS; Thermo Fisher Scientific, Waltham,
MA, USA) TrypLE™ Express (Gibco, Grand Island, NY, USA) was used to detach the cells. Cells were
washed with PBS (Thermo Fisher Scientific) two times, counted, and aliquoted in a 96-well plate
(1 × 105 cells/100 µL per well). In each well, 5 µL of fluorochrome-conjugated antibodies or isotype
control antibodies with fluorescein isothiocyanate (FITC) or phycoerythrin (PE)—CD29 Monoclonal
Antibody-PE (Invitrogen, CA, Carlsbad, USA), CD44 Monoclonal Antibody-FITC, CD90 (Thy-1)
Monoclonal Antibody-PE, CD34 Monoclonal Antibody-PE, CD45 Monoclonal Antibody-FITC,
Rat IgG2a kappa Isotype Control-FITC, Rat IgG2b kappa Isotype Control-PE, Mouse IgG1 kappa Isotype
Control-PE, and Rat IgG2b kappa Isotype Control-FITC (eBioscience, CA, San Diego, USA)—were
added to the aliquoted cell suspensions. After 30 min of incubation at 4 ◦C, the cells were centrifuged
(1500 rpm/3 min) and washed with PBS two times. Cells were transferred in round tubes with 5 mL of
PBS, analyzed using FACSCalibur™, and Cell Quest software (BD Biosciences, CA, San Jose, USA) was
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used to calculate CD (Cluster of Differentiation) marker percentages. For each antibody, 10,000 cells
were used.

2.4. Quantitative Polymerase Chain Reaction

Pluripotent genes expression was confirmed by quantitative polymerase chain reaction (qPCR).
To summarize, RNA was extracted from cAMSC cultures at passage two using the RNeasy Mini kit
(Qiagen, Hilden, Germany). Next, cDNA was synthesized by RNA reverse transcription using DiaStar
2X RT Pre-Mix (Solgent, Daejeon, Korea) and Random Hexamers (Invitrogen, Carlsbad, CA, USA).
Synthesized cDNA was amplified by PCR, and real-time PCR was performed using Agilent ariaMX
Real-Time PCR (Agilent, Santa Clara, CA, USA). Primers used for qPCR are displayed in Supplementary
Materials Table S1 and beta-actin was used as an endogenous control. For gel electrophoresis, 10 µL of
each real-time PCR product were loaded in wells and subjected to 1% agarose gel electrophoresis for
20 min.

2.5. Conditioned Medium Preparation

The cAMSCs were maintained in their culture media until they reached 80% confluency at passage
three. The cells were starved by changing the media to serum-free Dulbecco’s Modified Eagle Medium.
After 48 h [46], CM was retrieved, centrifuged (2000× g/30 min), and filtered with a 0.22 µm filter to
remove cell debris. The CM aliquots were stored at −80 ◦C.

2.6. Proteomic Analysis and CM Composition

To identify and quantify cAMSC-CM protein composition, a one-dimensional
electrophoresis-liquid chromatography tandem mass spectrometry (1-DE-LC-MS/MS) system
coupled with a Q Exactive Plus mass spectrometer (Thermo Scientific, Waltham, MA, USA) was
used. In brief, cAMSC-CM was collected and submitted to precipitation (ppt) for protein purification
using ammonium sulfate (AS) saturated at 80%. Then, the CM was centrifuged at 18,000 rpm/1 h for
precipitation, dissolved using 20 mM tris-HCl pH 8.0, and AS was removed using Viva spin (50kD).
Protein lysates were separated using 12% sodium dodecyl–sulfate polyacrylamide gel electrophoresis
(12% SDS-PAGE) followed by in-gel digestion with trypsin. MASCOT software (Matrix Science Inc.,
MA, Boston, USA) was used to identify the proteins, generate the exponentially modified protein
abundance index (emPAI), and then, mole percentage was calculated according to emPAI values.
Obtained data were analyzed using the UniProtKB (UniProt Knowledgebase) database (Canis_lupus
familiaris). Identified proteins were classified by groups based on their functions, and the mole
percentages for each group of proteins present in the cAMSC-CM was calculated.

2.7. Animal Use for Semen Collection

All dogs used for the study were kept in individual cages. They were fed with commercial adult
dry food, and water was provided ad libitum. All the experiments and studies were conducted in
accordance with the recommendations described in “The Guide for the Care and Use of Laboratory
Animals” published by the Institutional Animal Care and Use Committee (IACUC) of Seoul National
University (approval numbers; SNU-180731-2-1 and SNU-200409-3). Semen was obtained from beagle
dogs by using digital manipulation twice a week, and only the second fraction of the ejaculate was
collected and processed. The samples with an appropriate concentration (>300 × 106 sperm/mL),
motility higher than 80%, and mass motility of 4/5 at least (on a scale of 0–5) were selected and
pooled to avoid individual variations. One ejaculate per male was obtained from five males, and four
independent replicates were performed using the pooled semen.
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2.8. Determination of CM Optimal Concentration

The pooled semen was diluted with Tris-extender 1:1 (v/v)—distilled water, tris (hydroxymethyl)
aminomethane 24 g/L, citric acid 14 g/L, fructose 8 g/L, kanamycin sulfate 0.15 g/L; pH 6.6,
290 mOsm—and centrifuged at 700× g for 1 min. The supernatant was collected and centrifuged
(500× g/5 min), and only the pellet was re-suspended in Tris-extender to achieve a concentration of
200 × 106 sperm cells/mL. Different concentrations of CM (0%, 5%, 10%, and 15%) were added to the
freezing media—54% (v/v) Tris-extender, 40% (v/v) egg yolk, and 6% (v/v) glycerol —and the samples
were chilled in it for 4–6 h at 4 ◦C. The sperm analysis imaging system (FSA2011 premium edition version
2011; Medical Supply, Gangwon, Korea) was used to evaluate sperm motility, curvilinear velocity
(VCL), straight-line velocity (VSL), average path velocity (VAP), linearity (LIN), straightness (or
VSL/VAP) (STR), amplitude of lateral head (ALH), and viability parameters. The treated group with
the best results was selected for the rest of the experiments, as previously described [47,48].

2.9. Semen Cryopreservation and Thawing

The pooled semen was diluted with Tris-extender, washed, and centrifuged. The pellet was
re-suspended in Tris-extender to achieve a concentration of 200 × 106 sperm cells/mL. The semen
was divided into aliquots to be used for the control and the treatment groups. The freezing medium,
with or without CM, was added by a multistep loading protocol [49], and 14%, 19%, 27%, and 40% of
the freezing medium was added every 30 s. The samples were loaded in 0.5 mL straws (Minitube,
Tiefenbach, Germany) and were kept at 4 ◦C for 1 h to reach equilibration. Then, they were placed
horizontally to freeze at 5 cm above liquid nitrogen (LN2) for 15 min, before being transferred to LN2

tanks (−196 ◦C). Then, the semen straws were thawed in a water bath at 37 ◦C for 30 s. The samples
were diluted with Tris-extender (1:5, v/v) stepwise using 14%, 19%, 27%, and 40% of the total volume at
intervals of 30 s. Then, the samples were washed, and afterward, we proceeded with the analysis.

2.10. Sperm Kinetic Parameters Analysis

Sperm kinetic parameters were analyzed using a computer-assisted sperm analysis (CASA; Sperm
Class Analyzer® System version 6.4.0.93, Microptic, Barcelona, Spain). The system included a Nikon
Eclipse ci-L microscope (Nikon, Tokyo, Japan) with a 10× phase-contrast objective and a heating
stage at 37 ◦C. Leja 20 µm chamber slides (Leja, Gynotec Malden, Nieuw Vennep, The Netherlands)
were used for the analysis, and the frame rate was set at 25 frames/s. Various parameters such as
sperm motility, progressive motility, VCL, VSL, VAP, LIN, STR, ALH, and the percentage of rapid and
immotile spermatozoa were analyzed.

2.11. Eosin–Nigrosin Staining

Eosin–nigrosin staining was used to determine the percentage of sperm cells alive and tail
morphology defects in each group. In brief, the frozen–thawed samples were washed, and a drop of
10 µL from the sperm pellet with an equal amount of eosin and nigrosin was mixed and smeared onto
warm glass slides. The slides were then air-dried, and the sperm was evaluated afterward. For each
stained smear, 200 sperms were examined with a light microscope (Eclipse Ts 2, Nikon, Tokyo, Japan)
with oil immersion objective lens (1000× magnification). The unstained sperms were counted as
alive, and the stained ones were counted as dead cells. The results are expressed as the percentage of
live sperm cells [47]. Sperm with a coiling of the mid piece were counted as cells with a coiled tail,
and sperm with a bending of the mid piece or the entire tail were counted as cells with a bent tail [50].

2.12. Aniline Blue Staining

The frozen–thawed samples were washed, and 20 µL of sperm pellet was smeared on a glass
slide, air-dried, and fixed with a solution of 3% buffered glutaraldehyde in 0.2 M phosphate buffer
(pH 7.2) for 30 min. Then, the slides were stained with 5% aqueous aniline blue solution mixed with 4%



Animals 2020, 10, 1899 6 of 17

acetic acid (pH 3.5) for 5 min. In each group, 200 sperm cells were evaluated with a light microscope
(Eclipse Ts 2, Nikon, Tokyo, Japan) in oil immersion objective lens (1000×magnification). The cells
with unstained nuclei were considered normal (mature chromatin), and those with blue-stained nuclei
were considered abnormal (immature chromatin). The results are expressed as the percentages of
aniline blue-positive sperm (abnormal) [51].

2.13. Hypo-Osmotic Swelling Test

The hypo-osmotic swelling test (HOST) was performed to evaluate the percentage of sperm cells
with an intact plasma membrane. In brief, 100 µL of sperm was added to 900 µL of a hypo-osmotic
solution (150–155 mOsm) and incubated at 37 ◦C for 30 min [52]. Then, a drop of HOST solution with
sperm was placed on a warm slide and covered, and at least 100 spermatozoa were counted using a
phase-contrast microscope (Eclipse Ts 2, Nikon, Tokyo, Japan). The cells with a coiled tail were counted
as HOST-positive sperm.

2.14. Acrosome Assessment Test

The sperm acrosome membrane was analyzed using fluorescein isothiocyanate-conjugated peanut
agglutinin (FITC-PNA) as described previously. In brief, semen was smeared on glass slides, air-dried,
fixed in absolute methanol, stained, and mounted with anti-fade mounting medium (VECTASHIELD®,
Vector Laboratories, Burlingame, CA, USA). The integrity of sperm acrosome membrane was analyzed
using an epifluorescence phase-contrast microscope (Eclipse Ts 2, Nikon, Tokyo, Japan) and classified
as intact acrosome (strong green fluorescence) or non-intact acrosome (partial or no fluorescence) [53].

2.15. Mitochondria Activity Assessment

The percentage of live sperm cells with functional mitochondria was assessed using a combination
of fluorescent stains Rhodamine 123 (R123) (Molecular Probes, OR, Eugene, USA) and propidium iodide
(PI) as described previously. In each slide, 200 spermatozoa were examined under an epifluorescence
phase-contrast microscope (Eclipse Ts 2, Nikon, Tokyo, Japan) at 600×magnification, equipped with an
excitation/barrier filter of 490/515 nm for R123 (blue excitation), excitation/barrier filter of 545/590 nm for
PI (green excitation), and a digital camera (Olympus DP 11, Tokyo, Japan). The sperm cells displaying
green fluorescence in the mid-piece region and no red fluorescence in the head were considered viable
with functional mitochondria, whereas cells exhibiting red fluorescence in the head were counted as
dead [54].

2.16. Statistical Analysis

Prior to analysis, D’Agostino and Pearson omnibus test was performed. Optimal concentration
data were analyzed using one-way analysis of variance (ANOVA) following by a Tukey’s multiple
comparison test. For the control and 10% CM-treated groups, the independent sample t-test was used.
For each experiment, four replicates were performed and the statistical analysis was performed using
GraphPad Prism 5.0 (GraphPad, CA, San Diego, USA). The values are expressed as mean ± standard
error of the mean (SEM), and the values less than p < 0.05 were considered statistically significant.

3. Results

3.1. cAMSC and cAMSC-CM Characterization

3.1.1. Confirmation of the Surface Markers

Flow cytometry analysis of cAMSC showed that the expression of CD29, CD44, and CD90 markers
was high (93.73, 94.28, and 90.10%, respectively), whereas the expression of CD34 and CD45 markers
was low (0.39 and 0.35%, respectively) (Figure 1). Therefore, based on the presence of these surface
markers, we could infer that these cells were MSCs.
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Figure 1. Confirmation of surface markers of canine amniotic membrane-derived mesenchymal stem
cells (cAMSC) using fluorescence-activated cell sorting (FACS); (a) negative surface markers CD34,
CD45; (b) cAMSC-positive surface markers CD29, CD44, and CD90 surface makers analyzed by FACS.

3.1.2. Confirmation of Pluripotency Genes Expression

The qPCR analysis was performed to analyze the expression of pluripotency genes. qPCR results
confirmed the expression of pluripotency genes Oct3/4, Sox2, and Nanog in cAMSC (Figure S1),
which proves that cAMSCs exhibit pluripotency potential.

3.1.3. cAMSC-CM Proteome

The proteomic analysis showed the presence of 86 proteins (Table S2) and was expressed in mole
percentage. Intermediate filaments (26%), other types of proteins involved in cell metabolism (21%),
growth factors (18%), extracellular matrix components (15%), anti-oxidants (13%), and enzymes (7%)
were found in the cAMSC-CM (Table 1).

Table 1. Mole percentages of canine amniotic membrane-derived mesenchymal stem cells CM
components from proteomics analysis.

Type of Proteins Total Mole Percentage by Type of Proteins (%)

Intermediate filaments 26
Cell metabolism 21
Growth factors 18

Extra-cellular matrix components 15
Anti-oxidants 13

Enzymes 7

3.2. Determination of cAMSC-CM Optimal Concentration

Sperm viability and VCL were higher in the treated groups, 5%, 10%, and 15% CM (5% CM,
75.4 ± 6.7% and 83.9± 2.8%; 10% CM, 87.2± 8.1% and 90.1± 2.8%; 15% CM, 75.4± 6.7% and 86.8 ± 3.5%,
respectively), and the group treated with 10% CM was significantly higher (p < 0.05) in comparison
with the control group (74.2 ± 4.4% and 80.8 ± 2.0%, respectively). The 10% CM-treated group showed
significantly higher motility and ALH (79.2 ± 2.6% and 4.8 ± 0.3 µm) than the other groups (control,
67.3 ± 2.5% and 4.1 ± 0.1 µm; 5% CM, 72.4 ± 2.5% and 4.1 ± 0.1 µm; 15% CM, 72.1 ± 3.9% and
4.1 ± 0.3 µm) (p < 0.05), (Table 2). Therefore, the 10% CM-treated group was selected for the rest of
the experiment.

Table 2. Motility and velocity parameters of 4 h chilled sperm using different concentrations of canine
amniotic membrane-derived mesenchymal stem cells CM.

Concentration of CM (%) Motility (%) Viability (%) 1 VCL (µm/s) VSL (µm/s) VAP (µm/s) LIN (%) STR (%) ALH (µm)

0 67.3 ± 2.5 b 80.8 ± 2.0 b 74.2 ± 4.4 b 21.4 ± 1.3 45.8 ± 2.0 29.0 ± 1.3 47.4 ± 1.7 4.1 ± 0.1 b

5 72.4 ± 2.5 b 83.9 ± 2.8 ab 75.4 ± 6.7 ab 20.4 ± 1.0 46.8 ± 3.1 29.0 ± 1.5 44.1 ± 1.4 4.2 ± 0.3 b

10 79.2 ± 2.6 a 90.1 ± 2.8 a 87.2 ± 8.1 a 23.8 ± 1.8 54.0 ± 4.0 31.2 ± 1.6 44.5 ± 1.2 4.8 ± 0.3 a

15 72.1 ± 3.9 b 86.8 ± 3.5 ab 75.4 ± 6.7 ab 24.6 ± 3.7 46.7 ± 4.0 31.6 ± 2.1 46.4 ± 2.3 4.1 ± 0.3 b

1 VCL, average curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN, linearity (average
ratio of VSL/VCL); STR, straightness (average value of the ratio VSL/VAP); ALH, amplitude of lateral head. All results
show means ± SEM. Values within marked with the letters “a” or “b” are significantly different (p < 0.05, n = 4).
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3.3. cAMSC-CM Effects on Sperm Cryopreservation

3.3.1. Motility and Velocity Parameters

The CASA system results showed that 10% CM treatment significantly enhanced (p < 0.05) motility
and LIN (54.3 ± 1.9% and 50.3 ± 3.1%, respectively) of sperm compared to that of the control group
(42.1 ± 2.1% and 47.0 ± 3.4%, respectively). The percentage of immotile spermatozoa was significantly
reduced in the treatment group (45.7 ± 1.9%) when compared with the control group (57.9 ± 2.1%)
(p < 0.05), (Figure 2). The rest of the parameters showed no significant differences between the groups
(p < 0.05) (Table 3).

Figure 2. Percentages of rapid and immotile in frozen–thawed sperm. (a) Percentage of rapid sperm
cells; (b) Percentage of immotile sperm cells. Bars with the letters “a” or “b” are values with a statistically
significant difference (p < 0.05, n = 4).

Table 3. Motility and velocity parameters of frozen–thawed sperm in control and 10% of canine
amniotic membrane-derived mesenchymal stem cells conditioned media (CM) treatment groups.

Concentration
of CM (%) Motility (%) Progressive

Motility (%)

1 VCL
(µm/s)

VSL
(µm/s)

VAP
(µm/s) LIN (%) STR (%) ALH

(µm)

0 42.1 ± 2.1 b 22.8 ± 3.4 81.5 ± 6.4 49.4 ± 5.6 57.2 ± 5.6 47.0 ± 3.4 b 68.1 ± 2.4 3.1 ± 0.3
10 54.3 ± 1.9 a 26.2 ± 4.2 74.5 ± 7.8 46.3 ± 7.1 53.3 ± 7.2 50.3 ± 3.1 a 70.0 ± 2.2 2.8 ± 0.2

1 VCL, average curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN, linearity (average
ratio of VSL/VCL); STR, straightness (average value of the ratio VSL/VAP); ALH, amplitude of lateral head. Values are
presented as means ± standard error of the mean (SEM). Values within columns marked with the letters “a” or “b”
are significantly different (p < 0.05, n = 4).

3.3.2. Live/ Dead Count and Morphology Assessment

The percentage of live sperm cells was higher in the 10% CM-treated group (55.2 ± 3.0%) than
that of the control group (43.9 ± 4.3%), and the percentage of spermatozoa with a bent tail was lower in
the treatment group (1.8 ± 0.6%) than the control group (3.1 ± 0.7%) (p < 0.05), (Table 3). However,
the percentage of cells with a coiled tail was not significantly different between the control and the 10%
CM-treated groups (3.0 ± 1.2% and 3.0 ± 1.8%, respectively). These results suggest that cAMSC-CM
probably has an anti-apoptotic effect during sperm cryopreservation.

3.3.3. Chromatin Integrity

The percentage of spermatozoa with abnormal chromatin condensation-stained nuclei was not
significantly different in both the groups (control, 34.0 ± 2.9%; 10% CM, 31.0 ± 3.1%) (p < 0.05), (Table 4).
These results suggest that cAMSC-CM has no protective effect on DNA integrity.

Table 4. Live sperm percentage and morphological defects of frozen–thawed sperm in control and 10%
of canine amniotic membrane-derived mesenchymal stem cells CM treatment groups.

Concentration of CM (%) Live Sperm Cells (%) Coiled Tail (%) Bent Tail (%)

0 43.9 ± 4.3 a 3.0 ± 1.2 3.1 ± 0.7 a

10 55.2 ± 3.0 b 3.0 ± 1.8 1.8 ± 0.6 b

Values are presented as means ± standard error of the mean (SEM). Values within columns marked with the letters
“a” or “b” are significantly different (p < 0.05, n = 4).
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3.3.4. Acrosome and Membrane Integrity Assessment

The percentage of sperm cells with intact plasma membrane was significantly higher (p < 0.05) in
the treatment group (66.5 ± 2.3%) than the control group (54.5 ± 2.9%). The FITC-PNA test revealed no
significant difference (p < 0.05) in the percentage of spermatozoa with an intact acrosome between the
two groups (control, 74.0 ± 4.3%; 10% CM, 76.6 ± 4.0%) (Table 5).

Table 5. Percentage of frozen–thawed sperm with an abnormal chromatin condensation in control
and 10% of canine amniotic membrane-derived mesenchymal stem cells conditioned media (CM)
treatment groups.

Concentration of CM (%). Aniline Blue Positive Spermatozoa (%)

0 34.0 ± 2.9
10 31.0 ± 3.1

All results show means ± SEM (n = 4).

3.3.5. Mitochondria Activity Assessment

The R123 dye was used to assess mitochondrial activity, and PI was used to stain dead sperm cells.
Both the data were used to calculate the percentage of live sperm with active mitochondria in each
group. The 10% CM-treated group showed significantly enhanced (p < 0.05) mitochondrial activity
(49.6 ± 0.7%) compared with the control group (36.4 ± 2.5%) (Figure 3).

Figure 3. Mitochondria activity in frozen–thawed sperm using rhodamine 123 (R123) and propidium
iodide (PI) dual staining; (a) dead sperm stained with PI; (b) live sperm with R123-stained mitochondria;
(c) merged channels showing both PI and R123 stained sperm; (d) percentage of sperm with active
mitochondria. Bars with the letters “a” or “b” are values with a statistically significant difference
(p < 0.05, n = 4).

4. Discussion

Since the isolation of MSCs from amniotic tissues, researchers have displayed a growing interest
in the study of their characteristics, properties, and possible applications [31,34,55]. Thus, they have
become an interesting alternative to embryonic stem cells, as they can be obtained by non-invasive
methods [31], and the ethical issues associated with the use of amniotic tissues-derived stem cells
are minor [34], since they are obtained from the placenta that is usually discarded after caesarian
sections [29]. They are non-teratogenic [55], pluripotent, and also have regenerative properties and
low immunogenicity [31,34,55]. Canine MSCs derived from the amniotic membrane have recently
been isolated and proved to have the same characteristics, biosafety, and properties as other MSCs,
which make them a good candidate for clinical trials [32,56]. The composition and potential use of
cAMSC-CM have not been studied yet, but since CM contains cell paracrine factors [37], the application
of cAMSC-CM in clinical studies seems to be promising. In our study, cAMSC phenotype was confirmed
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through FACS analysis and showed a high expression of CD29, CD44, and CD90 surface markers,
whereas CD34 and CD45 expression, which are associated with hematopoietic stem cells [57,58], was low
(Figure 1). This phenotype has also been found in other studies using canine MSCs [59–61], and CD29,
CD44, and CD90 surface antigens are found on adipose, bone marrow, and umbilical cord blood-derived
mesenchymal stem cells [62,63]. Pluripotency is an important factor in MSCs, since it is involved in
regenerative pathways [64]. The analysis of pluripotency gene expression (Oct3/4, Nanog, and Sox2)
also confirmed the MSC phenotype (Figure S1). The analyzed genes are essential for the self-renewal
of MSCs, determination of pluripotency and maintenance of cells’ undifferentiated state [65,66].
Their expression by cAMSCs is an indicator that cAMSCs could be used in regenerative medicine.

Stem cells-derived CM contains growth factors and anti-apoptotic factors, and it has been used in
cell-free therapies to mediate stem cells paracrine effects on tissues [39,41,42]. Each CM has a different
composition depending on the cells of origin, cell state, and the microenvironment surrounding
them [35]. Previously, canine MSC-derived CM was used for different clinical applications and
showed good results in xenogeneic tissues wound healing [67], laryngotracheal stenosis healing [68],
and stem cells’ survival and differentiation [69]. However, no study has unveiled the effects of
cAMSC-CM and its proteomic analysis. In this study, the composition of cAMSC-CM was investigated,
and the proteomic analysis revealed the presence of intermediate filaments, extra-cellular matrix
components (ECM), anti-oxidants, growth factors, enzymes, and other proteins involved in the cell
metabolism (Table S2, Table 1). Our results corroborate those of previous studies showing that
two of the main components of CMs were growth factors and anti-oxidants [39]. Furthermore,
an amniotic membrane stem cells proteome from another study [70] showed the presence of ECM
components involved in cellular processes through the focal adhesion kinase signaling pathway such
as lumican, collagen, and fibronectin, which were also found in cAMSC-CM in our study (Table S2,
Table 1). Apolipoproteins, especially Apolipoprotein A-1, which is involved in sperm capacitation
and motility [71]; and Apolipoprotein E, which has an anti-oxidant activity [72], were also found in
cAMSC-CM (Table S2). Some of the growth factors found in our study include thioredoxin, which has
an anti-oxidant activity and plays a role in fertility [73–75], and serum albumin, which might also play
an important role in fertility improvement [76] and sperm cryopreservation, by enhancing post-thaw
motility and protecting sperm morphology, and the integrity of the plasma membrane, acrosome,
and DNA [77,78].

Although sperm cells have the ability to adapt to osmotic changes [79], freezing medium does not
fully protect them from the osmotic stress happening during freezing and thawing that leads to an
increase in ROS production, apoptosis-like changes, DNA damage, and an increase in tail defects [80–82].
Therefore, we hypothesized that the addition of cAMSC-CM to the freezing medium would increase
sperm tolerance to osmotic changes, oxidative defence, and help protect their ultra-structure, because it
contains proteins with anti-oxidant, regenerative, and anti-apoptotic effects (Table S2). To date, no study
has depicted the addition of CM in sperm cryopreservation, and the range of CM concentrations
added to the freezing medium remains unknown. Here, we evaluated the optimal concentration of
CM starting from a low range of concentrations, from 0 to 15% of the CM, among which 10% of the
CM revealed to be the best concentration (Table 2). We assumed that a concentration higher than 15%
would influence sperm homeostasis, as it would probably change the osmolarity of the milieu. In fact,
during our preliminary study, we observed that the use of a higher range of concentrations (from 25 to
75%) negatively impacted the quality-related parameters of frozen–thawed sperms (data not shown).
Nevertheless, from the low range of concentrations, the supplementation of 10% CM in the freezing
medium was found to be the optimal one and was further used for cryopreservation.

Our results showed that the percentage of live sperm was significantly increased when cAMSC-CM
was added to the freezing medium (Table 4), which could be explained by the regenerative and
anti-apoptotic effects of cAMSC-CM proteins. When CM is prepared, the components released from
the starvation phase resulting from the MSC survival state activation causes the release of protective
factors that protects cells from apoptosis and oxidative stress [45]. These factors probably improved
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the anti-oxidant defence and anti-apoptotic mechanisms in sperm. However, they were not sufficient
to protect chromatin integrity, as aniline blue test results showed no significant differences between
the control and cAMSC-CM treated groups. Aniline blue dye binds to nucleoproteins and allows
researchers to evaluate chromatin integrity; however, DNA denaturation and fragmentation induced
by freezing and thawing are not always immediately apparent. A study showed that canine sperm
further incubated after thawing showed an increase in the DNA fragmentation index [83].

The cryopreservation process leads to an increase in sperm tail abnormalities [80,84],
altered acrosome and plasma membrane integrity [85], and a decrease in the mitochondrial activity [4,82]
and motility [80,82]. In our study, we found that the percentage of coiled tail sperm was the same in both
groups, but the percentage of sperm with a bent tail was significantly reduced in the 10% CM-treated
group in comparison with the control group (Table 4). The proteins present in seminal plasma can
interact with sperm at the surface and repair plasma membranes and mitochondrial DNA [86]. In our
study, some of the proteins found in cAMSC-CM, including collagen, olfactory receptors, zinc finger
protein, vitamin D binding protein, fibronectin, and serum albumin (Table S2), have also been found in
the seminal plasma collected from fertile men [87], boar [88,89], alpaca, and camels [89]. These proteins,
along with the protective nature of other cAMSC-CM factors, might explain the positive effects on
sperm ultra-structural characteristics (Table 4). Moreover, the positive correlation between some of
these proteins and fertility [76,87] and their role in mitochondrial DNA repair [86] might explain
post-thaw improved sperm motility, LIN (Table 3), and the enhanced mitochondrial activity (Figure 3).
Mitochondrial activity is essential for sperm motility, and a decrease in its activity results in increased
apoptosis [90]. Furthermore, the addition of 10% cAMSC-CM reduced the percentage of immotile
sperm (45.7 ± 1.9%) (Figure 2). We can hypothesize that proteins in cAMSC-CM might have reduced
ROS production and have had a positive role in mitochondrial DNA repair. However, the percentage of
sperm with an intact acrosome was high in both the groups (74.0 ± 4.3% and 76.6 ± 4.0% respectively),
but there was no significant difference between them (Table 6). A study showed that acrosome integrity
is above 60% in canine sperm at 0 h after thawing, when 6–8% glycerol is used [91]. In our freezing
medium, 6% glycerol was used, and the acrosome integrity test was performed within few minutes
after thawing. This might explain the high percentage of intact acrosomes observed in both groups.

Table 6. Percentages of intact acrosome and membrane in frozen–thawed sperm in control and 10% of
canine amniotic membrane-derived mesenchymal stem cells CM treatment groups.

Concentration of CM (%) Intact Acrosome (%) Intact Membrane (%)

0 74.0 ± 4.3 54.5 ± 2.9 b

10 76.6 ± 4.0 66.5 ± 2.3 a

Values are presented as means ± standard error of the mean (SEM). Values within columns marked with the letters
“a” or “b” are significantly different (p < 0.05, n = 4).

The preservation of sperm membrane integrity and mitochondrial function during the freeze–thaw
process is important for successful fertilization, but the commercial freezing media do not protect
sperm from the loss of these functions [16]. The addition of cyto-protective factors in the freezing
medium can prevent the deleterious effects of cryopreservation [92], because they can protect cells
from the negative effects of ROS on sperm motility, mitochondrial activity, and DNA integrity [93].
In our study, the preservation of membrane integrity was more effective in the 10% CM-treated
group (66.5 ± 2.3%) in comparison with the control group (54.5 ± 2.9%). This might be due to the
proteins present in cAMSC-CM, especially apolipoproteins (Table S2). ROS targets polyunsaturated
fatty acids and cholesterol [94], which disturbs the integrity of the plasma membrane that is essential
to sperm homeostasis [95]. In particular, cholesterol is important for membrane stability and can
determine sperm freezability, as a disturbed cholesterol to phospholipid ratio can negatively impact
the outcome of cryopreservation [96]. Apolipoproteins play a crucial role in cholesterol homeostasis
in the epididymis [97], and they are involved in lipid exchange, capacitation, and membrane
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remodeling [71,98]. In addition, fibronectin, an ECM component that acts as a growth factor [99],
was found in the cAMSC-CM, which is also involved in protecting membrane integrity (Table S2 and
Table 1). Qamar et al. [100] showed that fibronectin was expressed in adipose-derived MSCs and that
plasma membrane integrity was protected when adipose-derived MSCs were added to the freezing
media. This suggests that cAMSC-CM protected plasma membrane integrity in the present study
(Table 6).

5. Conclusions

In conclusion, our results showed that cAMSC-CM contained proteins, including growth factors,
anti-oxidants, enzymes, and ECM components, which protect sperm functions and ultra-structure
characteristics during cryopreservation. The addition of cAMSC-CM in the freezing medium enhanced
sperm motility and viability, membrane integrity, and mitochondrial activity. This was the first study to
reveal the composition of cAMSC-CM and its effect on sperm cryopreservation. Further in vitro studies
to evaluate cAMSC-CM effects on sperm capacitation and fertilizing ability should be conducted.
In vivo studies should also be conducted to reveal the effects of cAMSC-CM proteins on fertility,
along with a much deeper study on the proteins implicated in canine sperm fertility.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/10/1899/s1,
Figure S1: Confirmation of pluripotent genes expressions in all cAMSC cell lines (n = 11) using quantitative
polymerase chain reaction (qPCR); Table S1. List of primers used for quantitative polymerase chain reaction
(qPCR); Table S2. Proteins found in canine amniotic membrane-derived mesenchymal stem cells (AMSC) derived
conditioned medium.
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