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Abstract

Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic

plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically

derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed

mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with

canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing,

and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as poten-

tial source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and

integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05),

and allowed the distinction between benign and malignant lesions (P<0.05). Even if without

statistical significance, the amount of cfDNA was also affected by tumor necrosis and corre-

lated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of

Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis

was also suggested. This study, therefore, provides evidence that cfDNA could be a diag-

nostic marker in dogs carrying mammary nodules suggesting that its potential application in

early diagnostic procedures should be further investigated.

Introduction

It is expected that human annual cancer cases will rise from 14 million in 2012 to 22 million

within the next two decades [1]. In particular, to date, breast cancer is the most common can-

cer in women [2,3]. The only species that has a comparable incidence of mammary tumors is
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the female dog [4]. Indeed, the estimate of cancer incidence in dogs ranges from 99.3 to 272.1

per 100,000 dog-years [5] and more than 40% of tumors in female dogs arise from the mam-

mary gland [6–8]. It has been described that approximately 50% of canine mammary tumors

(CMTs) are histologically malignant with a 20% rate of metastases [9]. This data suggests that

it would be very relevant to identify rapid diagnostic and relevant prognostic markers in veteri-

nary as in human medicine. In clinical practice, this may be achieved by the identification of

biomarkers either from the tumor itself or the blood. The use of circulating biomarkers has

advantages over the use of tissue biopsies due to their availability obtained by minimally inva-

sive procedures, and the opportunity to withdraw numerous samples over several time points.

Therefore, “liquid biopsy” is an excellent alternative for reflecting and providing information

about the tumor status [10]. In recent years, measuring circulating cell-free DNA (cfDNA) in

plasma has gained attention as a biomarker in some human tumors, such as pancreatic cancer

[11], breast tumors [12,13], and rectal cancer [14,15]. Little, but promising, information is

present in veterinary medicine [16–18]. Several hypotheses have been postulated about cfDNA

origin: its presence in the bloodstream could be due to i) DNA leakage resulting from tumor

necrosis or apoptosis, ii) lysis of circulating cancer cells or micrometastases, or iii) unrevealed

mechanism of active and spontaneous release [19,20]. DNA released from necrotic cells is

cleaved into fragments of variable length that can reach up to 10,000 base pair (bp), called long

fragments, whereas apoptotic cells cleave their own DNA into shorter fragments reaching a

maximum of 180-200bp, called short fragments [11,20,21]. In healthy individuals, the main

source of cfDNA is thought to be apoptotic cells. In contrast, necrotic cell death is a frequent

event in solid tumors, and DNA fragments released from the necrotic tumor cells are, then,

more variable in length [20]. Also, necrosis and apoptosis can be variably regulated in cancer,

and an increase in cfDNA has been observed in cancer-bearing human subjects [22]. More

specifically, the presence of long DNA fragments in blood and a disarranged ratio between

long and short/total fragments, known as integrity index, could reflect the presence of cancer

in humans [12,14,15,22,23].

The aim of this study was to determine the amount of short and long cfDNA fragments and

the cfDNA integrity index in mammary tumor-bearing dogs to assess its potential application

as diagnostic/prognostic marker and to study its relation with tumor necrosis/apoptosis. The

amount of necrosis and apoptosis in CMTs was assessed by histology and immunohistochemi-

cal analysis of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax and Bad) proteins.

Materials and Methods

Subjects’ enrollment, histopathology, and ‘follow-up’ data

The 78 mammary nodules obtained from 44 female dogs (mean age at the initial evaluation

was 9.8 years, range 5–15 years) included in this study were selected from the archive of the

Diagnostic Service of Veterinary Anatomical Pathology (www.simbavet.org), Department of

Comparative Biomedicine and Food Science, University of Padua, Italy. Submission to the ser-

vice requires a privacy and informed consent form that allows research studies on the submit-

ted material without other sampling on animals. The study, therefore, did not require

additional ethical approval. The samples were not specifically collected for this study and they

were submitted from veterinary clinical practitioners between 2010 and 2013. Breed, age at

time of tumor diagnosis, and reproductive status of the subjects were recorded and number of

histological visible neoplastic nodules (single/multiple), tumor diameter (post-fixation at his-

tology), mitotic index (number of mitotic figures in 10 high power magnification fields [hpfs]

in the most proliferative areas), and vascular invasion at the periphery of the tumor were

assessed (Table 1). Samples of surgically resected CMTs and corresponding lymph nodes

Circulating Cell-Free DNA and Canine Mammary Tumors

PLOS ONE | DOI:10.1371/journal.pone.0169454 January 12, 2017 2 / 20

authors declare that the funder provided support in

the form of salary for author [A. Saccani] and

provided support in the form of materials for qPCR

(Master mix, probe and primers), but did not have

any additional role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

this author are articulated in the ‘author

contributions’ section.

Competing Interests: One of the authors (Andrea

Saccani) is employed by the commercial company

Euroclone. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

http://www.simbavet.org


Table 1. Signalment and morphological features of the canine mammary tumors included in the study.

ID

subject

Breed Age

(years)

Reproductive

status

Number

of

nodules

per

subject

Histopathological

diagnosis

Gra-

ding

Lesion

size

(cm)

Mitotic

index

Benign (B)

or

malignant

(M) lesion

Simple (S)

or

complex

(C) lesion

Presence

of emboli

1 Pointer 12 IF 2 Complex Carcinoma II 1.5 4 MM CC NO

Complex Carcinoma II 0.7 4 NO

2 Miniature

Pinscher

10 IF 1 Simple Tubular

Carcinoma

II 0.7 4 M S NO

3 Mixed 12 IF 1 Simple Tubular

Carcinoma

I 0.2 4 M S NO

4 Shih Tzu 9 IF 2 Complex Carcinoma II 10 6 MM CC NO

Complex Carcinoma II 5 4 NO

5 Boxer 10 IF 3 Complex Carcinoma I 0.6 8 BM CC NO

Carcinoma in Benign

Mixed Tumor

I 1 4 NO

Complex Adenoma n/a 0.4 2 NO

6 Dobermann

Pinscher

7 IF 2 Complex Adenoma n/a 1 0 BB SC NO

Simple Adenoma n/a 0.4 2 NO

7 Brittany 10 IF 1 Solid Carcinoma I 0.3 4 M S NO

8 Dachshund 9 IF 2 Complex Adenoma n/a 1 0 BB CC NO

Benign Mixed Tumor n/a 1.5 0 NO

9 German

Shepherd

Dog

10 IF 1 Simple

Tubulopapillary

Carcinoma

II 3 10 M S NO

10 Standard

Poodle

9 IF 3 Simple Tubular

Carcinoma

I 0.3 5 BM SC NO

Complex Carcinoma I 2 4 NO

Simple Adenoma n/a 0.4 0 NO

11 Mixed 11 IF 2 Complex Adenoma n/a 1.8 1 BB CC NO

Benign Mixed Tumor n/a 0.7 0 NO

12 Maltese 12 IF 1 Micropapillary

Carcinoma

III 5 10 M S YES

13 English

Setter

5 NF 1 Simple

Tubulopapillary

Carcinoma

MET 3 10 M S NO

14 Mixed 12 IF 1 Complex Carcinoma I 1 5 M C NO

15 Beagle 12 IF 2 Complex Carcinoma II 0.7 4 BM CC NO

Benign Mixed Tumor n/a 0.4 0 NO

16 Maltese 10 IF 2 Complex Adenoma n/a 0.7 0 BB CC NO

Benign Mixed Tumor n/a 0.2 0 NO

17 Mixed 8 IF 2 Carcinoma and

Malignant

Myoepithelioma

I 0.8 12 MM SC NO

Simple Cystic-

Papillary Carcinoma

I 1.3 5 NO

18 Airedale

terrier

8 NF 4 Complex Carcinoma I 1.3 6 BM SC NO

Mixed Carcinoma I 0.7 7 NO

Complex Adenoma n/a 1.1 0 NO

Simple Adenoma n/a 0.8 1 NO

(Continued )
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Table 1. (Continued)

ID

subject

Breed Age

(years)

Reproductive

status

Number

of

nodules

per

subject

Histopathological

diagnosis

Gra-

ding

Lesion

size

(cm)

Mitotic

index

Benign (B)

or

malignant

(M) lesion

Simple (S)

or

complex

(C) lesion

Presence

of emboli

19 German

Shepherd

Dog

10 NF 3 Anaplastic

Carcinoma

MET n/a 0 MM SC YES

Simple Tubular

Carcinoma

I 0.5 0 NO

Complex Carcinoma II 0.9 0 NO

20 Puli 12 IF 3 Complex Adenoma n/a 0.5 0 BB SC NO

Intraductal Papillary

Adenoma

n/a 0.6 0 NO

Ductal Adenoma n/a 0.5 1 NO

21 Dobermann

Pinscher

6 NF 2 Simple Tubular

Carcinoma

I 0.7 2 BM SS NO

Simple Adenoma n/a 0.4 2 NO

22 Dachshund 10 IF 1 Complex Adenoma n/a 1.5 0 B C NO

23 Wire Fox

Terrier

9 IF 1 Complex Carcinoma I 0.8 4 M C NO

24 Mixed 5 IF 1 Simple Tubular

Carcinoma

I 0.4 3 M S NO

25 Dalmatian 13 IF 2 Carcinoma and

Malignant

Myoepithelioma

MET 0.8 4 MM CC NO

Complex Carcinoma I 0.4 4 NO

26 Mixed 15 IF 3 Carcinoma and

Malignant

Myoepithelioma

III 2 16 MM SC NO

Simple Tubular

Carcinoma

II 0.5 6 NO

Complex Carcinoma I 0.2 4 NO

27 German

Shepherd

Dog

8 IF 1 Simple Tubular

Carcinoma

III 2 25 M S YES

28 Miniature

Pinscher

13 IF 3 Intraductal Papillary

Carcinoma

III 0.5 5 BM SC NO

Complex Carcinoma I 0.5 2 NO

Complex Adenoma n/a 0.5 0 NO

29 Bullmastiff 7 NF 1 Simple Cystic-

Papillary Carcinoma

I 1 4 M S NO

30 Bulldog 10 IF 1 Carcinoma in Benign

Mixed Tumor

I 0.8 4 M C NO

31 German

Shepherd

Dog

8 IF 3 Carcinoma and

Malignant

Myoepithelioma

I 0.7 5 MM CC NO

Complex Carcinoma III 0.6 12 NO

Complex Carcinoma I 0.3 3 NO

32 Mixed 10 NF 1 Complex Carcinoma III 0.9 4 M C NO

33 Labrador

Retriever

13 NF 1 Adenosquamous

Carcinoma

MET 0.7 10 M S NO

34 Standard

Poodle

7 NF 1 Simple Tubular

Carcinoma

I 1.2 2 M S NO

(Continued )
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(when available) were fixed in 10% buffered formalin and then routinely processed for histopa-

thology. Classifications of CMTs were performed by a board-certified veterinary pathologist

(VZ), according to the updated classification system [24]. Grading and mitotic cell count of

the tumors were performed according to Peña and co-authors [25]. After slide scanning,

necrotic areas within the tumor were manually calculated using D-Sight software (A. Menarini

diagnostic, Firenze, Italy) and expressed as percentage on total tumor area on 4-μm thick sec-

tions obtained from sagittal sectioning of each nodule.

At the beginning of the study (2013) and after one year, clinical data of the neoplastic sub-

jects were obtained from referral veterinarians through regular telephone interviews to collect

at least one-year post-diagnosis follow-up for each subject. Overall survival (OS) was calculated

Table 1. (Continued)

ID

subject

Breed Age

(years)

Reproductive

status

Number

of

nodules

per

subject

Histopathological

diagnosis

Gra-

ding

Lesion

size

(cm)

Mitotic

index

Benign (B)

or

malignant

(M) lesion

Simple (S)

or

complex

(C) lesion

Presence

of emboli

35 German

Shepherd

Dog

12 NF 2 Simple Tubular

Carcinoma

II 0.3 4 MM SC NO

Complex Carcinoma I 1.5 4 NO

36 Mixed 10 IF 1 Intraductal Papillary

Carcinoma

II 1.4 11 M S NO

37 Golden

Retriever

10 IF 1 Solid Carcinoma III 1 1 M S YES

38 Mixed 7 IF 1 Intraductal Papillary

Carcinoma

II 3 9 M S NO

39 Yorkshire

Terrier

12 IF 3 Simple

Tubulopapillary

Carcinoma

I 0.4 3 BM SC NO

Complex Adenoma n/a 0.3 0 NO

Benign Mixed Tumor n/a 0.4 0 NO

40 Yorkshire

Terrier

11 NF 3 Simple Tubular

Carcinoma

III 0.6 25 MM SC NO

Complex Carcinoma I 1.2 0 NO

Intraductal Papillary

Carcinoma

I 1.4 0 NO

41 German

Shepherd

Dog

9 IF 1 Complex Adenoma n/a 0.7 1 B C NO

42 Mixed 6 IF 2 Anaplastic

Carcinoma

III n/a 7 MM SC NO

Complex Carcinoma II 2.4 10 NO

43 German

Shorthaired

Pointer

10 IF 1 Benign Mixed Tumor n/a 1.4 1 B C NO

44 Mixed 12 NF 2 Simple Tubular

Carcinoma

MET 1 12 BM SC YES

Benign Mixed Tumor n/a 1.7 0 NO

IF, intact female; NF, neutered female; n/a, not applicable; MET, metastatic; M, presence of one malignant tumor; MM, presence of more than one

malignant tumors; B, presence of one benign tumor; BB, presence of more than one benign tumors; BM, presence of benign and malignant tumors; S,

presence of one simple tumor; SS, presence of more than one simple tumors; C, presence of one complex tumor; CC, presence of more than one complex

tumors; SC, presence of simple and complex tumors.

doi:10.1371/journal.pone.0169454.t001
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as the time from initial surgery to death. Death was considered related to the mammary tumor

when an animal died naturally or was euthanized in presence of metastases identified by diag-

nostic imaging. Necropsy data were not available.

In the study, non-neoplastic subjects were also included. Animals were presented at The

Veterinary Teaching Hospital of the University of Padua—OVUD—http://www.unipd.it/

universita/sedi-strutture/ospedale-veterinario that has been approved by the European Associ-

ation of Establishments of Veterinary Education—EAEVE. They were not specifically referred

to clinicians for this project but they were presented for clinical assistance, for routine annual

physical examination, or for routine sterilization. Since the beginning of the study (2013), data

from the physical examination, complete blood cell count (CBC), and biochemical profile

were obtained from the OVUD clinicians who registered them after clinical examinations.

After one year, control physical examinations on each of these subjects were performed and

registered by OVUD clinicians in order to verify the general health status and to identify

whether a mammary nodule or any other clinically detectable neoplasia or disease (in case of

healthy subjects) were present. Owners were informed on the study but since no invasive pro-

cedures were performed on the subjects in addition to what required for routine assistance of

diseased animals, no ethical approval was needed.

Cell cultures

For protein extraction and western blot analysis, CF41 cells (canine mammary carcinoma cell

line, ATCC CRL-6232) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) con-

taining 10% Fetal Bovine Serum (FBS; Gibco, Life Technologies), 1% (5000 U/ml) penicillin

and 5 mg/ml streptomycin. The cells were maintained at 37˚C in a humidified 5% CO2

atmosphere.

Western blot analysis

For protein extraction, CF41 cells were mechanically harvested in 5 ml of ice-cold PBS and

centrifuge at 800 x g for 4 minutes. After supernatant removal, cells were lysed with 1 ml of

Lysis Buffer (150mM NaCl, 1.0% Triton X-100, 50 mM Tris, pH 8.0), incubated on ice for 30

minutes and centrifuged at 17000 x g for 15 minutes at 4˚C. The extracted proteins were quan-

tified using the BCA protein assay kit (Thermo Scientific, Loughborough, UK) and stored at

-80˚C.

For western blot analysis, proteins were resolved in 12% polyacrylamide gels, transferred

onto nitrocellulose membranes, blocked with 3% non-fat dry milk in TBS-T buffer [50 mM

Tris, 150 mM NaCl, 0.05% Tween 20 (Sigma Aldrich), pH 7.5] for 1 h, probed with the appro-

priate antibodies at 4˚C overnight: Bcl-2 (N-19 sc-492, rabbit pAb, Santa Cruz Biotechnology,

1:1000 dilution), Bax (P-19, sc-526, rabbit pAb, Santa Cruz Biotechnology, 1:1000 dilution),

and Bad (Y208, ab32445, rabbit mAb, Abcam, 1:1000 dilution). The membranes were washed

in TBST and then incubated with corresponding anti-rabbit sheep secondary antibody (Dako,

Glostrup, Germany, 1:4000 dilution) for 1 h at room temperature. After further washing in

TBS-T, the blot was developed using an automatic film-processing unit (X-Ograph, Glouces-

tershire, UK).

Immunohistochemistry

Immunohistochemistry (IHC) was performed to detect Bcl-2, Bax, and Bad expression in the

78 tumors. For Bcl-2 and Bad analysis, the sections (4μm) were processed with an automatic

immunostainer (BenchMark XT, Ventana Medical Systems, Tucson, Arizona, USA). Briefly,

the automated IHC protocol included high temperature antigen unmasking (30 min at 95˚C)

Circulating Cell-Free DNA and Canine Mammary Tumors
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and incubation at room temperature of the primary antibody (44 min for Bcl-2, dilution 1:150

and 1 h for Bad, dilution 1:1200).

For Bax analysis an IHC manual protocol was performed. Briefly, IHC protocol included

high temperature antigen unmasking (20 minutes at 95˚C) in citrate buffer (pH 6.00), 10 min-

utes 2% hydrogen peroxide incubation, 10 minutes Protein Block incubation, 1 h incubation

with Bax antibody at room temperature (dilution 1:100), 10 minutes of incubation with sec-

ondary antibody (Biotinylated Goat Anti-Rabbit, Abcam, Cambridge, UK), 5 minutes DAB

chromogen incubation, 3 minutes hematoxylin counterstaining, dehydration and, finally,

mounting medium application.

Sections of canine lymph nodes were used as positive controls for the three markers. In neg-

ative controls PBS buffer replaced the primary antibodies.

The semi-quantitative IHC evaluation of protein expression was determined as percentage

(counting 100 cells per field in at least 10 fields at 40x) and intensity (scored from 0.5 to 3) of

positive cells. Subsequently, two different scoring systems were also applied:

• IRS scale (0–12 points): product of the score given to the percentage of positive cells (nega-

tive! 0; positivity in 1% to 10% of cells! 1; 11% to 50%! 2; 51% to 80%! 3; and 81% to

100%! 4) and the score given to the intensity (from 0.5 to 3).

• Allred score (0–8 points): sum of the score given to the percentage of positive cells (negative

! 0; positivity in<1% of cells! 1; 1% to 10%! 2; 10% to 33%! 3; 34% to 66%! 4; and

67% to 100%! 5) and the score given to the intensity (from 0.5 to 3).

Plasma samples collections and cfDNA purification

Blood samples from neoplastic subjects (n = 44) had been collected and stocked from clinical

practitioners at time of surgical excision of mammary nodule/s. This procedure had been

established since 2010 involving clinical practitioners into research collaboration with our

Anatomical Pathology Unit. The collaboration included submission of surgical excised tumors

to our Diagnostic Service (www.simbavet.org) for histology and preservation of an aliquot of

pre-surgical blood samples (2mL). This is a procedure that has been established for any case of

tumor (not only mammary) that was submitted to our Diagnostic Service and was not specifi-

cally performed for this study. Similarly, blood samples (2mL) from non-neoplastic subjects

(n = 32) were also included. This sampling was performed for routine analysis or pre-steriliza-

tion from OVUD clinicians. No additional sampling/procedures were carried out on the sub-

jects, since surgical excision and blood sampling were performed as primary treatment and

diagnostic procedures. Animal owners signed an informed consent for blood sampling and

surgery as for routine clinical practice. No additional informed consents or ethical approval

were required.

For stocking, 2mL of peripheral blood were drawn into a blood collection tube (containing

EDTA additive) from clinicians and practitioners and plasma was immediately separated by

centrifugation at 3000 x g for 10 minutes, and stored at -20˚C, until further analysis [15,21,23].

After collection of samples from the clinics, the cfDNA was purified in our lab from 500 μl

of plasma with the QIAamp UltraSens Virus Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions, without additional centrifugation, as previously described

[15,21,23]. The cfDNA preparations were eluted in 60 μl of elution buffer and stored at -20˚C.

Quantitative PCR of plasma cfDNA fragments

Quantitative real-time PCR (qPCR) was used to amplify and quantify the short and long

cfDNA fragments. LINE-1 gene sequence (GenBank accession number: AY266086.1), which is

Circulating Cell-Free DNA and Canine Mammary Tumors
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the most abundant repeat sequence present in canine genome [26], was used as a target of the

qPCR in order to maximize the sensitivity of cfDNA quantification. A common reverse primer

and two different forward primers were used to amplify on the same region the cfDNA frag-

ments with different length as described below. The first forward primer pair amplified a short

fragment of 99bp (LINE-99) that was designed inside the long fragment of 218bp (LINE-218)

amplified by the second forward primer pair (S1 Fig).

The quantification obtained using the LINE-99 primer pair represented therefore the total

circulating cfDNA (ng/ml of plasma) (herein referred as “short fragments”), whereas the

LINE-218 primer pair identifies long cfDNA fragments because these fragments can include

more template of LINE sequence. These longer fragments (herein referred as “long frag-

ments”) are presumably released from non-apoptotic cell processes. The ratio between long

and short fragments showed the integrity index of cfDNA in each plasma sample.

The qPCR reaction was performed using 7300 Real-Time PCR System (Applied Biosystem,

Milan, Italy). Briefly, the reaction was performed in 20 μL reaction volumes containing 2X

FluoCycle II Master Mix for Probe (EuroClone, Milan, Italy), 0.9 μM of each primer, 0.25 μM

of probe (5’ 6-FAM and 3’ TAMRA labeled) and 1 μL of sample. The real-time PCR conditions

consisted of an initial denaturation step for 5 minutes at 95˚C followed by 40 cycles of denatur-

ation for 15 seconds at 95˚C and annealing/extension for 1 minute at 60˚C.

A negative control (without the template) was performed in each plate and the samples

were analyzed in triplicate. The qPCR plate design was performed in a blinded fashion without

knowledge of the specimen identity.

The absolute amount of cfDNA fragments in each sample was determined by the standard

curve with the 6-log linear range using 10-fold dilutions (from 10 ng to 10 fg) of genomic

DNA from peripheral lymphocytes of a healthy subject as previously reported [26].

The standard curve presented in each sample plate showed the average value and standard

deviation of the percentage reaction efficiency, curve slope and R square as 100.891 ± 2.093,

-3.302 ± 0.049 and 0.998 ± 0.001 for the LINE-99 and 103.5 ± 5.844, -3.245 ± 0.128 and

0.997 ± 0.001 for the LINE-218, respectively.

Statistical analysis

To verify mean differences among groups, the Student’s t test in case of two samples groups

and the one-way ANOVA in case of more than two samples groups were used. Tukey correc-

tion has been used for the multi-comparison issue. The Pearson correlation test was applied to

analyze associations between variables. A multivariate logistic regression model with an auto-

matic variable selection strategy (based on AIC criteria) was used to identify the best discrimi-

native model for neoplastic and non-neoplastic and for benign and malignant categories.

Leave on out cross-validation strategy was applied to estimate average specificity and sensitiv-

ity of the model. Kaplan-Meier curves were applied for survival analyses. Values were applied

after logarithmic transformation. Level of significance was fixed as P<0.05.

Results

Clinical features and histopathology of CMTs

The 32 non-neoplastic subjects did not present mammary nodules or other tumors at clinical

examination both at the beginning of the study and after one year. The non-neoplastic dis-

eased subjects (n = 17) manifested variable pathological processes and CBC and/or biochemis-

try alterations. Both inflammatory and non-inflammatory diseases were randomly included to

avoid any type of bias (S1 Table). Among the (n = 15) healthy subjects 2 animals manifested

significant CBC and/or biochemistry alterations with pronounced leukocytosis and were
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moved to the diseased group (S1 Table). Three healthy subjects presented slightly altered CBC

and were therefore removed. The total of non-neoplastic subjects was therefore 19 and 10, for

diseased and healthy dogs, respectively.

Histology of the samples from the 44 neoplastic subjects showed 54 malignant and 24

benign tumors of simple (n = 33) and complex subtypes (n = 45) (Table 1). Twenty-seven

malignant tumors were grade I (9/27 with necrosis), 13 grade II (6/13 with necrosis), and 9

grade III (7/9 with necrosis). Positive metastatic lymph nodes were present in 5/17 cases, and

3/5 primary metastatic tumors showed necrotic areas. Five grade III carcinomas showed

peripheral vascular invasion, and 2/5 had lymph node metastases. Necrosis in the 25/54 carci-

nomas ranged from 0.6% to 31.9% of the tumor (av. 9.1%). Eighteen dogs presented single

malignant tumors, three dogs single benign tumors, and 23 dogs presented multiple, benign or

malignant (or both) tumors (Table 1). The 78 studied CMTs were classified as reported in

Table 1: they were mainly complex carcinomas (n = 20) and adenoma (n = 11), simple tubu-

lar/tubulopapillary/cystic-papillary carcinomas (n = 17), and benign mixed tumors (n = 7).

The vast majority of mammary lesions was surrounded by healthy or hyperplastic tissue. Con-

sidering the heterogeneity of canine mammary tumors, no further selection of samples was

performed in the study to test the significance of the cfDNA markers in the spontaneous

conditions.

Western blot analysis

The immunoblotting experiments performed on the protein extract from the CF41 cells recog-

nized the 26 KDa, 23 KDa, and 23 KDa proteins, respectively corresponding to the expected

molecular mass of Bcl-2, Bax and Bad proteins.

Immunohistochemistry

In the canine mammary gland samples, Bcl-2, Bax, and Bad staining was diffusely cytoplasmic

and it was observed in both tumor and healthy/hyperplastic tissues and in both epithelial/lumi-

nal and myoepithelial/basal cells. In tumors composed mainly by the proliferation of a single

epithelial/luminal population, only its positivity was counted, whereas in biphasic tumors with

proliferation of both epithelial/luminal and myoepithelial/basal cells (such as complex tumors,

benign mixed tumors, carcinoma-mixed type, and carcinoma-and-malignant myoepithe-

lioma) the positivity was counted separately for the two populations. Lymph nodes sections

showed expected positivity for all three markers. Cutaneous adnexa, especially the apocrine

glands, were also used as positive internal control because of their strong positivity. Specifi-

cally, Bcl-2 was highly expressed in the basal cells of the glandular adnexa rather than in the

luminal cells, whereas Bax and Bad positivity was higher in the luminal cells than in the basal

cells.

Considering tumor lesions (78) and apoptotic markers expression (Table 2 and S2 Table),

Bcl-2 was more expressed in malignant tumors (P<0.01 for positive cells intensity and IRS

scale) than in benign tumors (Fig 1A and 1B) and in healthy tissue. Bcl-2 expression was simi-

larly augmented in metastatic, necrotic, and non-necrotic lesions, however a higher increase,

significant for the two scoring systems, was observed in non-necrotic tumors indicating that

blocking of apoptosis is more evident in tumors without necrosis (Fig 1C and 1D). Bax and

Bad were only slightly increased in malignancies and this trend was particularly evident,

despite not significant, in necrotic tumors (Table 2). Additionally, Bax (IRS scale, r = 0.5, and

Allred score, r = 0.6; P<0.05) and Bad (luminal %, r = 0.5, P = 0.06) expression in luminal

cells, indicative of a slight increase of apoptosis, positively correlated with percentage of tumor

necrosis.
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In addition, tumor size was positively correlated with Bcl-2 expression in luminal cells

(r = 0.4; P<0.0001) and marginal significance was found for a negative correlation with Bax

IRS scale in luminal cells (r = -0.2; P = 0.05).

Within the tumor tissue, the IHC expression of Bcl-2, Bax, and Bad in luminal cells was

positively correlated with their expression in myoepithelial cells (r = 0.7; r = 0.4; r = 0.2;

P<0.01), but the three markers were generally more expressed in the luminal cells than in the

myoepithelium (P<0.05) (Fig 1E and 1F). Grading, tumor subtype, and other tumor or sub-

ject-related features were not significantly correlated with markers expression.

Fig 1. Photomicrographs of IHC in canine mammary gland. 1A-1F. IHC for Bcl-2, Bax, Bad. (A)

Complex adenoma. Weak expression of Bcl-2 in benign tumors. (B) Simple tubulopapillary carcinoma, grade

II. Strong expression of Bcl-2 in malignant tumors. (C) Intraductal papillary carcinoma, grade II. Weak

expression of Bcl-2 in tumors with necrotic areas (arrow). (D) Complex carcinoma, grade II. Strong expression

of Bcl-2 in tumors without necrosis. (E) Complex carcinoma, grade II. Higher expression of Bax in epithelial

cells than in myoepithelial cells. (F) Complex carcinoma, grade I. Higher expression of Bad in epithelial cells

than in myoepithelial cells.

doi:10.1371/journal.pone.0169454.g001
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Circulating cfDNA in plasma

Circulating cfDNA in plasma of dogs with neoplastic and non-neoplastic lesions was assessed

for short (total) and long (non-apoptotic) cfDNA fragments concentration and then the integ-

rity index was calculated (long/short). When analyzing cfDNA values from neoplastic subjects a

significant outlier was found. This was a subject (n.42) carrying an anaplastic carcinoma with

diffuse necrosis (16%) and massive vascular invasion, presenting short fragments = 1137 ng/ml,

long = 1007,8 ng/ml, and integrity index = 0.89 (S1 Table). However, this subject was still

included in the further analysis. Both healthy and non-neoplastic diseased dogs (n = 29) showed

cfDNA values significantly different from neoplastic dogs (n = 44) (Fig 2). Healthy individuals

had short (mean 28.8 ng/ml; range 6.5–51.1, 95% CI) and long (mean 18.25 ng/ml; range 3.9–

32.6, 95% CI) fragments significantly lower than neoplastic subjects. The latter had short frag-

ments ranging from 56.85 to 200.2 ng/ml in the central 95% interval (mean 128.5 ng/ml) and

long fragments included between 33 and 142 ng/ml (95% CI, mean 87.48 ng/mL). The means

for non-neoplastic diseased animals were 69 ng/ml (range 5.7–132.4 ng/mL) and 53.22 ng/ml

(range 1.5–107.9 ng/ml) for short and long fragments, respectively. Within diseased individuals,

two non-statistical “outliers” were found (Fig 2) that were respectively carrying an arrhythmo-

genic cardiomyopathy and signs of liver damage subsequently identified as cholangiohepatitis.

The integrity index of neoplastic subjects (0.64, range 0.6–0.69) was lower than diseased animals

(0.7, range 0.62–0.8) (P<0.0001) and than healthy individuals (0.65, range 0.51–0.78) (P>0.05)

(Fig 2). Moreover, subjects with at least one malignant tumor showed a significantly lower

(P<0.05) and less variable integrity index (0.64; range 0.60–0.68) than those with exclusively

benign lesions (0.71; range 0.47–0.95) or healthy individuals (0.65, range 0.51–0.78). Subjects

with necrotic lesions manifested a higher amount of short (mean: 172.7 ng/ml) and long

cfDNA fragments (129 ng/ml) and a higher integrity index (0.66) than the subjects with non-

necrotic lesions (short 108.6 ng/ml; long 60.5 ng/ml; integrity index 0.61) (P>0.05) (S2 Fig).

In order to test a correlation between cfDNA and apoptotic markers or other features, only

subjects carrying a single lesion were included in the analyses. Specifically, the cfDNA integrity

index negatively and positively marginally correlated with intensity of Bax+ luminal cells (r =

-0.5; P = 0.06) and tumor size (r = 0.6; P = 0.05), respectively. Other tumor or subject-related

features were not significantly correlated with cfDNA values.

In the multivariate logistic regression analysis, the best discriminative model for neoplastic

and non-neoplastic subjects included only the integrity index variable. Looking at the ROC

curves, this model was characterized by a modest predictive power (sensitivity and specificity

respectively 61% and 75%). When assessing benign versus malignant lesions all the variables

were maintained in the model reaching a higher power of discrimination, with sensitivity and

specificity respectively of 72% and 75%.

Regarding survival analyses, cfDNA values were not significantly predictive for the clinical

outcome.

Discussion

Circulating cfDNA is extracellular DNA found in serum or plasma that can be purified, quan-

tified, and eventually specifically amplified by polymerase chain reaction (PCR) [27]. The

increase of cfDNA has been reported in various inflammatory diseases, and it has been found

also in human patients with various types of cancer [28]. To date, circulating cfDNA in blood

has been considered a promising biomarker in some human tumors and, today, cfDNA frag-

mentation represented by the integrity index (ratio between long and short cfDNA fragments)

is studied for its ability to discriminate cancer patients from healthy controls [29]. Very few

data are available for the canine species [16–18].

Circulating Cell-Free DNA and Canine Mammary Tumors
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Fig 2. Circulating cell-free (cf) DNA concentrations in healthy dogs and dogs with neoplastic and non-

neoplastic diseases (diseased). (A) Scatterplot of cfDNA short and long fragments. (B) Box and Whiskers

of cfDNA integrity index (long/short fragments) in healthy dogs and dogs with neoplastic and non-neoplastic

diseases (diseased). (C) Box and Whiskers of cfDNA integrity index in neoplastic dogs with benign or

malignant tumors and in healthy dogs. Error bars represent standard deviation. *P<0.05; ** P<0.01.

doi:10.1371/journal.pone.0169454.g002
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In this study, we quantified the amount of short and long cfDNA fragments by qPCR of the

two amplicons with different lengths (LINE-99 and LINE-218), in plasma of CMTs-carrying

and non-neoplastic dogs. To correlate cfDNA fragmentation with the events of necrosis and

apoptosis [20,21,30], we performed IHC analysis of the Bcl-2 anti-apoptotic protein and the

Bax and Bad pro-apoptotic proteins, and we precisely measured the percentage of the necrotic

tumor area in each mammary sample.

We firstly tested and confirmed the specificity of the antibodies used for IHC analysis

against canine Bcl-2, Bax, and Bad proteins obtained from canine CF41 cells lysate. This is a

critical step when testing antibodies produced against human antigens in a different species

[31]. Considering their expression in our cohort of patients, Bcl-2 was more expressed in

malignant tumors than in healthy tissue and in benign tumors, as already reported in CMTs

[32,33] and in several human tumors [34–37]. Evasion of apoptosis is one of the common

mechanisms by which neoplastic clones can expand into tumor masses and metastasize [38].

Bcl-2 expression was effectively positively correlated also to tumor size. A slight non-signifi-

cant increase of Bax and Bad pro-apoptotic proteins was also evident in malignant tumors.

This feature supports the hypothesis that the tumor bulk is composed of a heterogeneous cells

population in which the apoptotic process could be differently activated [39]. In addition,

some higher values of expression of Bax and Bad and a lower expression of Bcl-2 were particu-

larly evident into the necrotic lesions; this might account for the increased Bax and Bad expres-

sion registered in malignancies and might confirm that the two major mechanisms of cell

death, apoptosis and necrosis, are simultaneously activated within the tumor damaged area

[40,41]. Bax luminal IRS scale and Allred score and Bad+ luminal % significantly correlated

with percentage of tumor necrosis. This study confirmed that when evaluating positive expres-

sion by IHC, percentage and intensity of positive cells and combining scoring systems (i.e. IRS

scale and Allred score) should be applied, as already discussed within the literature [42].

In this study, we detected the amount of cfDNA fragments using a quantitative PCR analy-

sis against a LINE-1 sequence. The use of repetitive DNA elements with a high copy number

distributed throughout the genomic DNA can ensure a good sensitivity and accurate data also

for those samples with very low quantity and degraded cfDNA [10]. Particularly, amplification

of ALU repeats (ALU-qPCR 247/115) to detect long (247bp) and short (115bp) DNA frag-

ments and cfDNA integrity index is now used in human cancer diagnostic and prognostic

studies [23, 43–47].

In agreement with previously published data mainly in humans, in our work, the neoplastic

subjects showed a higher amount of both short and long cfDNA fragments than the non-neo-

plastic diseased and healthy controls [11–15, 23, 43–47]. Only one study [16] compared circu-

lating DNA in non-neoplastic with neoplastic dogs (lymphoma and other cancers) and found

similar results. In our study, healthy subjects had always less than 100 ng/ml short and 60 ng/

ml long fragments, however these cut off values were not specific. Moreover, the subjects with

at least one malignant tumor also presented a higher amount of both short and long cfDNA

fragments compared to benign lesions. The cfDNA integrity index, unlike other studies

[11,12,14,15], was significantly lower in the neoplastic subjects than in the non-neoplastic dis-

eased subjects and in malignant tumors compared to benign and healthy subjects. Recently,

Madhavan and co-authors obtained data similar to ours in a study of human breast cancer

[10]. They observed an increase of the amount of cfDNA fragments and a decrease of the

integrity index in cancer patients rather than in healthy controls [10]. They suggested that a

higher DNA fragmentation—and therefore an increase of short fragments—might be present

in apoptotic cancer cells compared to apoptotic non-cancerous cells. This would imply that

the extent of DNA fragmentation during apoptosis might be different between cancer and nor-

mal cells as also supported by the work of Giacona and co-authors [11]. They demonstrated

Circulating Cell-Free DNA and Canine Mammary Tumors
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that cfDNA from apoptotic cells of healthy individuals had from three- to five-fold multiples

of nucleosome associated DNA length (identified as long fragments), and considerably longer

fragments than pancreatic cancer patients [11]. In a more simplistic vision, it seems that the

rate of evasion of apoptosis taking place in the studied tumors was not sufficient to determine

an increased ratio, since both short and long fragments were augmented. In our samples,

instead, the presence of necrosis was able to significantly increase the integrity index causing

more long fragments to circulate within the plasma, in accordance with other works

[20,21,23,30,43–47] and further supporting the necrotic origin of the fragments amplified by

the LINE-218 primer pairs.

Individual variability of cfDNA values was generally very high, as previously reported both

in dogs [16,18] and humans [48–50], particularly in necrotic tumors.

Regarding prognosis, a significant role of cfDNA was not demonstrated, but this might be

due to too much variability in tumor subtype, grade, and size, all of which significantly affect

prognosis [51]. Further studies should be completed to better test a prognostic role and to ver-

ify applicability of thresholds of cfDNA values.

Dogs with non-neoplastic diseases presented, in our study, a slightly higher amount of

cfDNA fragments than the healthy dogs but still lower than neoplastic subjects. This could be

due to the presence of a pathological process in the diseased subjects with necrosis and apopto-

sis as a source of cfDNA. However, variability of cfDNA levels in these subjects, possibly due

to type and severity of diseases selected in the group and the resulting variations in the ratio of

cell damage and turnover [52–54] is not surprising and prevents us from forming any robust

conclusions.

Healthy dogs manifested amounts of cfDNA fragments comparable to human controls

included in published papers [48–50] and to that reported in one study of the dog [16].

A major concern is to establish the cancerous origin of the quantified cfDNA into the

bloodstream of neoplastic subjects and to be able to use it for diagnosis and prognosis but

also for monitoring systemic therapies and detecting therapeutic targets and resistance

mechanisms in each patient. This approach is widely studied in humans [55–58] and

together with the analysis of circulating tumor cells (CTCs) it has recently received enor-

mous attention for its potential clinical implication [55–56]. When comparing CTCs and

cfDNA they both present advantages and disadvantages and could hypothetically be com-

plementary [44,55]. Therefore, there has been an explosion of technologies for the quantifi-

cation and analysis of both these markers from the non-invasive and highly accessible

“liquid biopsies”, however there is still a lack of standardization [55,56,59]. Quantification

and integrity index of cfDNA are still proved to be valid diagnostic and prognostic markers

in human cancer [23,43–47,60]. However, enormous improvement in sensitivity and speci-

ficity of downstream analysis has been achieved for example by next generation sequencing

(NGS), digital droplet PCR (ddPCR), and beads, emulsion, amplification, magnetics

(BEAMing) PCR for tumor association, mutational analysis, and patient monitoring

[55,61]. In this regard the high sensitivity and low costs of the PCR-based methods would

make them very advantageous but still limited by their need of known and previously identi-

fied/characterized mutational targets. The heterogeneity both between and within tumor

types and individual patients is a well-known concept [62] and because of this the NGS

approach would allow a more comprehensive snapshot of the tumor genome however with

much higher costs and longer processing time [55,56]. In dogs, different gene mutations

and gene copy number aberrations have been identified in canine mammary carcinomas

and in one study also in the circulating DNA of the same cancer-bearing dogs [17,63–65].

We strongly believe that this approach based on wide sequencing methodology or high sen-

sitivity PCR-based technology would further implement our results. On the base of these
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preliminary results is now possible to further investigate tumor-associated genetic changes

of the circulating nucleic acids and their prognostic role. In addition, also monitoring the

post-surgical trend of cfDNA levels in the plasma could allow even more robust association

with the tumor lesions as well as offer prognostic information. However, ethical consider-

ations with regard to performing additional blood sampling and exams may limit this

approach.

In terms of prognosis we could not find any significant correlation with survival and the

tested parameters. Conversely, one study targeted SINE sequences into the bloodstream of 28

neoplastic subjects and detected a prognostic significance [18]. Further prospective analysis

with robust follow-up data should be prompted to better elucidate this aspect.

The results of this work still seem promising. They show that cfDNA fragments (short and

long) and integrity index allow identification of malignant and necrotic CMTs and might

therefore be further studied as potential diagnostic and prognostic tests also in veterinary med-

icine. In addition, it seems that both apoptosis and necrosis cause an increase of circulating

DNA with necrosis as major source of long fragments and related increase of integrity index as

already demonstrated in humans [23,43–47]. This is the first study of cfDNA quantification

and cfDNA integrity index evaluation in dogs carrying CMTs, and its results suggest that fur-

ther studies should be designed to strengthen the diagnostic/prognostic role of cfDNA levels

and integrity index, including the establishment of verified cut-off values associated with dif-

ferent diagnoses and prognoses.

Supporting Information

S1 Fig. Primer pairs and probe used to amplify long and short fragments of the canine

LINE-1 retrotransposon sequence.

(PNG)

S2 Fig. (A) Scatterplot of cfDNA short and long fragments in subjects carrying either

benign or malignant mammary tumors and either necrotic or non-necrotic mammary car-

cinomas; (B) Box and Whiskers of cfDNA integrity index (long/short fragments) in sub-

jects carrying either necrotic or non-necrotic mammary carcinomas.

(TIFF)
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