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Background. Long noncoding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs) and interact with
microRNAs (miRNAs) to regulate target gene expression, which can greatly influence tumor development and progression.
Different tumor-node-metastasis (TNM) stages of hepatocellular carcinoma (HCC) defined by the American Joint Committee on
Cancer (AJCC) have different clinical results. Our purpose was to comprehensively analyze differentially expressed (DE) lncRNAs,
miRNAs, and mRNAs in stage I HCC and identify prognosis-associated RNAs.Methods. RNA-seq data were obtained from.e
Cancer Genome Atlas (TCGA) database. A stage I HCC-associated miRNA-lncRNA-mRNA network was constructed. Next,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses of ceRNA-as-
sociated DEmRNAs were performed using Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 and
Clusterprofile in the R package. .e protein-protein interaction (PPI) network of the above mRNAs was then constructed using
STRING. Finally, the association between lncRNAs and mRNAs in the ceRNA network and prognosis of patients was further
analyzed. Linear regression analysis of the above lncRNAs and mRNAs associated with overall survival was performed. Results.
After a comparison between HCC and adjacent nontumor tissues, 778 lncRNAs, 1608 mRNAs, and 102 miRNAs that were
abnormally expressed were identified. .e ceRNA network was composed of 56 DElncRNAs, 14 DEmiRNAs, and 30 DEmRNAs.
Functional analysis results showed that 30 DEmRNAs were enriched in 14 GO biological process categories and 6 KEGG
categories (false discovery rate (FDR)< 0.05). A PPI network was composed of 22 nodes and 58 edges. We detected 4 DElncRNAs
(BPESC1, AC061975.6, AC079341.1, and CLLU1) and 6 DEmRNAs (CEP55, E2F1, E2F7, EZH2, G6PD, and SLC7A11) that had
significant influences on the overall survival (OS) of stage I HCC patients (P< 0.05). lncRNA BPESC1 was positively correlated
with mRNA CEP55 via miR-424, and lncRNA AC061975.6 was positively correlated with mRNA E2F1 via miR-519d. Conclusion.
Our study identified novel lncRNAs and mRNAs that were associated with the progression and prognosis of stage I HCC and
further investigated the regulatory mechanism of lncRNA-mediated ceRNAs in the development of stage I HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the 6th most common
cancer in the world and is the 4th leading cause of cancer-
related death [1]. Cirrhosis, chronic hepatitis B and C virus
infection, dietary aflatoxin exposure, and alcoholism are the
most common risk factors for HCC [2, 3]. Although the
diagnostic methods and surgical treatment measures for

HCC continue to improve, the 5-year survival rate of late-
stage HCC patients is still very low [4]. Many clinical
treatments for tumors are performed based on the tumor-
node-metastasis (TNM) staging system of the American
Joint Committee on Cancer (AJCC) [5]. Early AJCC stage
I HCC patients are most likely to be cured through
treatment methods that include radiofrequency ablation
(RFA), surgical resection, or liver transplantation [6].
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Stage I HCC patients with 1 single tumor that has no
vascular invasion have higher survival rates than do HCC
patients in other stages [7]. However, the treatment effect
on early HCC is still not high, and many patients
eventually die from tumor recurrence and liver failure
[8]. .e 5-year survival rate of stage I HCC is still only
approximately 50% and is greatly lower than that of stage
I cancers in other organs [9]. .e molecular mechanism
for mediating the recurrence of early-stage HCC is still
not clear. .erefore, identifying biomarkers that can
accurately and reliably predict HCC prognosis in the
early stage of HCC is urgently needed in order to un-
derstand the molecular mechanism underlying the poor
survival period of early-stage HCC.

.e relationship among long noncoding RNAs
(lncRNAs), microRNAs (miRNAs), and messenger RNAs
(mRNAs) is complicated. In 2011, Salmena et al. [10]
proposed the hypothesis of competing endogenous RNAs
(ceRNAs). .e ceRNA hypothesis considers that lncRNAs
not only can directly participate in the regulation of target
gene expression but also may contain some core seed se-
quences that can adsorb corresponding miRNAs to further
interfere with target genes mRNA abundance by influ-
encing the number of miRNAs, thus affecting gene ex-
pression. Martini et al. [11] showed that the expression
levels of lnc-SERTAD2-3, lnc-SOX4-1, lncHRCT1-1, and
PVT1 in stage I epithelial ovarian cancer (EOC) were in-
dependent prognostic markers associated with recurrence
and poor prognosis. Based on an analysis of .e Cancer
Genome Atlas (TCGA) database, RNA sequencing, and
Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) experiments, Tian et al. [12] showed that 8 out of 12
candidate lncRNAs (LINC00963, NR2F2-AS1, LINC00515,
LINC00162, LINC00312, MGC27382, LINC00472, and
FENDRR) were significantly upregulated in stage I lung
adenocarcinoma (LUAD) tissues. Ma et al. [13] showed that
the lncRNA PAPAS could promote HCC through an in-
teraction with miR-188-5p. .e plasma level of PAPAS
could effectively differentiate between stage I HCC patients
and healthy controls. However, no study has targeted the
regulatory mechanism underlying lncRNA-mediated
ceRNAs in early-stage (stage I) HCC and the diagnostic and
prognostic values of genes in the ceRNA network that
participate in stage I HCC.

Recent studies have shown that Bai et al. constructed an
HCC-associated deregulated ceRNA network consisting of
37 lncRNAs, 10 miRNAs, and 26 mRNAs after excluding
lncRNAs that were localized only in the nucleus [14]. In our
study, we investigated the RNA expression conditions in
171 cases (172 cases of miRNAs) of stage I HCC and 50
cases of nontumor normal liver tissues based on TCGA
data. We constructed a ceRNA network containing 56
lncRNAs, 14 miRNAs, and 30 mRNAs in stage I HCC.
Next, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment and
protein-protein interaction (PPI) analyses were performed
to elucidate the underlying mechanism. Finally, the
prognostic values of the above lncRNAs, miRNAs, and
mRNAs involved in the ceRNA network for determining

the overall survival (OS) of stage I HCC patients were
analyzed. We believe that our study might provide novel
prognostic biomarkers for survival prediction and targeted
treatment of early-stage HCC.

2. Materials and Methods

2.1. Data Acquisition and Selection. .e gdc-client tool was
used to download raw sequencing data of HCC-associated
mRNA and miRNA expression from the TCGA database
(https://portal.gdc.cancer.gov/). Complete clinical data of
the corresponding patients were further downloaded from
the cBioPortal (http://www.cbioportal.org/) website. Liver
tissue specimens of stage I HCC patients (171 cases for
mRNAs and lncRNAs and 172 cases for miRNAs) and 50
specimens from normal individuals were selected. .e
corresponding mRNA-seq, lncRNA-seq, and miRNA-seq
data were further obtained. We then used the R package of
edgeR to homogenize the TCGA raw data using the trimmed
mean of M-values (TMM) method. If there were multiple
data points for RNA expression, the average expression
value was regarded as the expression value of the corre-
sponding gene. Finally, the RNA expression level was
converted to a log2 value. Our study entirely followed the
publication guidelines of TCGA (https://cancergenome.nih.
gov/publications/publicationguidelines); therefore, approval
from an ethics committee was not required.

2.2. Identification of Differentially Expressed (DE) RNAs.
Based on the annotation of the Ensembl database (http://
www.ensembl.org/index.html), DElncRNAs and DEmRNAs
were defined and encoded. mRNAs, lncRNAs, and miRNAs
differentially expressed in stage I HCC and normal liver
tissues were screened using the edgeR R package (version:
3.22.5) in R software (version 3.5.2). Statistical significance
was defined as log2 fold change> 2 and a P value <0.01.
Volcano plots and heatmaps of DERNAs were plotted using
the ggplots and heatmap packages.

2.3. Construction of the lncRNA-miRNA-mRNA ceRNA
Network. Using the miRcode database (http://www.
mircode.org/), miRNAs that interacted with DElncRNAs
were searched. .e obtained miRNAs were modified using
the StarBase database (http://starbase.sysu.edu.cn/). To
further study lncRNA functions, the Perl program (version:
5.26.1) was used to predict miRNA target genes using 3
databases: miRDB (http://www.mirdb.org/), TargetScan
(http://www.targetscan.org/), and miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw/php/index.php). .e intersect-
ing mRNAs obtained using the 3 prediction methods were
retained. .e intersection between these mRNAs and
DEmRNAs was then obtained using the VennDiagram R
package (version: 1.6.20). DEmRNAs that were involved in
the construction of the ceRNA network were obtained. .e
lncRNA-miRNA-mRNA ceRNA network based on the
“ceRNA hypothesis” was constructed and visualized using
Cytoscape v3.7.1.
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2.4. Functional Enrichment Analysis. To understand the
underlying biological mechanism of DEmRNAs in the
ceRNA crosstalk network, the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) bio-
informatics database (https://david-d.ncifcrf.gov/) was used
to execute GO biological enrichment analyses. .e Clus-
terProfiler v3.12.0 package of R [15] was used to analyze
KEGG pathways. .e GOplot package of R was used to
display the results of the GO and KEGG analyses. False
discovery rate (FDR)< 0.05 was set as the cut-off standard.

2.5. Construction of the PPI Network. .e STRING database
(version 11.0, https://string-db.org/) is a public data source
that can provide information regarding the interaction
between known proteins and predicted proteins. To eluci-
date the potential protein-protein relationship between
DEmRNAs involved in the ceRNA network, a PPI network
was constructed using STRING. Interactions with confi-
dence scores above 0.4 were considered significant and were
retained. Genes with a number of connections ≥5 were
considered hub genes in the PPI network.

2.6. Survival Analysis. .e association between RNAs and
survival time was analyzed using Kaplan–Meier (KM) curves
and the log-rank test. .e survival package and ggplot2
package in R language were used for statistical analyses and
plotting. P< 0.05 was set as the cut-off value.

3. Results

3.1. Differentially Expressed mRNAs, lncRNAs, and miRNAs.
Detailed clinical information of the included patients is
shown in Table 1. Differentially expressed (DE) mRNAs and
DElncRNAs were identified when comparing 171 stage I
HCC tissues and 50 normal liver tissues. A total of 1608
DEmRNAs were identified, of which 1385 mRNAs were
upregulated and 223 mRNAs were downregulated. In ad-
dition, a total of 778 DElncRNAs were identified, of which
722 lncRNAs were upregulated and 56 lncRNAs were
downregulated. Furthermore, a total of 102 DEmiRNAs (98
upregulated genes and 4 downregulated genes) were iden-
tified when comparing 172 stage I hepatocellular carcinoma
(HCC) tissues and 50 normal liver tissues. .e volcano plots
of the mRNAs, lncRNAs, and miRNAs are shown in
Figures 1(a)–1(c), respectively; their heatmaps are shown in
Figures 1(d)–1(f ), respectively.

3.2. Construction of the Competing Endogenous RNAs (ceR-
NAs) Network for Stage I HCC. To further investigate how
lncRNAs mediated mRNAs regulation through interactions
with miRNAs in stage I HCC, a lncRNA-miRNA-mRNA
(ceRNA) network based on the above data was constructed
and visualized using Cytoscape v3.7.1. First, we used the
alignment file of the miRcode database to align DElncRNAs
and miRNAs. Next, we extracted the pairs of miRNAs that
interact with DElncRNAs to obtain the DElncRNA align-
ment file in the miRcode database. Finally, we aligned the

obtained alignment results with DEmiRNAs and obtained a
total of 212 pairs with successful alignment records; that is,
212 interacting lncRNA and miRNA pairs were identified
from DElncRNAs and DEmiRNAs. Among these 212 in-
teraction pairs, there were 56 lncRNAs and 14 miRNAs. We
then searched for the target mRNAs of these 14 miRNAs
using the miRTarBase, miRDB, and TargetScan databases
and obtained a total of 718 target mRNAs. We intersected
these 718 genes with the original 1608 DEmRNAs and
obtained 30 DEmRNAs as nodes of the ceRNA network
(Figure 2(a)). Combining the miRNA-mRNA interactions
and lncRNA-miRNA interactions, a lncRNA-miRNA-
mRNA network was constructed. .is network was com-
posed of 56 DElncRNAs, 14 DEmiRNAs, and 30 DEmRNAs
(Figure 2(b)).

3.3. Functional Analysis of ceRNA Network-Associated
DEmRNAs. Functional analysis results showed that 30
DEmRNAs in the above ceRNA network were enriched in
14 Gene Ontology (GO) biological process categories and
6 Kyoto Encyclopedia of Genes and Genomes (KEGG)
categories (false discovery rate (FDR) < 0.05). .e results
are shown in Tables 2 and 3..e top 10 GO terms were cell
cycle, regulation of cell cycle, the developmental process
involved in reproduction, reproductive process, repro-
duction, regulation of cell cycle process, cell cycle process,
regulation of nitrogen compound metabolic process,
mitotic cell cycle process, and transcription factor com-
plex (Figure 3(a)). Figure 3(b) shows the significantly
enriched pathways for these DEmRNAs after KEGG
pathway enrichment analyses: cell cycle, cellular senes-
cence, p53 signaling pathway, oocyte meiosis, ferroptosis,
and glutathione metabolism.

3.4. Protein-Protein Interaction (PPI) Network of ceRNA
Network-Associated DEmRNAs. A PPI network was con-
structed using STRING and was composed of 22 nodes and
58 edges (Figure 4(a)). According to this network, there were
a total of 12 hub genes (degree≥ 5). .ese major hub genes
included EZH2, CCNB1, RRM2, KIF23, PBK, CEP55, E2F7,
CCNE1, E2F1, CLSPN, E2F2, and POLQ (Figure 4(b)). .e
gene with the highest degree (degree� 13) was enhancer of
zeste homolog 2 (EZH2) (Figure 4(b)).

3.5.Overall Survival-(OS-)Associated lncRNAsandmRNAs in
the ceRNA Network. To elucidate the association between
DElncRNAs in ceRNAs and the prognosis of HCC patients,
KM curve analyses were performed. .e results showed that
4 out of 56 DElncRNAs were significantly associated with OS
(P< 0.05). BPESC1 negatively correlated with patient OS,
whereas highly expressed AC061975.6, AC079341.1, and
CLLU1 significantly prolonged the survival time of patients
with stage I HCC (Figures 5(a)–5(d)). Next, we performed
KM curve analyses on 30 DEmRNAs in ceRNAs to study the
association between DEmRNAs and the OS of patients with
stage I HCC. .e results suggested that 6 DEmRNAs were
significantly associated with OS. .ese 6 DEmRNAs
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(CEP55, E2F1, E2F7, EZH2, G6PD, and SLC7A11) nega-
tively correlated with OS (Figures 6(a)–6(e)). No signifi-
cant differences were observed between DEmiRNAs and
the OS of patients with stage I HCC. Details of DEmRNAs
and DElncRNAs associated with overall survival are shown
in Table 4. Linear regression analysis of the 4 lncRNAs and
6 mRNAs associated with overall survival was performed.
11 lncRNA-mRNA pairs are positively correlated
(Figures 7(a)–7(k), P< 0.05). Next, we explored whether
shared miRNAs existed between the lncRNAs and

mRNAs. We found that lncRNA BPESC1 was positively
correlated with mRNA CEP55 through miRNA miR-424,
and lncRNA AC061975.6 was positively correlated with
mRNA E2F1 through miRNA miR-519d. Figure 8 shows a
flow diagram of the bioinformatics analysis.

4. Discussion

During disease diagnosis, the progression level of cancer
is the key factor defining treatment methods and

Table 1: Clinical characteristics of the included patients.

Characteristics Number of sample size, n� 171 (%) (mRNA, lncRNA) Number of sample size, n� 172 (%) (miRNA)
Age (years)
≥60 95 (55.56) 95 (55.23)
<60 76 (44.44) 77 (44.77)

Gender
Female 50 (29.24) 49 (28.49)
Male 121 (70.76) 123 (71.51)

Family history
Yes 52 (30.41) 51 (29.65)
No 119 (69.59) 121 (70.35)

Race
White 78 (45.61) 77 (44.77)
Asian 81 (47.37) 81 (47.09)
Black or african american 8 (4.68) 8 (4.65)
NA 4 (2.34) 6 (3.49)

Tumor status
With tumor 44 (25.73) 46 (26.74)
Tumor free 117 (68.42) 116 (67.44)
NA 10 (5.85) 10 (5.81)

Hepatitis B virus infection
Yes 69 (40.35) 70 (40.70)
No 96 (56.14) 96 (55.81)
NA 6 (3.51) 6 (3.49)

Histologic grade
Grade 1 25 (14.62) 25 (14.53)
Grade 2 80 (46.78) 80 (46.51)
Grade 3 55 (32.16) 56 (32.56)
Grade 4 10 (5.85) 11 (6.40)
NA 1 (0.58) 0 (0.00)

Vascular invasion
Macro 5 (2.92) 5 (2.91)
Micro 17 (9.94) 18 (10.47)
None 137 (80.12) 138 (80.23)
NA 12 (7.02) 11 (6.40)

Residual tumor
R0 154 (90.06) 155 (90.12)
R1 5 (2.92) 5 (2.91)
R2 0 (0.00) 0 (0.00)
RX 9 (5.26) 9 (5.23)
NA 3 (1.75) 3 (1.74)

Vital status
Living 129 (75.44) 131 (76.16)
Deceased 42 (24.56) 41 (23.84)

Relapse
Yes 62 (36.26) 65 (37.79)
No 88 (51.46) 88 (51.16)
NA 21 (12.28) 19 (11.05)
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Figure 1: Continued.
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(f )

Figure 1: Specific lncRNA-related ceRNA network and characteristics of the constituent lncRNAs in stage I HCC patients..e volcano plot
shows the expression profiles of mRNAs (a), lncRNAs (b), and miRNAs (c). Red dots indicate upregulated RNAs, and green dots indicate
downregulated RNAs. Heatmaps of differentially expressed RNAs in different samples: (d) mRNAs, (e) lncRNAs, and (f) miRNAs. .e y-
axis represents RNAs and the x-axis represents patient samples; red denotes upregulation and green denotes downregulation. ceRNA:
competing endogenous RNA; HCC: hepatocellular carcinoma; lncRNA: long noncoding RNA; miRNA: microRNA.
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Figure 2: .e ceRNAs network in stage I HCC patients. (a) Venn diagram of DEmRNAs involved in the ceRNA network. (b) .e ceRNA
network of lncRNAs-miRNAs-mRNAs involved in HCC. Diamonds represent IncRNAs, round rectangles represent miRNAs, and triangles
represent mRNAs. .e nodes highlighted in red and blue indicate up- and downregulation, respectively. DEmRNA: differentially expressed
mRNA.

Table 2: .e top 10 GO terms enrichment for DEmRNAs involved in the ceRNA network using the DAVID database.

GO ID Term Genes Gene
count FDR

GO: 0007049 Cell cycle KIF23, E2F1, CLSPN, E2F2, PTGS2, E2F7, EZH2, PBK, CEP55,
DACH1, CCNB1, CCNE1, SFRP1, RRM2, AXIN2 15 0.000

GO: 0051726 Regulation of cell cycle KIF23, CCNB1, E2F1, CLSPN, CCNE1, E2F2, PTGS2, SFRP1, E2F7,
EZH2, DACH1, AXIN2 12 0.001

GO: 0003006 Developmental process involved
in reproduction

CCNB1, PLAG1, PTGS2, SFRP1, E2F7, FOXF2, HOXA10, HOXA9,
CBX2, DACH1 10 0.001

GO: 0022414 Reproductive process E2F1, CCNB1, PLAG1, PROK2, SFRP1, PTGS2, E2F7, FOXF2,
HOXA10, HOXA9, CBX2, DACH1, ACSL4 13 0.002

GO: 0000003 Reproduction E2F1, CCNB1, PLAG1, PROK2, SFRP1, PTGS2, E2F7, FOXF2,
HOXA10, HOXA9, CBX2, DACH1, ACSL4 13 0.002

GO: 0010564 Regulation of cell cycle process KIF23, CCNB1, E2F1, CLSPN, SFRP1, E2F7, EZH2, DACH1, AXIN2 9 0.010

GO: 0022402 Cell cycle process KIF23, CCNB1, E2F1, CLSPN, CCNE1, E2F7, RRM2, EZH2, PBK,
DACH1, CEP55, AXIN2 12 0.015

GO: 0051171 Regulation of nitrogen
compound metabolic process

E2F1, PLAG1, E2F2, PTGS2, CPEB3, E2F7, EZH2, ELAVL2, CBX2,
DACH1, CCNB1, CCNE1, HOXA3, SFRP1, RRM2, FOXF2,

HOXA10, HOXA9, AXIN2, POLQ
20 0.020

GO: 1903047 Mitotic cell cycle process KIF23, CCNB1, E2F1, CLSPN, CCNE1, E2F7, RRM2, EZH2, PBK,
CEP55 10 0.022

GO: 0005667 Transcription factor complex E2F1, E2F2, E2F7, FOXF2, HOXA10, HOXA9, DACH1 7 0.023
Note: FDR< 0.05. GO: Gene Ontology; DEmRNAs: differentially expressed mRNA; ceRNA: competing endogenous RNA; DAVID: Database for Annotation,
Visualization, and Integrated Discovery; FDR: False discovery rates.
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evaluating successful treatment results. .erefore, the
elucidation of molecular mechanisms in different pro-
gression stages of HCC is urgently needed. In recent years,
with the advance of studies on the complicated interac-
tion among different RNA types and RNA crosstalk in the
gene regulation network, miRNAs and their ceRNA
targets have been confirmed; for example, lncRNAs and
mRNAs can form a complicated ceRNA network [16].
Different studies have constructed ceRNA networks with
DERNAs in HCC and normal tissues based on next-
generation sequencing or microarray data [17–19].
However, comprehensive analysis of ceRNA networks
based on differential expression profile data for stage I
HCC is lacking. Discovery and diagnosis of early-stage
HCC are very critical for HCC treatment; therefore,

identifying novel therapeutic targets and prognostic
markers in stage I is particularly important.

In this study, we identified 778 lncRNAs, 1608 mRNAs,
and 102 miRNAs that were abnormally expressed in HCC
tissue based on RNA-seq data in the TCGA database. We
then constructed a stage I HCC-associatedmiRNA-lncRNA-
mRNA network. .e results indicated that crosstalk among
these RNAs might be an important feature of stage I HCC.
Notably, among the 6 mRNAs identified in the miRNA-
lncRNA-mRNA network that were associated with prog-
nosis, E2F1 and E2F7 both belong to the E2F transcription
factor family; the E2F family plays an important role in the
regulation of cell cycle [20]. .e results of our GO and
KEGG analyses also suggested that the 6 mRNAs were
mainly enriched in cell cycle pathways, including the cell

Table 3: KEGG pathway analysis for DEmRNAs involved in the ceRNA network using the ClusterProfiler package of R.

KEGG ID Pathway name Genes Gene count FDR
hsa04110 Cell cycle CCNB1, CCNE1, E2F1, E2F2 4 0.004
hsa04218 Cellular senescence CCNB1, CCNE1, E2F1, E2F2 4 0.005
hsa04115 p53 signaling pathway CCNB1, CCNE1, RRM2 3 0.005
hsa04114 Oocyte meiosis CCNB1, CCNE1, cpeb3 3 0.019
hsa04216 Ferroptosis ACSL4, SLC7A11 2 0.020
hsa00480 Glutathione metabolism G6PD, RRM2 2 0.032
Note: FDR< 0.05. KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 5: Kaplan–Meier survival curves of 4 DElncRNAs involved in the ceRNA network associated with overall survival in patients with
stage I HCC (P< 0.05). DElncRNA: differentially expressed lncRNA.
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Figure 6: Kaplan–Meier survival curves of 6 DEmRNAs involved in the ceRNA network associated with overall survival in patients with
stage I HCC (P< 0.05).
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cycle, regulation of the cell cycle, and cell cycle processes.
CEP55, EZH2, and SLCA11 are highly expressed in HCC
and play critical regulatory roles in cancers [21–23]. .ey
were key nodes that made up the stage I HCC ceRNA
network in our study and were key potential prognostic
genes in stage I HCC, results that are consistent with a Gene
Expression Omnibus (GEO) database study by Yue et al.
[24]. It is notable that the above genes exhibited high degrees
in the PPI network constructed using the ceRNA network-
associated DEmRNAs and were major hub genes. .ese
results suggested that they played very important roles in the
biological processes of stage I HCC.

Abnormal lncRNA expression is involved in various
human tumors including HCC. In recent years, intensive
studies have been carried out on lncRNAs. .e involve-
ment of lncRNAs in the mechanisms of many cancers has
been explored, and the same lncRNA can regulate many
types of cancers at the same time. In our study on ceRNA
network-associated lncRNAs, AC061975.6, AC079341.1,
BPESC1, and CLLU1 were associated with the OS of stage I
HCC patients. Buhl et al. [25] showed that CLLU1 was
significantly upregulated in CLL cells and that the OS of
CLL patients was associated with the CLLU1 expression

level. When the expression level of CLLU1 increased 1-
fold, the risk of early death increased by 7%. CLLU1 ex-
pression had a stronger prognostic meaning in patients
younger than 70 years of age, whereas it did not have
prognostic meaning in patients 70 years of age or older
[26]. Cahill et al. [27] showed that high levels of DNA
methylation in the CLLU1 gene were present in immu-
noglobulin heavy chain- (IGHV-) mutated (IGHV-M)
CLL and in normal B cells of IGHV-unmutated (IGHV-
UM) patients. High CLLU1 expression and the presence of
the IGHV-UM gene were associated with poor clinical
results [25, 28]. Yue et al. [24] used the GEO database to
construct a ceRNA regulatory network of HCC. CLLU1
was a key candidate lncRNA. It was upregulated in HCC
tissues and was significantly associated with the prognosis
of HCC patients.

Wang et al. [29] collected microarray data sets of 26
triple-negative breast cancer (TNBC) patients who re-
ceived neoadjuvant chemotherapy (NAC). Receiver op-
erating characteristic (ROC) analyses were performed on
DElncRNAs to evaluate their predictive value in patho-
logical complete response to NAC. .e results suggested
that BPESC1 was a marker with better prediction value.
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Figure 7: Correlation analysis of DEGs linear regression analysis between lncRNAs and mRNAs associated with overall survival. Linear
regression of BPESC1 (a–d), AC079341.1 (e–h), and AC061975.6 (i–k) versus related DEmRNA expression level (P< 0.05). .e red line
represents the linear model fitted by the dots in each figure. DEGs: differentially expressed genes.
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However, the function of BPESC1 has not been studied in
HCC and other tumors, and thus, an investigation should
be performed. In addition, there is little known about the
other 2 potential prognostic lncRNAs (AC061975.6 and
AC079341.1). .erefore, the functions of these potential
prognostic lncRNAs in HCC and other cancers should be
further studied and elucidated. Although there is currently
no direct evidence of their involvement in tumor devel-
opment, we found that BPESC1, AC061975.6, and
AC079341.1 were associated with the prognosis of patients
with stage I HCC.

In addition, Bai et al. [14] used the TCGA database to
construct a ceRNA regulatory network of HCC in a recent
study. .e KM curve analysis showed that 15 lncRNAs, 3

miRNAs, and 16 mRNAs at the nodes of the constructed
ceRNA network for HCC were significantly related to the
overall survival rate for HCC patients. In particular, for
these overall survival-related RNAs, high expression levels
of the lncRNA BPESC1 and the 5 mRNAs CEP55, E2F1,
EZH2, E2F7, and SLC7A11 were related to short survival
time, and the expression level of CLLU1 was positively
correlated with overall survival. .ese findings are con-
sistent with our conclusions. Our results indicated that the
lncRNAs AC061975.6 and AC079341.1 and the mRNA
G6PD were related to the overall survival, whereas these
RNAs were not detected by Bai et al., this discrepancy may
be mainly attributable to the construction of different
ceRNA networks for HCC with different clinical
characteristics.

5. Conclusions

In summary, through the analyses of related stage I HCC
data obtained from the TCGA database, the expression
profiles of lncRNAs, miRNAs, and mRNAs were obtained.
A lncRNA-miRNA-mRNA ceRNA network was success-
fully constructed. Six DEmRNAs and 4 DElncRNAs in-
volved in the ceRNA network that had prognostic value
were identified. BPESC1 was positively correlated with
mRNA CEP55 via miR-424, and AC061975.6 was positively
correlated with mRNA E2F1 via miR-519d. Some of these
have been reported as promising biomarkers for diagnosis
and prognosis.
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Figure 8: Flow chart of the bioinformatics analysis.

Table 4: .e list of DEmRNAs and DElncRNAs involved in the
ceRNA network associated with overall survival in patients with
stage I HCC.

Names Genes Regulation logFC
CEP55 mRNA Up 2.567
E2F1 mRNA Up 3.502
E2F7 mRNA Up 3.124
EZH2 mRNA Up 2.240
G6PD mRNA Up 2.180
SLC7A11 mRNA Up 4.165
AC061975.6 lncRNA Up 3.587
AC079341.1 lncRNA Up 3.097
CLLU1 lncRNA Up 3.610
BPESC1 lncRNA Up 2.876
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