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Introduction: Cell therapy has been widely considered as a therapeutic approach for 
neurodegenerative diseases and nervous system damage. Cholinergic neurons as one of the 
most important neurons that play a significant role in controlling emotions, mobility, and 
autonomic systems. In this study, Human Dental Pulp Stem Cells (hDPSCs) were differentiated 
into the cholinergic neurons by β-mercaptoethanol in the preinduction phase and also by the 
nerve growth factor (NGF) in the induction phase. 

Methods: The hDPSCs were evaluated for CD73, CD31, CD34, and Oct-4. Concentration-
time relationships for NGF were assessed by evaluating the viability rate of cells and the 
immune response to nestin, neurofilament 160, microtubule-associated protein-2, and choline 
acetyltransferase.

Results: The hDPSCs had a negative response to CD34 and CD31. The optimal dose for the 
NGF was 50 ng/mL seven days after the induction when the highest percentage of expressing 
markers for the Cholinergic neurons (ChAT) was detected.

Conclusion: The results of this study provided a method for producing cholinergic neurons 
by hDPSCs, which can be used in cytotherapy for degenerative diseases of the nervous system 
and also spinal cord injury.

Article info:
Received: 21 Oct 2018
First Revision: 10 Dec 2018
Accepted: 13 Jul 2019
Available Online: 01 Nov 2019

Keywords:
Dental pulp, Stem cells, 
Cholinergic neurons, 
Differentiation, Nerve 
growth factor

Citation: Darabi, Sh., Tiraihi, T., Nazm Bojnordi, M., Ghasemi Hamidabadi, H., Rezaei, N., & Zahiri, M., et al., Trans-Dif-
ferentiation of Human Dental Pulp Stem Cells Into Cholinergic-Like Neurons Via Nerve Growth Factor. Basic and Clinical 
Neuroscience, 10(6), 609-618. https://doi.org/10.32598/bcn.10.6.609

 :  https://doi.org/10.32598/bcn.10.6.609

Use your device to scan 
and read the article online

A B S T R A C T

http://bcn.iums.ac.ir/
https://orcid.org/0000-0002-9405-6640
https://orcid.org/0000-0001-7404-7010
https://orcid.org/0000-0003-1176-2417
https://orcid.org/0000-0002-2178-6503
https://orcid.org/0000-0003-1741-1909
https://orcid.org/0000-0003-2978-0349
https://orcid.org/0000-0002-3132-9904
mailto:sara_am57@yahoo.com
https://doi.org/10.32598/bcn.10.6.609
https://doi.org/10.32598/bcn.10.6.609
https://crossmark.crossref.org/dialog/?doi=10.32598/bcn.10.6.609


Basic and Clinical

610

November, December 2019, Volume 10, Number 6

1. Introduction

owadays, cell therapy is highly regarded as 
one of the therapeutic methods for nervous 
system injuries (Naghdi et al., 2009; Darabi 
et al., 2013). Different types of cells, such 
as embryonic stem cells (ESCs), adult stem 

cells, and umbilical cord stem cells have been studied for 
transplantation into the nervous system (Boncoraglio et 
al., 2010; Bojnordi et al., 2012). The cholinergic neurons 
are used for the treatment of motor neuron degeneration 
(Abdanipour et al., 2014; Bojnordi et al., 2013) and Al-
zheimer disease (Thonhoff et al., 2009).

In previous studies, cholinergic neurons have been 
generated from ESCs and induced Pluripotent Stem 
Cells (iPSCs). Because of the allogeneic, tumorigenic, 
and ethical problems, using other mesenchymal stem 
cells has been suggested. However, Bone Marrow Stro-
mal stem Cells (BMSCs) and Adipose-Derived Stem 
Cells (ADSCs) have been applied for neuronal differ-
entiation (Darvishi et al., 2017; Naghdi et al., 2013; 
Nizzardo et al., 2010; Ronaghi et al., 2010; Alizadeh 
et al., 2017). Interestingly, Human Dental Pulp Stem 
Cells (hDPSCs) have a high capacity to differentiate 
into neurons. It has shown that transplantation of the 
cholinergic neurons into animal models could increase 
the survival rate of laboratory animals (Lee et al., 
2014). Since the identification of hDPSCs by Gronthos 
et al., (2000), other researchers have investigated hDP-
SCs ability to differentiate into other cell lines (Karaöz 
et al., 2010; Arthur et al., 2008). Many studies have 
revealed DPSCs differentiation potential into neural 
cells in vitro (Kiraly et al., 2009; Chun et al., 2016). 

Moreover, after injection into the chicken and rat brain, 
hDPSCs can express neural markers and respond to 
brain neurotrophic factors (Király et al., 2011; Leong 
et al., 2012). Although in the neuronal culture medium, 
Mesenchymal Stem Cells (MSCs) are differentiated 
into neurons, astrocytes, and oligodendrocytes (Fu et 
al., 2008; Darabi et al., 2017; Alizadeh et al., 2017), 
their efficiency is very low and predictable. Recently, 
hDPSCs due to their embryonic origin have become a 
promising source for cell therapy (Fu et al., 2008).

The hDPSCs originate from neural crest cells and have 
neuronal specifications (Fu et al., 2008; Darabi et al., 
2017;  Alizadeh et al., 2015). They also are known as ec-
tomesenchymal cellsderived from the ectoderm around 
the neural tube and migrate to the areas within the tooth 
and dental pulp leading to a mesenchymal phenotype. 
MSCs are not rejected by the immune system and pres-
ent no ethical issues (Abbaszadeh et al., 2014; Haratiza-
deh et al., 2016). Therefore, these cells are suitable for 
cell therapy in nervous system diseases. In a study, due to 
the secretion of neuronal factors, Dental Pulp Stem Cells 
(DPSC) increased the survival of tyrosine hydroxylase 
neurons in the culture medium (Haratizadeh et al., 2016). 
In normal circumstances and without neural lineage in-
duction, hDPSCs could express some neuronal factors, 
such as nestin and Glial Fibrillary Acidic Protein (GFAP) 
at the level of genes and proteins (English et al., 2014). 

In the neural induction medium, hDPSCs can express 
the specific markers for post-mitotic mature neurons, 
like Neuronal Nuclear antigen (NeuN) (Le Blanc, 2006; 
Ronaghi et al., 2010). Although DPSC can become Neu-
ral-Like Cells (NLCs) in differentiation medium, it can-
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● Nerve growth factor increased differentiation of human dental pulp stem cells into cholinergic neurons.

● Human dental pulp stem cells were differentiated into the cholinergic neurons using βME.

● The optimal dose for nerve growth factor to induce cholinergic neural differentiation was 50 ng/mL.

Plain Language Summary 

Cell therapy is a therapeutic approach in neuroregenerative medicine. Cholinergic neurons have an essential role 
in emotions, mobility, and autonomic systems. Here, we used human dental pulp stem cells (hDPSCs) to produce 
cholinergic neurons using some growth factors, such as β-mercaptoethanol and nerve growth factor (NGF). We found 
that β-mercaptoethanol and NGF increased the differentiation of hDPSCs into cholinergic neurons. Also, the optimal 
dose for NGF to induce cholinergic neural differentiation was 50 ng/mL. The protocol of this study can be used in 
cytotherapy in degenerative diseases of the nervous system and spinal cord injury.
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not be differentiated completely (Bojnordi et al., 2018). 
In previous studies on DPSC differentiation, 5% of 
hDPSCs has differentiated into steroid cells expressing 
GFAP (Nosrat et al., 2004). In another study, about 53% 
of choline acetyltransferase (ChAT)-positive motor neu-
rons were generated from hDPSCs (Ellis et al., 2014). 

It seems that the hDPSCs can differentiate into specific 
subtypes of neurons under appropriate conditions. The 
current research aimed to create ChAT-positive cells 
from hDPSCs during two phases of preinduction and in-
duction by β-mercaptoethanol (βME) and Nerve Growth 
Factor (NGF), respectively. 

2. Methods 

2.1. Isolation and cultivation of hDPSCs

In this study, hDPSCs were isolated from the human 
third molar. Healthy teeth without cavities were collected 
from 18-25 years old patients referred to the dental clinic 
of the Mazandaran University of Medical Sciences. The 
informed consent was obtained from the participants, 
and the research was approved by the Human Ethics 
Committee of Mazandaran University of Medical Sci-
ences. Teeth were washed in Phosphate-Buffered Saline 
(PBS). To disinfect the teeth, iodine (povidone-iodine 
10%, Pejnan, Iran) was used for 5 min. Then, using a 
separator and surgery cutter, root and dentin were broken 
and pulp tissue was isolated by sterile forceps. Pulp tis-
sue digestions were done by scalpel and trypsin 0.25% 
(Gibco, USA). Pulp tissues with trypsin and DMEM/
F12 (Gibco-Life Technologies, Canada) were poured in 
a falcon tube and kept in an incubator for 5 min. In the 
next step, the falcon tube was centrifuged, the superna-
tant was removed and pulp tissues were transferred into 
cell culture flasks containing medium and incubated at 
37° C with 5% CO2 and 95% humidity. The cell culture 
flask was examined every 2-3 days. After 3-4 passages, 
hDPSCs were used (Gronthos et al., 2000).

2.2. Differentiation of hDPSCs into neurons 

For preinduction step, hDPSCs were seeded into 
6-well plates. After 24 h, 1 mM of βME (Sigma) was 
added into the wells and kept for 48 h. At the induction 
phase, the optimal dose of NGF (R & D Systems, USA) 
was evaluated using a dose-response (1, 25, 50, and 
100 ng/mL) and time-course (2 and 7 days) evaluation, 
in which the preinduced hDPSCs were incubated with 
this protocol. Morphological analysis of differentiating 
cells was assessed in different groups by an inverted 
microscope (Nikon, Eclipse-TS100), dimethylthiazolyl 

diphenyl tetrazolium bromide (MTT) assay, and immu-
nocytochemistry technique. 

2.3. MTT assay

To achieve the optimal dose of NGF, the viability of 
hDPSCs, preinduced, and induced cells were assessed 
by MTT assay. Briefly, the 96-well plates were incubated 
with MTT (5 mg/mL in PBS, Sigma-Aldrich) for 3 h at 
37 º С. Formazan insoluble crystals were then solved in 
dimethyl sulfoxide (DMSO, Sigma). The absorbance of 
formazan products was determined by the ELISA plate 
reader (Bio Tek, USA) at 570 nm (Fu et al., 2008).

2.4. Immunocytochemistry

After the third passage, hDPSCs were assessed for Oct-
4 (a pluripotency stem cell marker), CD73 (mesenchymal 
stromal cell marker), CD31 (endothelial cell marker), and 
CD34 (hematopoietic stem cells marker) by immunocy-
tochemical assessment. Immunocytochemistry technique 
evaluated immunoreaction of hDPSCs, preinduced, and 
induced cells to nestin, neurofilament 160 (NF160), mi-
crotubule-associated protein 2 (MAP2), and ChAT.

Cells were washed three times with PBS for 5 min and 
then fixed in 4% paraformaldehyde (Sigma-Aldrich) for 
15 min. Next, they were rewashed with PBS. In the next 
step, the cells were permeabilized with 1% Triton X-100 
(Sigma-Aldrich) for 30 min and blocked with bovine 
serum albumin (Sigma-Aldrich) for 45 min. The cells 
were incubated with the rabbit anti-mouse secondary an-
tibody conjugated with FITC (1:100; Millipore) for 2 h 
at room temperature. The cells were then rinsed twice in 
PBS for 15 min and counterstained with propidium io-
dide to visualize the nuclei. They were rewashed in PBS 
and examined using a fluorescence microscope (Nikon, 
Eclipse-TE600, Japan). All antibodies were prepared in 
mouse, and the following dilutions were used as follows: 
mouse anti-CD31 monoclonal antibody (1:200; Milli-
pore), mouse anti-CD73 monoclonal antibody (1:300; 
Millipore), mouse anti-CD34 monoclonal antibody 
(1:300; Millipore), mouse anti-Oct4 monoclonal anti-
body (1:400), mouse anti-nestin monoclonal antibody 
(1:300; Millipore), mouse anti-neurofilament 160 kDa 
(anti-NF160) monoclonal antibody (1:300; Millipore), 
mouse anti-MAP2 monoclonal antibody (1:500, Abcam 
system), and mouse anti-ChAT monoclonal antibody 
(1:500; Abcam system). 

The number of immunopositive cells for neuronal 
markers was obtained using the captures of immunos-
tained cultures, counted, and then divided by the total 
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number of cells (propidium iodide-stained cells) in at 
least five random nonoverlapping selected fields, where 
500 cells were counted in three independent cultures. 
The results were expressed as Mean±SD.

2.5. Statistical analysis

One-way Analysis of Variance (ANOVA) and Tukey’s 
posthoc test were used for data analysis in SPSS V. 13.0. 
P-values of less than 0.05 were considered significant.

3. Results

3.1. hDPSCs culture and characterization

After enzymatic digestion, hDPSCs were plated onto a 
T25 culture flask. The cells were attached to the bottom 
of the flask and had a uniform population of fibroblast-
like cell bodies and appendages. hDPSCs were strongly 
positive for Oct-4 as a stem cell pluripotency marker and 
CD73 as a mesenchymal stromal cell marker. However, 
they were negative for CD31 as an endothelial cell marker 
and CD34 as a hematopoietic stem cell marker (Figure 1).

3.1. hDPSCs differentiation

To find out the optimal dose and induction time of 
NGF, the preinduced cells were exposed to various con-
centrations of NGF (1, 25, 50, and 100 ng/mL) for 7 
days (Figure 2). Then, the cell viability was investigated 
7 days after NGF treatment. The results of the MTT as-
say showed that the viability of the cells at 100 ng/mL 
concentration was significantly lower than other doses 
(P<0.05) (Figure 2). 

Before hDPSCs induction, they expressed nestin 
(neural stem cells [NSCs] marker) by less than 10% 
(P<0.05). They also expressed other neuronal markers, 
such as NF160 (a neuronal intermediate filament mark-
er), microtubule-associated protein 2 (MAP2a marker 
for neuronal differentiation), and ChAT (a cholinergic 
neuron marker) by less than 1% (Figure 2). Following 
preinduction with βME, the expression rate of nestin, 
NF160, MAP2, and ChAT increased (P<0.05; Figure 3). 

The differentiation of hDPSCs into ChAT-positive cells 
was optimized at 50 ng/mL of NGF at the end of the 
seventh day (Figure 3) when the viability was recorded 

Figure 1. Immunostaining of cultured hDPSCs

A, B, C, and D. represent immunostaining of Oct-4, CD73, CD31, and CD34, respectively. hDPSCs were immunolabeled with 
the primary antibody, incubated with FITC-conjugated secondary antibody, and counter-stained using propidium iodide 
(Scale bars: 50 μm). 

hDPSCs: Human Dental Pulp Stem Cells
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about 77.7% (Figure 2). On the seventh day of the induc-
tion phase, the expression rate of ChAT-positive cells in-
creased to 71.66% compared with preinduction phase 
and the second day of induction, which was in favor of 
differentiation into cholinergic neurons (P<0.05; Fig-
ure 3). This result showed a significant difference in 
differentiation into cholinergic neurons.

The percentages of the induced cells were 21.66%, 
78.81%, and 71.66% for nestin, NF160, MAP2, and 

ChAT, respectively (Figure 4). On the second and sev-
enth days of induction, the cells were stained with cre-
syl fast violet, which showed the neural phenotype of 
the induced cells (Figure 4).

4. Discussion

Given the limited number of endogenous NSCs (Shi 
et al., 2011; Chang et al., 2014) and the inability of the 
central nervous system to repair, the generated cells 

Figure 2. A histogram indicating the dose-response experiment 

The dose-response human dental pulp stem cells-derived cholinergic-like neurons viability at different concentrations of NGF 
(1, 25, 50, and 100 ng/mL) after 7 days detected by MTT assay. Each column represents the average measurement from five 
replicates. The asterisk shows significant differences compared with the other groups (P<0.05).

NGF: Nerve Growth Factor; MTT: Dimethylthiazolyl Diphenyl Tetrazolium Bromide

Figure 3. Histogram of the mean percentages of the immunoreactive cells to nestin 

NF160, MAP2, and ChAT (Hatched lines pattern, chessboard pattern, white and black solid columns, respectively) of the 
hDPSCs, preinduced, and induced cells with 50 ng of NGF using the time-course evaluation (2 and 7 days). The asterisk shows 
significant differences compared with the control group (hDPSCs) with the same antibody (P<0.05). 

hDPSCs: Human Dental Pulp Stem Cells; NF 160: Neurofilament 160; MAP2: Microtubule-Associated Protein 2 

Darabi, Sh., et al., (2019). Neurodifferentiation of Dental Stem Cells Via Nerve Growth Factor. BCN, 10(6), 609-618.

http://bcn.iums.ac.ir/


Basic and Clinical

614

November, December 2019, Volume 10, Number 6

can be a feasible source for replacement therapy (Shi 
et al., 2011; Chang et al., 2014; Sheng 2001; Moayeri 
et al., 2017, Chai et al., 2000). Two preinduction meth-
ods have been proposed to improve the differentiation 
process. The NF68 and nestin are expressed in the early 
stages of neuron differentiation, followed by MAP2 and 
NF160 (Carden et al., 1987). The results of using the 
βME in preinduction indicated that in this stage, the cells 
are neuroblasts (Naghdi et al., 2009; Lariviere, 2004). 
The MAP2 marker is located on both sides of the pre-
synapse and postsynapse (Kitamura et al., 2007). The 
MAP2 expression profiles in preinduction indicated that 
the cells were not fully differentiated in this stage (Chiu 
et al., 1995) and were immature. The MAP2 and ChAT 
expression pattern, which were expressed significantly 
lower in the preinduction compared with the induction 
stage, is indicative of differentiation toward cholinergic-
like neurons. The majority of neurons reduce the expres-
sion of the nestin during differentiation and maturation 
and increase the expression of neuronal markers, such 
as MAP2 and ChAT (Lu et al., 2004). Hung et al., found 
that induction of the BMSCs into a neuronal phenotype 
by βME is not stable (Aloe et al., 1986), and after a 
while, the cells revert to their original status. 

However, in this study, the NGF was used as an in-
ductor after 48 h of preinduction by βME. The expres-
sion levels of the ChAT reached from 10% in the prein-
duction to about 72% in the induction phase. However, 
the NGF is a strong neuronal protective, which can 

protect the cell damages against the βME. On the other 
hand, the βME prevents neurons from oxidative stress 
by increasing the levels of reduced glutathione, which 
in turn, increases the ChAT activity and growth of neu-
ronal redundancies (Ni, Wen, Peng, & Jonakait, 2001). 
In an in vivo study, it was observed that the NGF en-
hanced expression of genes regulating the secretion of 
acetylcholine (Aloe et al., 1986).

After the third passage, the hDPSCs develop a fibro-
blast-like morphology. Immunohistochemical studies 
have shown that isolated cells are negative for hemato-
poietic cell markers (CD45/CD34) and CD106. These 
findings are consistent with the results of other studies 
(Hung et al., 2002). Several studies have demonstrated 
the role of hDPSCs in the healing of spinal cord injury 
(Nosrat et al., 2004; Ellis et al., 2014; Shi et al., 2011).

hDPSCs secrete NGF, glial cell-derived neurotrophic 
Factor (GDNF), Brain-Derived Neurotrophic Factor 
(BDNF), and BMP2 neurotrophic factors in the me-
dium, which increase the lifespan of cells.

In another study, hDPSCs were transplanted to a rat 
model with severe spinal cord injury, and it was reported 
that hDPSCs increased axon growth by preventing apop-
tosis of neurons, astrocytes, and oligodendrocytes (de Al-
meida et al., 2011). 

Figure 4. Photomicrographs of hDPSCs for specific neural markers 

A, B, C, D, E, and F. Represent the third passage, nestin, NF160, MAP2, ChAT, and cresyl violet staining, respectively. Nuclei 
were counterstained with propidium iodide (Scale bars: 50 μm).

hDPSCs: Human Dental Pulp Stem Cells; NF 160: Neurofilament 160; MAP2: Microtubule-Associated Protein 2
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Exposure of hDPSCs to epidermal growth factor, basic 
fibroblast growth factor, and retinoic acid (Arthur et al., 
2008) or forskolin (Kiraly et al., 2011), resulted in their 
differentiation into neural cells and expressed neuronal 
markers (Arthur et al., 2008). By injection of differentiated 
hDPSCs into the cerebrospinal fluid of rats, they integrat-
ed into the damaged brain parenchyma and survived for 4 
weeks, where they expressed neuronal markers, including 
NeuN (Haratizadeh et al., 2016). The hDPSCs secrete the 
Vascular Endothelial Growth Factor (VEGF) and Plate-
let-Derived Growth Factor (PDGF) (Nosrat et al., 2004; 
Mead et al., 2014). The NGF plays a vital role in axons 
and neurons growth, whereas the BDNF and PDGF are 
essential factors for neuroprotection (Mead et al., 2014).

Based on transplantation studies, injection of hDPSCs 
into the healthy brain can stimulate the migration and pro-
liferation of endogenous NSCs and increases the expres-
sion of the ciliary neurotrophic factor, VEGF, and FGF 
in the transplanted site (Hung et al., 2002). Although the 
graft has a very short lifespan, this study showed that the 
hDPSCs affect the adjacent cells through factors. 

5. Conclusion

In an experimental model of Parkinson disease, hDPSCs 
were cultured and transplanted into experimental model 
of Parkinson. The death rate of neurons and cytotoxicity 
declined due to the expression of the NGF, GDNF, and 
BDNF by the hDPSCs (Leong et al., 2012). After the 
hDPSCs injection in the spinal cord injury, these cells did 
not differentiate into neurons but increased the lifespan of 
neurons and glia in the injury site and its surrounding en-
vironment (Sakai et al., 2012). Axons in the spinal cord 
injury grew underneath the lesion site in addition to re-
pair the scar. This axonal growth was accompanied by im-
proved motor function after the hDPSCs injection, which 
was more than other cells, such as the BMSCs and ADSCs 
(Soundararajan et al., 2007; Wichterle et al., 2002; Taka-
hashi et al., 1999; Karaöz et al., 2011). The results of this 
study showed that using NGF, as an inducer, hDPSCs can 
differentiate into cholinergic neurons, which can be used 
for cytotherapy in degenerative diseases of the nervous sys-
tem and spinal cord injury.
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