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Simple Summary: TP53 mutations are seen in 5–10% of de novo MDS and AML, but 25–40% of
therapy-related MDS and AML. Despite the addition of recent drugs to the common regimen and
improvement of post transplantation survival, these particular myeloid malignancy subtypes remain
a challenge for hematologists around the globe. In this article, we aim at reviewing the biology and
most recent advances in the treatment of TP53 MDS and AML.

Abstract: TP53-mutated acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are
among the myeloid malignancies with the poorest prognosis. In this review, we analyze the prognosis
of these two diseases, focussing particularly on the extent of the mono or biallelic mutation status
of TP53 mutation, which is largely correlated with cytogenetic complexity. We discuss the possi-
ble/potential improvement in outcome based on recent results obtained with new drugs (especially
eprenetapopt and magrolimab). We also focus on the impact of allogeneic hematopoietic stem cell
transplantation (aHSCT) including post aHSCT treatment.
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1. Introduction

Tumor protein p53 (TP53), a tumor suppressor gene, is the most frequently mutated
gene in cancer [1]. TP53 is the “guardian of the genome” via several functions such as
regulation of metabolic functions, apoptotic pathways, cellular senescence, and DNA re-
pair [2]. Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML) with
TP53 mutation generally have poor prognosis, almost irrespective of the treatment adminis-
tered, including after allogeneic Hematopoietic Stem Cell Transplantation (aHSCT). Due to
their specific characteristics, experts in the fields have recently argued that TP53-mutated
AML/MDS require special consideration [3–5].

2. Landscape of TP53 Mutations

An analysis of the TP53 whole coding sequence found that about 85% of mutations
were clustered between codons 125 and 300, which is the location of the DNA-binding
domain. The mutation types are mostly missense (90%). Outside this region, the majority
of mutations are nonsense or frameshift.

Hotspot mutations are localized in the DNA-binding domain and R175H is one of
the most frequent hotspot mutants [6]. The majority of TP53 mutations have an impact
on protein structure and are classified as “contact” (R248 and R273) or “structural” (R175,
G245, R249, and R282) [7]. These mutations are associated with a loss of function.

In its target genes p53 also modulate transcription by interfering with so called re-
sponse elements (REs) in the promoters or introns [8]. As a consequence, a loss of function
has been reported in all the mutants.
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Finally, several hotspot mutants have been shown to impact cellular transformation [9],
defining gain-of-function (GOF) mutations. Mutant p53 proteins may also exert dominant–
negative effects (DNE) over wild-type p53.

3. TP53 Mutations in AML and MDS

TP53 mutations are seen in 5–10% of de novo MDS and AML patients, 25–40% of
therapy-related MDS and AML patients [10,11], and 50% of patients with a complex
karyotype [12]. Complex karyotypes are usually monosomal, very frequently include 5q
deletion, and generally include 17p deletion, the latter being sometimes difficult to detect
in complex cytogenetic rearrangements. They largely predominate in elderly patients [13].
In these patients, TP53 mutation is generally biallelic, with the loss of one allele and the
mutation of the remaining one. TP53 mutation is however also seen in about 20% of low
risk MDS patients with 5q deletion, where it is generally monoallelic. This MDS subset
predominates in females, and the median age is lower than that of AML or MDS with a
complex karyotype and biallelic TP53 mutation.

As in other cancers, the majority of TP53 mutations in AML and MDS, are missense and
localized in the DNA-binding domain [14]. It is unclear if the deleterious effect is only due
to loss of function (especially in case of biallelic mutation) [15], or could include dominant
negative effect or gain of function. TP53 mutations usually confer a poor prognosis in MDS
and AML [16]. This is especially the case for biallelic mutations, generally corresponding,
as mentioned above, to mutations of one allele and loss of the other through 17 deletion, in
complex monosomal karyotypes. Monoallelic mutations, generally corresponding to point
mutation have less impact on outcome. Nevertheless, in the case of MDS with no excess of
blasts, where it occurs in 20–25% of the cases, monoallelic TP53 mutation is associated with
a poorer response to treatment and survival [13,17].

4. Treatment of AML and MDS with TP53 Mutation by Intensive Chemotherapy

In AML, eligibility for classical intensive chemotherapy (IC), generally with an anthra-
cycline and cytosine arabinoside (AraC) [16], is mainly based on age and comorbidities.
However, it also includes disease characteristics such as cytogenetic complexity and com-
plex karyotypes, especially monosomal karyotypes, which are associated with poorer
complete response (CR) rates, and very short responses [18–24].

In patients with a complex karyotype, those with TP53 mutations appear to respond
particularly poorly. Their outcome is not improved, contrary to some other types of AML,
by the addition of the CD33 inhibitor gemtuzumab [25,26], by the use of encapsulated
anthracycline-AraC molecules (CPX 351), the addition of lomustine, or by maintenance
treatment with CC486 [21,22,25,27–33]. In TP53-mutated AML patients who achieve CR
with IC, allo SCT is therefore recommended whenever possible, but is associated with a
high relapse risk in this situation, as shown below (Table 1).

Table 1. Outcome of TP53-mutated myeloid malignancies patients treated with intensive chemother-
apy. CR: Complete Remission, EFS: Event Free Survival, OS: Overall Survival.

Regimen Demographics CR EFS OS References

Cytarabine + anthracycline
(7 + 3) and CPX 351 18–85 y/o 28–48% 3 years EFS 1–6% 3 years OS 3–8% [16,18–33]

MDS, in general, are not treated with IC, with the exception of some candidates to allo
SCT, in order to reduce the blast infiltration before transplant. Response to IC is mainly
observed in the absence of a complex karyotype, which most TP53-mutated patients carry,
as described above.
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5. Hypomethylating Agents (HMA) Alone

A HMA alone has been used in the treatment of AML until recently and is now
considered unfit for IC (based on age, comorbidities and/or the presence of a complex
karyotype), while in MDS it remains the reference treatment in most higher risk cases. In
AML, Azacitidine (AZA) yields response rates of 30 to 35% including about 30% of CR/CR
with incomplete blood count recovery (CRi) [34], Decitabine (DAC) response rates of about
20% including 13% CR/CRi [28], and both drugs yield a median overall survival (OS)
of about 10.5 months, which may be better than that obtained with low dose cytarabine,
especially in patients with a complex karyotype. In higher risk MDS, median OS with AZA
or DAC ranges from 18 to 24 months [35].

In TP53-mutated AML patients, AZA was shown to yield a 20–30% CR rate and a median
OS at 7 months [36]; and DAC a 20–30% CR rate and a median OS of 6–12 months [37–40].

Using a 10-day regimen of DAC was shown to improve the outcome in one study,
although this result was disputed [37].

Furthermore, TP53 mutation has an unfavorable impact on the outcome of higher-risk
MDS treated with AZA, with lower response rates but, more importantly, shorter response
duration and a median OS of 12.4 months [41] (Table 2).

Table 2. Outcome of TP53-mutated myeloid malignancy patients treated with hypomethymating
agents. CR: Complete Remission, EFS: Event Free Survival, OS: Overall Survival.

Regimen Demographics CR EFS OS References

Azacitidine 20–91 y/o 20–40% Not available Median OS: 7 months [34–36,41]

Decitabine 47–90 y/o 30% Median EFS: 6 months Median OS: 2.1–7 months [28,35,37–40]

6. HMA in Combination with Other Drugs in AML and MDS with TP53 Mutation

The combination of AZA and Venetoclax is superior to AZA alone in AML in the
elderly as a whole but also for patients with comorbidities who are not eligible for intensive
treatment. It has become the reference treatment of AML in this group, and combinations
with other agents have also been tested. However, in higher-risk MDS no combination has
so far demonstrated a benefit over AZA or DAC alone in a phase 3 trial, but a recent phase
1/2 trial reported encouraging results on the combination of AZA and venetoclax [42]
(Table 3).

Table 3. Outcome of TP53-mutated myeloid malignancy patients treated with a combination of
hypomethymating agents. CR: Complete Remission, CRi: Complete Remission with Incomplete
count recovery, EFS: Event Free Survival, OS: Overall Survival.

Regimen Demographics CR/CRi EFS OS References

Azacitidine + venetoclax OR
Decitabine + venetoclax 22–86 y/o 43–67% Median EFS:

6–7 months
Median OS:
5–7 months [42–46]

Azacitidine + eprenetapopt 34–87 y/o 44% Not available Median OS:
11 months [47,48]

Azacitidine + magrolimab Median age 72 y/o 45% CR, 14% CRi Not available Median OS:
12.9 months [49]

6.1. HMA + Venetoclax

AZA combined with venetoclax (VEN) has become the standard of care for AML
patients ineligible for IC, based on its superiority over AZA alone [43]. In TP53-mutated
AML patients, while an increase of ORR was observed with HMA + VEN (55% vs. 0%
in patients treated by AZA alone), responses were short with these combinations, and no
significant OS benefit was observed (median OS was 6 months independent of treatment
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arm) [44–46]. In high-risk MDS patients, a recent phase 1/2 trial reported that the combi-
nation of AZA + VEN was safe, and demonstrated encouraging results in this group of
patients [42]. Therefore, HMA + VEN may be a useful combination to bridge a patient to
allo SCT, but is insufficient in itself.

6.2. Azacitidine + Eprenetapopt

Eprenetapopt (APR-246) is a small molecule and its mechanism of action has not
been completely elucidated. It has been shown to selectively induce apoptosis of TP53-
mutant cancer cells. After conversion to methylene quinuclidinone (MQ), it covalently
binds to mutant p53 to restore wild-type conformation, resulting in cell cycle arrest and
apoptosis [50]. Aside from this mechanism, it may induce depletion in glutathione (GSH),
increase oxidative stress [51–54], and induce ferroptosis [55]. Several preclinical and clinical
studies have reported a synergistic effect with AZA [56].

These early observations have led to two clinical trials, conducted in the US and France,
to assess the efficacy and safety of a combination of AZA + eprenetapopt in intermediate,
high, and very-high IPSS-R risk myeloid malignancies (AML and MDS) (only 20 to 30% of
blasts in the US trial) [47,48].

The US phase 2 trial enrolled fifty-five patients (40 MDS/11 AML) with a median age
of 66 years. The Overall Response Rate (ORR) was 71% with a CR rate of 44%, with 38%
undetectable TP53 measurable residual disease (Next Generation Sequencing (NGS)) with
TP53 NGS negativity. Median CR duration was 7.3 months; with a median follow up of
10.5 months, median OS was 10.8 months.

In the French phase 2 trial, fifty-two patients (34 MDS/18 AML) with a median age of
74 years were enrolled. The ORR was 58%, with a CR rate of 37% and an undetectable TP53
measurable residual disease (MRD) of 30% (NGS). Median CR duration was 11.7 months;
with a median follow up of 9.7 months, median OS was 12.1 months.

Regarding safety, no additional hematological toxicity was reported compared to
azacitidine alone, however, neurological side effects including ataxia, cognitive impairment,
acute confusion, isolated dizziness, and facial paresthesia were reported in 40% of patients
(6% were grade 3 or 4, and all were fully reversible without recurrence after dose reduction).

Patients with TP53-mutated MDS fared better than AML patients (for AML patients, a
phase 1 study evaluating a combination of AZA + VEN + eprenetapopt in TP53-mutated
AML is ongoing (clinicaltrials.gov NCT: NCT04214860)).

Based on the results of these phase 2 trials, a phase 3 randomized clinical trial was
conducted to compare AZA + eprenetapopt to AZA monotherapy in TP53 MDS patients
(clinicaltrials.gov NCT: NCT03745716). The results did not demonstrate superiority for the
combination when compared to azacitidine alone. Despite these results, eprenetapopt is
now being investigated in the transplant setting, especially to decrease the tumor burden
before and after transplant by providing a significant reduction in MRD.

6.3. Azacitidine + Magrolimab

Magrolimab (MAGRO) is a first-in-class investigational monoclonal antibody against
CD47 and a macrophage checkpoint inhibitor that is designed to interfere with the recog-
nition of CD47 by the SIRPα receptor on macrophages, thus blocking the “don’t eat me”
signal used by cancer cells to avoid being ingested by macrophages. Overexpression
of CD47 is an adverse prognostic factor and could be a therapeutic antibody target on
human acute myeloid leukemia stem cells. CD47 blockade induces tumor phagocytosis
and eliminates leukemia stem cells in AML models [57]. AZA has been shown to both
increase expression of CD47 and the pro-phagocytic signal calreticulin in myeloid malig-
nancies. AZA synergizes with MAGRO by inducing “eat me” signals on AML, to enhance
phagocytosis [58].

In a phase 1b trial of AZA + MAGRO in AML patients, where the MAGRO schedule
was 30 mg/kg IV weekly or Q2W associated to AZA 75 mg/m2/d days 1–7 on 28-day
cycles, results for 64 patients were reported. The ORR was 63% including 42% CR and 12%
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CRi. Forty-five percent of patients obtained a complete cytogenetic response (CCR) and
35% obtained MRD negativity. The median duration of response was 9.6 months.

The study population was enriched with TP53-mutated patients (29/43 (67%)), whose
ORR was 69% including 45% CR and 14% CRi, with a median duration of response of
7.6 months, 44% of CCR, and 29% MRD negativity, and a median OS of 12.9 months
(vs. 18.9 months in TP53 wild-type patients) [49].

A phase 3 clinical trial evaluating AZA + VEN vs. AZA + MAGRO in TP53-mutated AML
(clinicaltrials.gov NCT04778397) and a phase 1/2 study evaluating AZA + VEN + MAGRO
(clinicaltrials.gov NCT04435691) are currently enrolling.

6.4. AZA+ Sabatolimab

Sabatolimab is a T-cell immunoglobulin and mucin domain-containing protein 3
(TIM3) inhibitor. TIM3 is a member of the TIM family, that was originally identified as
a receptor expressed on T cells. Recent data have demonstrated that TIM3 works as a
co-inhibitory receptor (checkpoint receptor), exhibited by dysfunctional or ‘exhausted’
T cells. Sabatolimab was tested in combination with HMAs in AML and higher-risk
MDS. Preliminary results of AZA + sabatolimab trial, presented at the EHA (European
Hematology Association) 2021 meeting suggested promising results in a limited number
of TP53-mutated patients, with an ORR of 71.4% including 28.6% CR, and 14.3% marrow
CR [59].

7. New Combinations Needing Investigation

Due to the high frequency of TP53 mutations in cancer, and their resulting poor
prognosis, many drugs are being tested in vitro for their ability to inhibit mutated p53,
reconform it, and/or activate some of its targets.

Drugs already used in other diseases may be particularly interesting to develop in
TP53-mutated AML and MDS.

As an example, Chen et al. recently showed that Arsenic Trioxyde (ATO) rescues
structural p53 mutations through a cryptic allosteric site [60].

Sixty percent of TP53 mutations are conformational in MDS and AML and could
be restored by ATO. The Groupe Francais des Myelodysplasies (GFM) obtained a 19%
response rate with ATO in MDS. Roboz et al. [61] reported 34% CR in AML with the
combination of low dose aracytine and ATO (including 30% in secondary or therapy related
AML and 30% in patients with unfavorable cytogenetics). However, no analysis of TP53
mutation was carried out in either study. Combinations of AZA + ATO (+/− VEN) warrant
evaluation in AML and MDS with TP53 mutation.

Other drugs aiming specifically at mutated TP53 are being developed. ReACp53, a
cell-penetrating peptide, designed to inhibit p53 amyloid formation, has shown rescue
p53 function in cancer cell lines and in organoids, and is in evaluation in some solid
TP53-mutated cancers [62]. COTI-2, a novel thiosemicarbazone derivative, normalized
wild-type p53 target gene expression and restored DNA-binding properties to the p53-
mutant protein [63]. Niclosamide, an anthelmintic drug, inhibited ASAP2, a member of the
ArfGAP family, which is overexpressed in pancreatic ductal adenocarcinoma characterized
by four main driver genes KRAS, TP53, CDKN2A, and SMAD4. Niclosamide was able
to bypass the effect of TP53 mutations in other models and need to be explored [64].
Other drugs in development for solid cancers could be also interesting such as Ataxia
Telangiectasia Mutated (ATM) inhibitors, ataxia telangiectasia mutated, and Rad3-related
(ATR) inhibitors. The Rad3 gene is required for cell viability and excision repair of damaged
DNA, and is also called the FRAP-related protein 1 (FRA 1). ATR is encoded in humans
by the ATR gene. Furthermore, Wee1 inhibitors and Checkpoint kinase (CHK) inhibitors
may be potential candidates [65–67]. Wee 1 kinase is gatekeeper of the G2-M cell cycle
checkpoint that allows DNA repair before mitotic entry. Targeting Wee 1 for inhibition
potentiates chemotherapy because Wee 1 is highly expressed and active in several cancer
types that are dependent on a functional G2-M checkpoint for DNA repair. More recently,
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investigational bispecific dual-affinity retargeting antibody flotetuzumab was assessed
in patients with relapsed refractory AML. Seven out of 15 patients achieved complete
remission and a median overall survival of 10.3 months [68]. These results emphasized the
central role of immunotherapy in this highly chemoresistant AML subtype.

8. Allogeneic Stem Cell Transplantation

Allogeneic stem cell transplantation (aHSCT) remains the only curative option for
patients with TP53-mutated AML or MDS. However, the presence of the TP53 mutation in
AML or MDS is associated with a high risk of relapse pretransplant, and is the main cause
of death following transplantation (Table 4). A retrospective analysis of 30 patients who
underwent aHSCT for AML (n = 19) or MDS (n = 11) with chromosome 17 abnormalities,
reported a poor outcome for patients with the TP53 mutation [69]. Patients experienced
short relapse-free survival, with a median relapse-free survival of 6- and 4-months post-
transplant for the AML and MDS patients, respectively, (p > 0.5). The non-relapse mortality
(NRM) was 10.6% (2/19 patients) and 9.1% (1/11 patients) for AML and MDS patients,
respectively, (p > 0.5). The median overall survival post-transplant was 18 months for
AML and 11 months for MDS patients respectively (p > 0.5). In a recent retrospective
report from the European Society for Blood and Marrow Transplantation (EBMT), the
relapse rate for patients with a 17p abnormality was as high as 61% at 2 years [70]. The
subsequent 2 year OS and leukemia free survival (LFS) were 28 and 24%, respectively.
The study enrolled 125 AML patients carrying a 17p abnormality who received an aHSCT
in CR1. In multivariate analysis only, the presence of a −5/5q- in addition to abn (17p)
was significantly and independently associated with worse OS, LFS, and higher relapse
incidence. The type of conditioning was not significantly associated with the outcome. An
American retrospective study by the Center for International Blood and Marrow Transplant
Research (CIBMTR) confirmed these results in a cohort of 1514 patients transplanted for
MDS [71]. In this cohort, 289 patients had TP53 mutations. In a multivariate analysis,
TP53 mutations were associated with shorter survival and a shorter time to relapse. The
3 years OS was 20% and the median OS was 0.7 years. In this study, a TP53 variant
allele fraction (VAF) of 10% or higher was not significantly associated with survival and
neither was the presence of multiple TP53 mutations. Interestingly, another study found
the mutation type had an impact on transplant outcome. Indeed, patients with only
truncating mutations had shorter survival than patients exhibiting missense mutations.
Another study identified the TP53 allelic state as an independent prognostic factor for
TP53-mutated AML patients following aHSCT [12]. In this retrospective cohort analysis of
36 patients with TP53, the authors showed a trend for longer overall survival in monoallelic
patients as compared to multi-hit patients following HSCT. These results emphasized the
importance of analyzing the TP53 state in future transplantation studies. In an attempt to
identify different prognostic factors in TP53-mutated AML transplanted patients, biological
samples of a cohort of 83 consecutive patients transplanted for TP53 AML or MDS at a
single center were analyzed between February 2011 and March 2017 [72]. The median age
was 60 years. In this study, 71% of the patients received a myeloablative conditioning, and
59% of the grafts were peripheral blood stem cells. Of note, 16% of the patients received
subcutaneous azacitidine maintenance following HSCT. A multivariate analysis showed
the melphalan-based regimen (hazard ratio [HR], 6.5; 95% CI, 2.1–20; p = 0.001), Karnofski
Performans Status (KPS) ≤80% (HR, 2.8; 95% CI, 0.96–8; p = 0.06), and treatment-related
AML/MDS (HR, 4.2; 95% CI, 1.5–12; p = 0.007). Regarding overall survival predictive
factors, HCT-CI > 4 (HR, 3.9; 95% CI, 1.2–13; p = 0.03), KPS ≤80% (HR, 3.04; 95% CI, 1.6–5.9;
p = 0.001), and disease not in CR1/2 (HR, 4.1; 95% CI, 1.5–11; p = 0.004) were associated
with worse OS. In this study, azacitidine maintenance did not affect the patient’s outcome.
The study also reports better progression-free survival for patients receiving higher doses
of busulfan, emphasizing the need to reduce the leukemic-cell burden before transplant.
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Table 4. Outcome of TP53-mutated myeloid malignancy patients after allogeneic stem cell trans-
plantation. AML: Acute Myeloid Leukemia, CR: Complete Remission, EFS: Event Free Survival,
MAC: Myeloablative Conditioning, MDS, Myelodysplastic Syndrome, OS: Overall Survival, PFS:
Progression Free Survival, RIC: Reduced Intensity Conditioning.

Pathology N Conditioning RFS OS NRM Reference

AML (62%)/MDS
(38%) with 17p
abnormalities

30 RIC (63%)/
MAC (37%)

Median RFS:
6 months (AML)

–4 months (MDS)

Median OS:
18 months (AML)

–11 months (MDS)

9.1% (MDS)
–10.6% (AML) [67]

AML with 17p
abnormalities 139 RIC (59%)/

MAC (41%) 2 years LFS: 24% 2 years OS: 28% 2 years
NRM: 15% [68]

TP53 mut MDS 289 RIC/MAC Not available
3 years OS: 20%

Median OS:
8 months

2 years
NRM: 35% [69]

TP53 mut
AML/MDS 83 RIC (29%)/

MAC (79%)

1 year PFS: 25%
Median PFS:

5 months

1 year OS: 35%
Median OS:

8 months
1 year NRM: 20% [70]

It has been previously shown that MRD negativity at transplant correlates with a better
post-transplant outcome [73]. A retrospective analysis from the Moffitt Cancer Center on
47 patients who received an aHSCT for TP53 mut MDS/AML, reported that patients who
achieved a clearance of the TP53 mutation (NGS) at the time of aHSCT after receiving HMA
treatment, had a significantly better OS than those who did not achieve clearance (median
OS of 21.73 months vs. 6.44 months, p = 0.042) [74]. In the pre-transplant setting, the
addition of eprenetapopt to demethylating agents offers more efficient treatment options
to these usually chemoresistant AML subsets. As presented above, in a phase Ib/II trial,
eprenetapopt combined with azacitidine yielded complete remission, including complete
molecular remission [41]. In this study 40% of the patients proceeded to aHSCT. The median
time to aHSCT was 5.6 months (range, 1.7–9.7 months). The good complete response rate
did not translate into an improved survival rate after aHSCT, as the median OS for patients
who were bridged to aHSCT was 14.7 months (95% CI, 8.6 to 20.9). Moreover, in this
study, aHSCT was not significantly associated with survival (hazard ratio, 1.01; p = 0.98).
However, a subgroups analysis revealed several factors that may influence the outcome
of TP53 AML patients treated with a combination of azacitidine and eprenetapopt. The
number of cycles patients received before transplant impacted aHSCT survival. Indeed, OS
was significantly better in the group of patients receiving at least four cycles of combination
therapy prior to aHSCT compared with those who received less (16.1 months; 95% CI,
10.4 to not reported [NR] v 9.3 months; 95% CI, 8 to NR months, respectively; p = 0.01).

In the post-transplantation setting, the possibility of post-transplantation maintenance
with eprenetapopt in combination with azacytidine for TP53 AML patients has been
assessed in a phase 2 clinical trial (NCT03931291) [75]. In a cohort of 33 patients who
received aHSCT for AML/MDS with TP53 mutations, 1-year relapse-free survival was 58%
with an OS at 76%. Median RFS and OS were 12.1 and 19.3 months, respectively. These
truly encouraging results confirm the necessity of post transplantation intervention for
TP53-mutated AML and MDS.

Another factor accounting for the high relapse incidence following aHSCT is the
highly immunosuppressive microenvironment surrounding the TP53-mutant leukemic
cell. Among the immune escape mechanisms is the expression of inhibitory PDL1 [76].
A recent report demonstrated a significant increase of PDL1 expression at the surface
of hematopoietic stem cells of patients with TP53 mutations [77]. TP53-mutated AML
patients also exhibited reduced numbers of bone marrow–infiltrating OX40 + cytotoxic
T cells and helper T cells. Further adding to the immunosuppressive characteristics of
the microenvironment was the increased frequency of highly suppressive Tregs. A donor
lymphocyte infusion is one of the available options to bypass T-cell exhaustion [78].
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A better understanding of the mechanisms underlying the immune escape of TP53-
mutated AML is essential to improve the outcome for these patients following aHSCT.
A greater response before transplantation, combined with increased alloreactivity post
transplantation using donor lymphocyte infusions with or without chemical maintenance
with eprenetapopt, sabatolimab, azacytidine, or venetoclax are some of the options currently
under investigation.

9. Conclusions

TP53-mutated AML and MDS are some of the myeloid malignancies with the poorest
prognosis. The prognoses are heterogeneous, depending on mono or biallelic mutations.
The emergence of new drugs with several mechanisms of action are encouraging. These
new drugs induce a greater response and may cure some patients using aHSCT. Several
sequential strategies need to be evaluated to identify the best therapeutic strategy to cure
these patients.
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