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Abstract

Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging
the interactions between fluorescently tagged proteins in two-dimensions. For FRET
microscopy to reach its full potential, it must be able to image more than one pair of interact-
ing molecules and image degradation from out-of-focus light must be reduced. Here we
extend our previous work on the application of maximum likelihood methods to the 3-dimen-
sional reconstruction of 3-way FRET interactions within cells. We validated the new method
(3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells.
In addition, we improved the computational methods to create a 2-log reduction in computa-
tion time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D
subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP,
and RFP), assembled into viral-like particles and created punctate FRET signals that
become visible on the cell surface when 3D-3Way FRET was applied to the data. Control
experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated
localized FRET between YFP and RFP at sites of viral assembly that were not associated
with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interac-
tions while improving the 3D resolution of FRET microscopy data without introducing bias
into the reconstructed estimates. This method should allow improvement of widefield, con-
focal and superresolution FRET microscopy data.

Introduction

The protein-protein interactions mediate the propagation of information through biochemical
signaling pathways. Fluorescence resonance energy transfer (FRET) microscopy methods are
well suited for imaging the subcellular distributions of these protein-protein interactions in live
cells[1]. FRET occurs when a donor’s emission spectrum and an acceptor’s excitation spectrum
overlap; a requirement that comes at the cost of spectral mixing of fluorescent proteins with
short Stokes shifts[2,3]. We previously developed N-Way FRET[4] to linearly unmix overlap-
ping FRET signatures and recover the concentrations and apparent FRET efficiencies of two or
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more fluorophores in a single imaging plane; thereby providing a solution to spectral mixing in
multifluorophore FRET microscopy. In addition to the spectral mixing, the point-spread func-
tion (PSF) of optical microscopes spatially mixes the fluorescence from neighboring volumes
[5]. This situation is most severe for widefield fluorescence microscopy where the PSF is
roughly three times longer in the axial (z) direction (~800 nm) than the imaging plane (xy)
(~250 nm)[6]. Reconstruction/deconvolution algorithms seek to mitigate the effect of blurring
by reassigning out-of-focus light to its points of origin[7]. By combining image reconstruction
with spectral unmixing, the resolution of FRET microscopy can be improved greatly[8]. Here,
we extend 3D FRET reconstruction to enable imaging multiple protein-protein interactions in
the 3D volumes of cells.

Previously, we developed a combined spectral and spatial image reconstruction method,
3DFSR[8], on a 2-fluorophore system capable of producing high-resolution 3D maps of inter-
acting and free molecules. That algorithm, 3DFSR, was an iterative algorithm that used alter-
nating least squares-based line search and entropy maximization steps to generate robust
estimates for the 3D concentrations and apparent FRET efficiencies of bound and free donors
and acceptors. Because 3DFSR was developed using linear algebra and matrix formalism, it
should be capable of reconstructing FRET data with multiple fluorophores, given the proper
expansion of the spectral mixing matrix. N-Way FRET defines how this matrix should be
obtained[4]. Surprisingly, our initial attempts to apply 3DFSR to 3-way FRET data from CFP,
YFP, and RFP, using the spectral matrix from N-Way FRET, failed to produce accurate recon-
structions. We determined the source of this limitation, developed a solution, and renamed the
algorithm, 3D-3Way FRET. This new algorithm uses an alternate spectral mixing matrix for
the entropy maximization step to overcome the limitations of the previous method. 3D-3Way
FRET accurately recovered the 3D distributions of multiple protein-protein interactions and
free molecules in living and fixed cells with improved resolution.

Theory

The concentrations and apparent FRET efficiencies of any number of interacting fluorophores
can be recovered using linear unmixing[4],

c=B'g (1)

Where the unitized spectral mixing matrix, B, contains the spectral contributions of each
fluorophore as well as the calibrated loss of donor fluorescence and gain of acceptor fluores-
cence resulting from FRET. Thus, B defines the relationship between the input image data vec-
tor g and the image vector ¢ containing the fluorophore concentrations (i.e. [CFP] and [YFP])
and FRET efficiencies of the complexes (i.e. E[CFP-YFP]). Therefore, given data collected with
appropriate excitation and emission combinations, an estimate of the fluorophore concentra-
tions and apparent FRET efficiency ¢ can be found by multiplying the image vector g by the
inverse of B[4]. This statement forms the basis of the N-Way FRET method and is central to
the development of higher order image science methods (including deconvolution) for multi-
spectral data.

The resolution of the light microscope is finite because of the wavelike nature of light. As a
result the emitted fluorescence of a single point source is not restricted to a single voxel, but
rather it crosses over into multiple adjacent voxels described by the microscope PSF. Spatial
mixing across voxels is described by the mathematical operation of convolution[9] between the
distribution of fluorophores and the microscope’s PSF. Using linear algebra formalism, com-
mon to image science, we can express this convolution as a matrix. Thus, the spatial mixing
and spectral mixing can be defined as the product of two matrices resulting in a model that
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captures both spatial and spectral mixing of FRET signals in 3D,

¢ = N(PBc + b) 2)

Where the measured data, g, is the product of spectral mixing, B, spatial mixing, P and the
image vector ¢ containing the concentrations of fluorophores and their FRET efficiencies. In
practice, g is simply an image-vector containing the complete spectral data set required to sam-
ple all of the excitation and emission combinations required for FRET as defined in N-Way
FRET. We define the contents of ¢ using the same formalism as N-Way FRET; such that it con-
tains the total FRET-corrected concentrations for each fluorophore F; and the product of the
FRET efficiency and the concentration of FRET complex, e.g. E;;[F; Fj] such that ¢ = ([F,],

[Ez]. . .Eq[FiF,], Eq 5[F,F5]. . ). In addition to spatial and spectral mixing, the measured data
is corrupted by Poisson noise, denoted by the function N, and background, b. Given that the
noise model corrupts the data in a way that cannot be modeled by a matrix, the inversion of
the PSF is an ill-posed problem[10] (i.e. effectively, P cannot be inverted in the presence of
noise), therefore an estimate for ¢ with improved resolution, cannot be obtained using linear
algebra as in the 2D N-Way FRET approach. Thus iterative methods must be used.

Previous work on 3DFSR provided a solution to this problem using a single spectral matrix
that was the explicit form of B[8]. Here an iterative approach was developed that could esti-
mate ¢ accurately and with minimal reconstruction artifacts. This approach involved combin-
ing a line search (LS) step with entropy maximization (EM) steps. Direct application of 3DFSR
to the reconstruction of 3-way FRET data using an expanded three-fluorophore spectral matrix
as defined in N-Way FRET[4] did not perform as well as we expected. The column sum of B,
which normalized the data during the EM steps, contained negative column sums in 3-way
FRET that were not present in the 2-way FRET version of B. The 3DFSR algorithm could not
tolerate the negative column sums, as they imparted negative values onto the estimate of c,
which were truncated by the non-negativity constraint. Thus, we sought to develop an
improved algorithm that could overcome this limitation.

We first worked to modify the algorithm by eliminating these negative column sums. Dur-
ing the development of N-Way FRET, we demonstrated that the spectral contributions of each
species in the data, g, could also be qualitatively unmixed into arbitrary units and either FRET
or no FRET, x, as,

x=Ag (3)

Where the spectral mixing matrix, A, contains only positive entries representing the fluoro-
phore and FRET spectral signatures; however, the loss of donor fluorescence by FRET (and
therefore negative values) do not explicitly appear in this form. Using matrix A instead of B
eliminated the negativity issue, but in turn changed the estimates that we seek in ¢ to those of x.
Fortunately, the conversion between x and ¢ was previously defined by N-Way FRET[4] as,

c=(CM) 'x (4)

Where, M is the signed binary interaction matrix with 1s on the diagonal, and -1s where
each FRET interaction creates a loss of donor fluorescence. The I' matrix contains the scalar
unit conversion factors on its diagonal that unitize the concentrations of each fluorophore and
FRET complex contained in ¢. This conversion was used to convert between the estimates gen-
erated by the LS and EM algorithmic steps. The new 3D-3Way FRET algorithm that incorpo-
rates these changes while using our previous nomenclature[8] is presented below. We then
tested 3D-3Way FRET by simulation and cellular data in live and fixed cells.

PLOS ONE | DOI:10.1371/journal.pone.0152401 March 29, 2016 3/17



@'PLOS ‘ ONE

3D-3Way FRET Microscopy

3D-3Way FRET algorithm

Set ¢ = mean(B™'g).
For k =1,2. . .convergence:
For each species (i) in ¢

1. &, = P'(Pcf — (B 'g),) LS (preconditioned bounded line search)

Determine line search direction, o, with nonnegativity enforced.

k(L1)
i

2. ¢ =ck + ud,

3. Enforce constraint E[DA] < [D], E[DA] < [A] on ¢ for each FRET complex.

IfCE[DA] > cp, then CE[DA] = €D
IfCE[DA] > ¢y, then CE[DA] = €A
Convert updated concentration estimate into fluorescence abundances.

4. =M

5. df = (ZA” ) P (ﬁ — 1) EM step + overrelaxation

6. xf+1 = x1(1 + 0d*) (& determined from the likelihood functional or numerical
series)

If a >1, refine L2 EM Step (L2 refinement-overrelaxation)

L2R g
7a. d;( ) = (ZAam‘n) P,(ij" -1

7b. = (1 4 ouj;(LQR)) (a=1)

Convert the updated fluorescence abundances into concentrations and apparent FRET
efficiencies.

8. Ck+1 — (FM)—I xk+1

Materials and Methods
General Method for 3D-3Way FRET

Generally, the method is similar to that outlined in the N-Way and 3DFSR approaches[4,8],
and can be summarized as a series of steps,

1. Capture spectral calibration images from cells expressing individual fluorophores. These
data are then decomposed by parallel factor analysis to define the excitation and emission
spectral fingerprints of each fluorophore in the system and the spectra of their FRET inter-
actions. This calibration step creates the spectral fingerprint matrix A.

2. Capture spectral calibration images of cells expressing FRET constructs. For each FRET
interaction anticipated, a linked FRET construct with FRET efficiency determined by photo-
bleaching or fluorescence lifetime measurements is imaged. Applying the linear algebra
operations defined in the N-Way FRET method will generate the unitized matrix B and
allow estimation of the concentrations of fluorophores and apparent FRET efficiencies.

3. Determine the PSF for the microscope. The PSF can be determined by measurement by col-
lecting 3D image stacks of 10-200 nm sized beads that are subsequently photobleach-
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corrected and averaged to create an average PSF or by iterative reconstruction of the PSF.
Alternatively, the PSF can be computed using first principles calculations. In this study,
experimental PSFs were determined and compared with theoretical PSFs. We used theoreti-
cal PSFs for reconstruction because they are perfectly smooth and symmetrical thereby sim-
plifying the algorithm development. This step defines matrix P in (2).

4. Image experimental samples and reconstruct results. Here, FRET data are captured using
the rule for excitation and emission bandpasses as described in N-Way FRET[4]. Data are
then reconstructed using the algorithm described in the theory section.

Constructs

Fluorescent proteins used in this study included: enhanced cyan fluorescent protein (CFP)
eCFP, yellow fluorescent protein (YFP) mCitrine, red fluorescent protein (RFP) mCherry, and
a FRET positive RFP-CFP-YFP construct. All the FPs used have the monomeric A206K muta-
tions. The HIV-Gag FP fusions with CFP, YFP and RFP were described previously[4].

Cells and Transfection

COS7 cells were obtained from the ATCC (Manassas, VA) and maintained at 37°C under 5%
CO, in Dulbecco’s Modified Eagle Medium (HyClone, supplemented with 10% heat-inacti-
vated CCS, 100 U/mL penicillin and 100 pg/mL streptomycin). Cells were plated at ~3x10°
cells onto 25 mm round No. 1.5 coverslips (Fisherbrand) and transfected with jetPEI transfec-
tion reagent (Polyplus Transfection, Strasbourg, France) according to the manufacturers rec-
ommendations. Media was replaced 16 hours after transfection and cells were imaged 24 hours
after transfection. In experiments with Gag fusion proteins, cells were fixed with 4% parafor-
maldehyde for 10 min prior to imaging.

Imaging

A custom-built iMIC (FEI Munich GmbH) was used in this study and is described in detail
elsewhere[4]. Briefly, the system consisted of a fast switching oligochrome module for excita-
tion and three emCCD cameras (2 ~Andor iXon 885 and 1—Andor iXonX3 885), allowing
capture of fluorescence data from three fluorophores simultaneously without the need for extra
excitations or filter moves to collect the excitation/emission combinations required for FRET.

Preprocessing

All calculations were performed in Matlab (2014a, Mathworks, Natick, MA) in conjunction
with the DipImage toolbox (version 2.5.1 http://www.diplib.org/, Quantitative Imaging Group,
Delft University of Technology, Netherlands). All data images were preprocessed by subtract-
ing camera bias and shade-correcting the images as previously described[5]. Briefly, images for
each camera were captured while blocking all light to obtain the bias level. Residual back-
ground was subtracted from cell-free regions, if present (generally less than 5% of the cellular
signal). For shade correction, images were captured of a thin solution of a fluorescent protein
mixture. The measured illumination pattern across the field of view for each excitation was
used to normalize bias-corrected raw data. Images were registered as described previously[11-
12]. In brief, fluorescent fiducial markers (Yellow-Green PS-Speck beads, Invitrogen, Eugene,
Or) immobilized on glass were simultaneously imaged on each detector to create a grid pattern
to sample the field of view. A polynomial transformation vector was determined to register
images, generally aligning to the yellow channel.
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Statistics

Statistical significance (p<0.05) was judged by Two-way ANOVA followed by Tukey HSD
post hoc comparison of means using GraphPad Prism version 6.0e for Mac, GraphPad Soft-
ware, San Diego California USA, www.graphpad.com.

PSF measurement. The microscope PSF was measured by collecting z-stacks (25 nm step)
through 170 nm fluorescent beads (Yellow-Green PS-Speck beads) with a single bead per field-
of-view. The empirical PSF was determined from the normalized average of 10 beads, and was
compared with a theoretical PSF with the same size.

Calibration
The full N-Way FRET calibration method is described in detail elsewhere[4]. Briefly, the six

required excitation/emission combinations (cc, cy, cr, yy, yr, rr) were captured of cells express-
ing CFP, YFP, and RFP, respectively, and analyzed using the N-Way FRET algorithm to gener-
ate excitation and emission vectors by parallel factor analysis. The vectors were subsequently
used to generate the spectral mixing matrix A. A contains the spectral signatures of each fluor-
ophore (columns 1-3) and their possible FRET couplings, i.e. acceptor sensitization (columns
4-6).

[1.0000  0.0000 0.0000 0.0020 0.0000 0.0000
0.4881 0.3294 0.0000 1.1117 0.0000 0.0000
0.0601 0.0228 0.0119 0.0771 1.1144 0.3302
0.0000 0.9999 0.0000 0.0000 0.0000 0.0000
0.0000 0.0693 0.0257 0.0000 0.0000 1.0023

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Images of cells expressing the linked polyprotein RFP-CFP-YFP were captured to obtain the
unitized unmixing matrix B as described in N-Way FRET. B contains the spectral signatures of
the individual fluorophores and their unitized FRET couplings (e.g. loss in donor fluorescence
and corresponding increases in acceptor fluorescence). The FRET efficiencies of RFP-CFP-YFP
was determined previously by acceptor photobleaching, and used to calculate the unit conver-
sion matrix I
[0.8246 0.0000 0.0000 —0.8232 —0.8246  0.0000 |

0.4025 0.1653 0.0000  0.3888 —0.4025 —0.1653
0.0495 0.0115 0.0119  0.0053  0.3586  0.1402
0.0000 0.5017 0.0000  0.0000  0.0000 —0.5017
0.0000 0.0348 0.0257  0.0000  0.0000  0.4256

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Results and Discussion

To validate the 3D-3Way FRET algorithm, reconstructions were performed on simulated data
with defined fluorescence distributions. Similar to our previous work[8], we generated a spheri-
cal cell-like object with equal concentrations of fluorophores ([C], [Y], [R]) in the cytosol, and
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FRET complexes (E[CY], E[CR], E[YR]) in localized compartments (Fig 1A and S1 Fig, where,
CFP = C, YFP =Y and RFP = R). Spectral mixing was applied by multiplying these distribu-
tions with the experimentally determined B resulting in the excitation and emission combina-
tions (cc, cy, cr, vy, yr, r1; where the first letter denotes excitation and the second letter denotes
emission) (Fig 1B). Convolution with a theoretical PSF produced a blurred noise-free estimate
(Fig 1C). Photon noise was modeled using a Poisson distribution to produce the final simulated
excitation/emission combinations; similar to those that would be captured on a widefield
microscope (Fig 1D). Noise in this simulation was estimated to be SNR = 10 from the average
intensity of the midplane (z = 45). The blurred and noisy images were unmixed with B to cal-
culate the N-Way FRET estimates without deconvolution; in this situation the SNR of the
FRET signals was ~1.3 (Fig 1E), and the reconstruction was compared with this result to deter-
mine the performance of the algorithm.

We attempted to implement 3DFSR on the simulation, but the original 3DFSR algorithm
failed to accurately reconstruct FRET signals for 3-way FRET. The edges of the object appeared
to erode during the reconstruction (data not shown). These features were subtle because of the
simple and symmetrical geometries of the simulated data. However, when 3DFSR was applied
to actual cells expressing the linked polyprotein RFP-CFP-YFP, pronounced degradation of the
image was observed (Fig 2 and S2A Fig). To overcome this limitation, we took advantage of the
fact that N-Way FRET defined a spectral matrix A that is non-negative and could unmix FRET
data into arbitrary fluorescence abundances of fluorophore and FRET signals (3). The fluores-
cence abundances (x) and concentrations and FRET efficiencies (c) are interchangeable per
(4). Thus, we modified the algorithm such that the output of the line search (cX) was converted
into fluorescence abundances (x¥) (algorithm step 4), used for EM steps and then converted
back into concentrations (¢<*!) to complete the update (algorithm step 8). The resulting modi-
fied algorithm (3D-3Way FRET) properly reconstructed FRET signals for both simulated (Fig
1F) and experimental data (Fig 2B, S2B Fig).

Using the revised algorithm, the simulated data were reconstructed with 20 iterations of
3D-3Way FRET. The reconstructed estimates maintained correct values and spatial distribu-
tions; especially the FRET signals, which were nearly undetectable in the N-Way unmixed data
(Fig 1E) were now restricted to the localized puncta with improved axial resolution (Fig 1F).
The mean square error (MSE) between the estimate and the true value (initial model) was cal-
culated at each iteration (Fig 1G) to measure convergence of the algorithm. Overall, the results
for the total fluorophore concentrations asymptotically improve as seen by the reduction in the
MSE. The MSE of the FRET signals improve as the algorithm progresses; however, they reach a
minima around iteration 10 and then begin to diverge. Upon inspection of the reconstructed
images, after 20 iterations the algorithm continues to fit finer and finer detail, leading to over-
fitting the data and corruption of the final estimates with noise. This divergence was seen previ-
ously with 3DFSR, and because it does not occur in the absence of noise suggests that
convergence of the different channels is reached at different rates. Thus, to prevent overfitting
a stopping criteria must be developed. Overall, the simulation results validated 3D reconstruc-
tion of 3-way FRET interactions and provides a powerful new method to improve the spatial
resolution of 3D widefield FRET data.

The large size of the data and the computational requirements of 3D-3Way FRET drove us
to optimize the computational algorithm in order to perform reconstructions at a faster rate.
3D-3Way FRET data are image tensors with 6 channels, and each z-stack was ~500x500x34.
This corresponded to data stacks that were twice as large as those used in 3DFSR (3 image ten-
sors). We analyzed the algorithm to find the rate-limiting step and attempted to optimize the
algorithm speed. The slowest calculation per iteration was the convolution of the data with the
PSF. Each iteration required 6-7 convolutions across all channels (depending on

PLOS ONE | DOI:10.1371/journal.pone.0152401 March 29, 2016 7/17



@. PLOS ‘ ONE 3D-3Way FRET Microscopy

nc

€l Y[Rl ECY] EICR]

E[CY] EICR] E[YR]

.
[ ]
EIE
G
B
mE

) 2000 2000 2000
5 5 5 1800 1800 1800
1600 1600 1600
g 4 4 4
1400 1400 1400
E 3 3 3
1200 1200 1200
2 2 2 1000 1000 1000
1 1 1 800 800 80O
o 5 10 15 20 L] 5 10 15 20 o 5 10 15 20 o 5 5 10 15 20 L] 5 10 15 20
Iteration Iteration Iteration Iteration Iteration Iteration
6 & 6 6 B &
5 5 5 5 5 5
| @ B 4 4 4 4 4
v
m 3 3 3 3 3 3
n 2 2 2 2 2 2
1 1 /\_ 1 1 1 1
o o o o o o
o 5 10 15 20 [ 5 15 20 o 5 10 15 20 ] 5 10 15 20 o 5 10 15 20 [ 5 20
Iteration Iteration Iteration Iteration Iteration Iteratmn
0.z 02 0.2 0.2 0.z 0.z
o [} o o / o \/ [} j
g 0.2 0.2 0.2 0.2 0.2 0.2
<< P 0.4 0.4 0.4 0.4 0.4
T 06 06 06 0.6 0.6 06
0.8 08 08 0.8 0.8 0.8
1 - - 1 1 1

o 5 10 15 20 L] 5 10 15 20 o 5 10 15 20 o 5 10 15 20 L] 5 10 15 20 L] 5 10 15 2
Iteration Iteration Iteration Iteration Iteration Iteration

S

Fig 1. Simulation of 3D-3Way FRET data. (a) A model of a 4.5 ym diameter cell consisting of localized FRET signal within a large volume of non-FRET
signals was created. The top row of images corresponds to the xy midplane of the simulated object, the red line signifies the z-plane used for the xz projection
in the bottom row. (b) Spectral mixing of the fluorophore concentrations with matrix B (empirical) gave rise to the fluorescence detected for appropriate
excitation/emission combinations (i.e. cc, cy, cr. . .). (c) The fluorescence distributions were blurred with a widefield PSF to account for the imperfect imaging
of optical microscopes. (d) Photon noise was simulated by drawing pixel intensities from a Poisson distribution. (e) The data was directly unmixed by N-Way
FRET to recover the concentration of total fluorophores and apparent FRET efficiencies, but no improvements in the optical sectioning. (f) The reconstructed
estimate was generated following 20 iterations of the modified 3D-3Way FRET algorithm showing improved axial resolution and devoid of false positive
artifacts. (g) The MSE, DBSC and dDBSC were calculated at the xy plane shown for each iteration in order to measure convergence.

doi:10.1371/journal.pone.0152401.g001
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a [C] E[CR] [C] E[CR]

lter 2
lter2 ©

Iter 5
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Iter 10
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Iter 20
Ilter 20

LAl T

Fig 2. The modified algorithm (3D-3Way FRET) recovers total concentrations and apparent FRET efficiencies for linked fluorophores. (a) Cos7 cells
expressing the triple linked construct RFP-CFP-YFP were imaged and reconstructed with 20 iterations of the original 3DFSR algorithm (only [C] and E[CR]
are shown for clarity). Note that the E[CR] signal at the margin of the cell erodes away, until only the bright nucleus region remains. (b) The revised 3D-3Way
FRET algorithm, properly reconstructs the images without the erosion that was evident in a.

doi:10.1371/journal.pone.0152401.9002

overrelaxation and refinement), resulting in about 42 total convolutions per iteration. The 3D-
3Way FRET algorithm implemented an improved numerical procedure for the fast Fourier
transform during the convolution calculations, which were parallelized onto 6 CPU cores. This
change sped up the convolution calculation by ~100x. For our computer, this approach lead to
the convolutions being faster than the overhead time required for parallelizing, distributing
and gathering the data following convolution. With this improvement, all calculations could be
performed on a single CPU core at the same speed as 6 CPU cores, suggesting that paralleliza-
tion will only help if the data can be split across another dimension such as time for time-series
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movies. As a comparison, the average time for 20 iterations of 3D-3Way FRET was 20-30 min-
utes (6 image tensors), while 3DFSR required 5-12 hours to reconstruct data that is half the
size (3 image tensors[8]). The major reduction in computational time makes increasing the
number of iterations and exploring alternative stopping criteria tractable.

The MSE can only be used to measure convergence on simulated data because the true distri-
bution is not known for real data, but required to measure the MSE. We explored stopping crite-
ria that do not require knowing the solution a priori. We tested the differential based stopping
criterion[13] (DBSC). In this statistic, the absolute difference between two consecutive estimates
is quantified as a measure of convergence. The DBSC began to level off to different absolute values
by the 10" iteration, very close to the observed MSE minima for the FRET signals, but the DBSC
traces were very noisy by comparison, (Fig 1G) making it difficult to define a single asymptotic
stopping point. As a potential alternative, we measured the derivative of the DBSC (dDBSC) as a
stopping criterion, here the rate of change approaches zero close to the minima of the MSE but,
the large fluctuations in the dDBSC indicated that it may not be sufficiently robust to define a
good stopping point. Thus, we present both DBSC and dDBSC in S3-S5 Figs for comparison and
future algorithm development, but all reconstructions of experimental data were stopped based
on visual inspection of the estimates and setting a fixed number of iterations (Figs 3-5).

We devised a series of test cases in which cells expressed FRET and non-FRET constructs to
experimentally validate the 3D-3Way FRET reconstruction approach. Cells were imaged in 3D
by capturing interlaced multiwavelength z-series. In all cases, N-Way FRET was used to unmix
these images without deconvolution, thereby providing a reference point to which the recon-
structed results could be compared. Following 3D-3Way reconstruction, the resulting images
were compared to the N-Way FRET unmixed results to determine if spurious FRET signals or
artifacts were observed and to gauge the axial resolution improvement by visual inspection.
The following test cases were used to control the possible FRET interactions:

1. Three cytosolic non-interacting FPs (no FRET).

2. A linked polyprotein with equal stoichiometry of the 3 FPs and known FRET efficiency
determined by acceptor photobleaching (intramolecular FRET between all FPs).

3. Non-interacting cytosolic CFP with YFP-Gag and RFP-Gag fusion proteins in which we
expect FRET between YFP-Gag and RFP-Gag only [4,14].

4. Cell coexpressing CFP-Gag, YFP-Gag and RFP-Gag fusion proteins coexpressed (in which
we expect intermolecular FRET between all FPs)[4].

These combinations define the minimum set of cases needed to test the algorithm for all
3-way FRET possibilities.

3D-3Way FRET was evaluated for its ability to recover FP distributions without producing
artifacts that appear as FRET by imaging free FPs. COS7 cells expressing the cytosolic FPs CFP,
YFP, and RFP, were imaged at a voxel size of 133nm x 133nm x 175nm and unmixed by
N-Way FRET without deconvolution (Fig 3A). The FPs exhibited similar subcellular distribu-
tions, but do not interact with one another (E[CY], E[CR] and E[YR] are near zero, Fig 3E).
The N-Way FRET unmixed results remained blurred as expected; this is especially evident in
the xz and yz projections of Fig 3A. Following 20 iterations of 3D-3Way FRET, the in-focus
plane features have sharper contrast and the axial resolution was enhanced (Fig 3B), while
maintaining the same average intensities (Fig 3E). Thus, 3D-3Way FRET could recover non-
FRET distributions without producing spurious artifacts.

3D reconstructions of samples containing FRET signals from single-chain biosensors were
used to test the algorithms ability to recover FRET efficiency distributions. The RFP-CFP-YFP
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Fig 3. 3D-3Way FRET improved the spatial distributions for free and linked fluorophores without introducing bias. Cos7 cells expressing cytosolic
CFP, YFP, and RFP unmixed without deconvolution (a), and improved estimates following 20 iterations of 3D-3Way FRET (b). Cos7 cells expressing triple
linked construct RFP-CFP-YFP unmixed without deconvolution (c), and following 20 iterations of 3D-3Way FRET (d). 3D data sets were collected for each
cell with a resulting voxel sampling of 133nm X 133nm X 175nm. The images were directly unmixed by N-Way FRET (a and c¢) and the estimates following 20
iterations of the 3D-8Way FRET algorithm are shown in b and d. The red lines represent the plane taken for xz (shown below panels) and yz projections
(shown to right of panels). The total fluorophore concentrations, [X], are co-scaled and E[X] are co-scaled to 30% of the total fluorophore concentrations. The
reconstructed images (c and d) have improved resolution, especially the axial resolution as seen in the xz and xy projections. Quantification of fluorescence
intensity over the entire 3D volume from CFP, YFP, and RFP (e) or RFP-CFP-YFP (f), unmixed with N-Way FRET (black bars) and also following 3D-3Way
FRET (gray bars); error bars are standard deviation, N = 5 cells. 3D-3Way FRET intensities were compared to the corresponding N-Way FRET intensities,
and there were no significant differences (p<0.05) using Two-way ANOVA followed by Tukey HSD post hoc comparison of means.

doi:10.1371/journal.pone.0152401.g003
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Fig 4. 3D-3Way FRET provides improved estimates for the concentration and localization of HIV-Gag oligomerization in the presence of a
noninteracting fluorophore. Cos7 cells expressing cytosolic CFP, YFP-Gag, and RFP-Gag were fixed and imaged 30 hrs post transfection. The
oligomerization of Gag into punctate structures can be seen by direct application of N-Way FRET (a), and following 20 iterations of 3D-3Way FRET (b), the
FRET complexes exist only in E[YRY], are largely restricted to the puncta, and the axial resolution is greatly improved. 3D composite rendering of [C] (cyan) [Y]
(green) and E[YR] (magenta) shown following N-Way unmixing (c), and following 3D-3Way reconstruction (d). The reconstructed image highlights the

improved resolution.

doi:10.1371/journal.pone.0152401.9004

polyprotein ensures that the FPs will have the same cellular distributions, theoretically equal
stoichiometry, and are held in close enough proximity for FRET to occur. The N-Way FRET
unmixed data showed concentrations and apparent FRET efficiencies (Fig 3F) consistent with
those measured by acceptor photobleaching on the same construct (E[CY] = 0.35+/- 0.00, E
[CR] =0.26+/- 0.01, E[YR] = 0.114/-0.02, N = 4 cells). Additionally, the in-focus plane had sev-
eral displacements in the cytosol by organelles that were subtle in the blurred images, but
reconstructing the 3D data with 20 iterations of 3D-3Way FRET improved the resolution and
highlighted these features (compare Fig 3C with 3D).

Importantly, the estimates recovered by 3D-3Way FRET have the same relative concentra-
tions and FRET efficiencies as those estimated without 3D reconstruction by direct unmixing
of the data by N-Way FRET (Fig 3E and 3F), which should only happen in when fluorophores
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Fig 5. 3D-3Way FRET provides improved estimates for the concentration and localization of HIV-Gag oligomerization in fixed cells. Cos7 cells
expressing CFP-Gag, YFP-Gag, and RFP-Gag were fixed and imaged 30 hrs post transfection. The oligomerization of Gag into punctate structures can be
seen by direct application of N-Way FRET (a). Following 20 iterations of 3D-3Way FRET (b) the FRET complexes are largely restricted to the puncta and the
axial resolution is greatly improved. 3D composite rendering of [C] (cyan) [Y] (green) and E[CY] (magenta) shown following N-Way unmixing (c) and following
3D-3Way reconstruction (d). The reconstructed image highlights the improved axial resolution.

doi:10.1371/journal.pone.0152401.9005

and complexes have the same distributions throughout the cell. This highlights the accuracy of
the algorithm and the ability to reconstruct FRET data without introducing a bias into the
improved estimates. Thus, for a uniform distribution of fluorophores, 3D-3Way FRET accurately
quantified FRET efficiencies of intramolecular interactions with improved 3D resolution.

The ability of 3D-3Way FRET to image intermolecular interactions in the presence of a
non-interacting fluorophore was evaluated by coexpressing cytosolic CFP with YFP-Gag and
RFP-Gag. We expect FRET only to occur between Gag fusion proteins near the plasma mem-
brane at sites where viral-like particles form. The distribution of Gag molecules ([Y] and [R])
and FRET signals (E[YR]) were mainly found near the edge of the cell in the N-Way FRET
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unmixed result, but a small amount remained throughout the cytoplasm (Fig 4A). Addition-
ally, the out-of-focus signal from cytosolic CFP obscured localized Gag puncta and FRET sig-
nals in the 3D rendered volume (Fig 4C). Following 20 iterations of 3D-3Way FRET, the
fluorescence from FP-Gag fusions was restricted to the plasma membrane, and only there, was
FRET measured between Y-Gag and R-Gag (E[YR]) (Fig 4B). Additionally, the sharpness of
the cytosolic CFP distribution was improved following reconstruction (Fig 4D). The recon-
struction shown in Fig 4 is representative of 5 reconstructions, which show similar improve-
ments in spatial resolution and signal contrast. As a result, 3D-3Way FRET could be used to
quantify localized pairwise protein interactions in the presence of a large pool of non-interact-
ing molecules.

The algorithm was tested to quantify three intermolecular protein interactions. CFP-Gag
was coexpressed along with YFP-Gag and RFP-Gag in order to quantify intermolecular inter-
actions (E[CY], E[CR] and E[YR]) as viral-like particles formed. In this case, we expected simi-
lar fluorescence distributions at sites of viral assembly and FRET signals to localize to sites of
viral assembly. The expected intermolecular interactions were quantified by unmixing with B
(Fig 5A). However, the spatial distributions of the interactions were poorly resolved with most
of the FRET signal appearing as a diffuse pattern across the entire cell (Fig 5A and 5C). Follow-
ing 20 iterations of 3D-3Way FRET, the FRET signals were highly restricted to punctate struc-
tures, and the images have high signal contrast (Fig 5B and 5D). The z projections of N-Way
FRET unmixed data (Fig 5A) were very blurry and had limited information in comparison to
the reconstructed estimates (Fig 5B) where individual puncta (the smallest of which are likely
individual viral-like particles) became visible. The reconstruction shown in Fig 5 is representa-
tive of 5 reconstructions, which show similar improvements in spatial resolution and signal
contrast. This confirms that 3D-3Way FRET reconstruction improved 3D distributions of pro-
tein interactions, and provides methods to quantify the spatial control of multi-protein
complexes.

We explored possible stopping criteria that did not require knowledge of the true object by
calculating the DBSC and dDBSC. In each test case the DBSC and dDBSC show a similar trend
as in the simulation (Compare Fig 1G with S3-S5 Figs); both stopping criteria rapidly and
asymptotically reduce after only a few iterations, well before convergence based on visual
inspection. In particular, the dDBSC fluctuates around zero in fewer than 10 iterations in all
cases, indicating very small differences between iterations. However, as the reconstruction
approaches convergence by visual inspection there are no obvious changes in either statistic
that signal a robust stopping point. We noticed that dDBSC highlights an oscillation of the esti-
mates near convergence (S3 Fig) (as seen previously with 3DESR). The oscillations were likely
a result of the joint alternating LS and EM functionals that are minimized during each update
in 3D-3Way FRET. This oscillation may be reduced by either using a fixed step size of 1 for
each EM update, accurately calculating the EM step sizes from the likelihood functional, or
using a penalized EM (computationally expensive[9,15]) rather than using overrelaxation from
a numerical series, but this will require a greater number of iterations to reach convergence.
However, the improved speed of reconstruction provides a good platform for implementation
of more complex and robust stopping criteria.

Conclusion

The 3D-3Way FRET approach presented here accurately reconstructs high-resolution 3D
maps of protein-protein interactions in cells. The method was validated by simulation, linked
constructs with known FRET efficiency and by imaging the oligomerization of HIV Gag pro-
teins. In all of these tests, 3D-3Way FRET improved the 3D spatial distributions of free
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molecules and those in complexes, without introducing spurious FRET signals. Importantly,
the reconstruction approach was robust for both intramolecular interactions with defined stoi-
chiometry, and intermolecular interactions with unknown stoichiometry. However, there is
room for further algorithm development. One persisting question for both 3DFSR and 3D-
3Way FRET is that while the alternating LS and EM algorithm is highly robust, and performs
very well under multiple conditions [8], we do not have a clear fundamental mathematical
explanation for this. Second, in this work, we explored a possible stopping criterion; however,
work is still needed to develop adequate convergence and stopping indicators.

Careful selection is needed when choosing fluorescent proteins for 3D-3Way FRET. Fluoro-
phores that have good photostabilities and FRET efficiencies are necessary for imaging dim
samples or time-series movies[12]. From our experience, it appears that the YFPs are the limit-
ing fluorophores for this method owing to their limited photostability. Nonetheless, 3D-3Way
FRET is a highly robust solution against noise, allowing for improved quality data to be recon-
structed from lower signal data (therefore reducing sample photobleaching) thereby improving
imaging of the spatiotemporal organization of cellular signaling pathways.

We have improved the computational speed of 3D-3Way FRET making the algorithm more
accessible to a range of imaging situations and needs. Specifically, increasing the number of
interactions simultaneously imaged or eliminating autofluorescence components requires
larger datasets and greater computational requirements. However, the 2-log reduction in
computational time greatly improves the usability of the algorithm, and provides a good plat-
form for adding additional components or for testing appropriate stopping criteria. Addition-
ally, 3D-3Way FRET uses the proper Poisson noise model providing a more statistically
correct solution for FRET than the Gaussian noise model used in N-Way FRET and other spec-
tral methods, albeit at a high computational requirement[4]. Thus, 3D-3Way FRET is capable
of improving the spatial resolution of multiple protein-protein interactions on data collected
by any microscopy approach capable of measuring FRET[8] (i.e. widefield, confocal, superreso-
lution or multispectral imaging). These improvements make 3D-3Way FRET a valuable
method for providing high-resolution maps of multiple protein-protein interactions through-
out the 3D volume of cells.

Supporting Information

S1 Fig. Simulated fluorophore distributions and FRET interactions. (a) The 4.5 um cell was
simulated with a uniform fluorophore concentration in the cytosol, a void labeled as vacuole
with no fluorophore, and 4 distinct spots that have mixtures of 2 and 3 FRET interactions. The
mixtures of FRET signals in each spot are shown below. (b) The defined fluorophore distribu-
tions and localized FRET signals used for the simulation (Fig 1).

(TIF)

$2 Fig. The modified 3DFSR algorithm (3D-3Way FRET) accurately recovers spatial distri-
butions and FRET efficiencies for linked fluorophores. The data is associated with Fig 2, and
is expanded to show the progression of all reconstructed images.

(TTF)

$3 Fig. DBSC and dDBSC plots associated with data in Fig 3. The potential stopping criteria
were calculated for an ROI of the xy plane shown in Fig 3.
(TIF)

S4 Fig. DBSC and dDBSC plots associated with data in Fig 4. The potential stopping criteria
were calculated for an ROI of the xy plane shown in Fig 4.
(TIF)
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S5 Fig. DBSC and dDBSC plots associated with data in Fig 5. The potential stopping criteria
were calculated for an ROI of the xy plane shown in Fig 5.
(TIF)

S1 Movie. 3D volume rendering of 3D-3Way FRET reconstruction. The movie shows the
progression of the reconstruction of [C] (CFP-Gag) through iteration (time) for data associated
with Fig 5.

(MPG)
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