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There has recently been a rapid progress in computational methods for determining protein targets of
small molecule drugs, which will be termed as compound protein interaction (CPI). In this review, we
comprehensively review topics related to computational prediction of CPI. Data for CPI has been accumu-
lated and curated significantly both in quantity and quality. Computational methods have become pow-
erful ever to analyze such complex the data. Thus, recent successes in the improved quality of CPI
prediction are due to use of both sophisticated computational techniques and higher quality information
in the databases. The goal of this article is to provide reviews of topics related to CPI, such as data, format,
representation, to computational models, so that researchers can take full advantages of these resources
to develop novel prediction methods. Chemical compounds and protein data from various resources were
discussed in terms of data formats and encoding schemes. For the CPI methods, we grouped prediction
methods into five categories from traditional machine learning techniques to state-of-the-art deep learn-
ing techniques. In closing, we discussed emerging machine learning topics to help both experimental and
computational scientists leverage the current knowledge and strategies to develop more powerful and
accurate CPI prediction methods.
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1. Introduction

Successful drug discovery requires technological advances in
various research fields to meet the standards in pharmaceutical
industries [1,2]. High-throughput screening (HTS), a widely used
technology, is a large-scale experimental platform to enrich chem-
ical compound candidates. The HTS technology has been widely
used to identify lead compounds of the desired properties [3–6].
Such high throughput experimental techniques generate a huge
amount of Compound-Protein Interaction (CPI) data which are
curated and accumulated in several databases. For example, 1.9
million binding affinity information is currently compiled in Bind-
ingDB [7]. In recent years, the drug discovery pipeline has under-
gone a paradigm shift by leveraging computational techniques to
accelerate discovery of active hits before entering into clinical tri-
als [8,9].

Machine learning (ML) techniques have been extensively used
in the field of computer-aided drug discovery (CADD) and they
have increased the success rate of candidate drugs significantly
[10–12]. Recent ML-based approaches focus on predicting affinity
or interactions between small molecule drugs and protein targets,
CPI, using techniques such as kernel-based, tree-based classifica-
tions, and neural network variations [13–15]. Among them, neural
networks are the mainstream in cheminformatics such as Quanti-
tative Structure–Activity Relationship (QSAR), ADMET or etc [16–
19].

The availability of chemical knowledge and databases acceler-
ated the advances in computational CPI prediction models
[20,21]. Both pharmacophores in chemical compounds and ligand
binding sites in amino acid (AA) sequences were efficiently mod-
eled to explore the CPI data space [22,23]. Recently developed deep
learning technologies have significant impact on drug discovery.
Zhavoronkov et al. [24] used variational autoencoder (VAE) with
strong prior computed by tensor train decomposition to design
drug candidates for DDR1 kinase only in 46 days. Another study
by Stokes et al. [25] demonstrated that halicin can be used as a
new antibiotic through a message-passing neural network (MPNN)
and extensive experimental validations.

To fully utilize the power of computational methods and data,
we need to understand how certain CPI prediction methods or
analysis pipelines have evolved along with databases used for
the prediction. An important goal of this survey paper is to outline
current CPI prediction methods in the context of data preparation
and model construction. To achieve generalization of our current
knowledge on CPI prediction using AI methods, we grouped the
computational methods into five categories: tree-based ML,
network- and kernel-based ML, and three deep learning (DL) based
architectures. Tree-based models (Section 4.1) learn data hierarchi-
cally in a rule-based manner, thus interpretation of decision pro-
cess is natural in terms of the feature space. Network- and
kernel-based methods (Section 4.2) transform input data into fea-
ture map and make prediction. Deep learning (DL) technologies
such as RNN and CNN (Section 4.3) have demonstrated the predic-
tion power in capturing local sequence/structure patterns that can
be used for CPI prediction. Graph-based neural networks (Sec-
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tion 4.4) represent input compounds as structured graphs and
assign features on atoms (nodes). These techniques can effectively
capture essential CPI information in terms of graphs by embedding
features of neighboring atoms into the central one when learning
chemical representations. There are relatively new technologies
that can be very useful for predicting CPIs (Section 4.5). Generative
models such as Variational autoencoder (VAE) or generative adver-
sarial network (GAN) are extensively used, together with reinforce-
ment learning. These techniques are particularly useful for
predicting novel CPI.

In summary, we organized major topics of CPI as data, formats,
representations, databases, and machine learning models. Thus,
the review starts with data and format for small-molecule ligands
and target proteins in terms of data formats and encoding schemes.
Then, we conducted an extensive survey on databases for CPI pre-
diction in perspectives of both chemical compounds and proteins.
CPI prediction methods are categorized in five groups based on the
ML methods used for CPI prediction. In closing, we discussed issues
including new computational strategies for expanding our knowl-
edge on CPI prediction and interpretability of prediction results, in
particular, attention mechanism that is widely used to comple-
ment the black-box nature of deep learning-based methods.
2. Data formats and encoding schemes

Computational methods for training CPI prediction models
require data on compounds, targets, and their interaction profiles.
This section summarizes data formats and encoding schemes of
data as input to ML models. We then discuss databases for CPI pre-
diction in Section 3. see Fig. 1.
2.1. Chemical compounds (small molecules)

Chemical compounds can be described naturally in a human-
readable format such as strings, graphs, or images. The most
widely used string format is Simplified Molecular-Input Line-
Entry System (SMILES) [26]. SMILES describes a chemical com-
pound as a linear string. Starting from one atom, it visits all atoms
by trimming bonds of the closed ring system. Once the order of
atoms is determined, it extends the line-entry with specific rules
for atoms, bonds, cycles, branches, and stereochemistry. There
are several canonicalization schemes, depending on algorithms
that uniquely match the SMILES representation to a compound.
For example, RDKit, the most commonly used Python library for
cheminformatics, implements an algorithm that considers both
stereochemistry and symmetry of molecules for generating SMILES
[27]. Some ML tools utilize augmentation of SMILES to compensate
its non-bijective nature and to generate less biased information
[28]. There are other types of string-formatted representations,
such as SMARTS and SELFIES, to either highlight substructures or
mirror semantic constraints better (Fig. 2) [29,30].

SMILES can be encoded as a mixture of one-hot and multi-hot
vectors. As an example, Hirohara et al. [31] normalized the number
of valence electrons (VEs), and encoded chemical structures such



Fig. 1. Overview of how chemical compound and protein data that are processed to perform CPI prediction tasks. Data encoding depends on data type and how the data can
be prepared as input to ML models. Data processed by network-based methods are not allocated here and will be discussed in detail in 4.2).
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as chirality, aromaticity with one-hot encoding to assign the atom
value. This scheme effectively encoded a SMILES into a computable
format. In most cases, encoded SMILES vectors are fed into deep
learning models that construct latent vectors for representing the
chemical space [32]. Word2vec is another way to encode SMILES
that constructs word embeddings by mapping characters to vec-
tors of real numbers [33]. Coupled with sequential models such
as RNN, word2vec can generates powerful embedding of the entire
chemical sentences by treating the fixed length of characters as ‘a
word’ [34].

Constitutive substructures/scaffolds or common functional
groups occur frequently in chemical compounds [35] and they
are used to construct chemical fingerprints that describe chemical
compounds as boolean representations of their substructures.
There are several ways to generate different fingerprint schemes
such as ECFP, Morgan, PubChem, and MACCS. We can group these
chemical fingerprint generation schemes into topology-based
schemes (Morgan, ECFP, 2D pharmacophore and etc.), and
1543
SMARTS-based schemes (MACCS, PubChem and etc.). Topology-
based fingerprints characterize atoms and bonds by calculating
the topological distance in molecules while SMARTS-based finger-
prints consider the presence of SMARTS patterns that describe
bond orders and bond aromaticity. In either of the two schemes,
the presence and absence of a substructure can be used to generate
a boolean array for a chemical compound, which can be utilized as
a search strategy for similar compounds. Since fingerprints are
intuitive and informative, fingerprint-based schemes have been
successfully used in cheminformatics [36]. Similarity of two com-
pounds can be easily calculated by comparing the corresponding
fingerprint vectors using the Tanimoto algorithm [37–40].

Graph-based representations, such as weave or graph neural
fingerprints, have recently been successful in reflecting the chem-
ical properties [11,41]. To use graph-based learning strategies,
compounds need to be converted to graphs, typically adjacency
matrices representation of graphs with atom/bond information.
These matrices are then provided as input to graph convolution



Fig. 2. Formats and encoding schemes of chemical compounds. a) String-based methods translate compounds into context-aware strings - SMILES, SMARTS, or SELFIES.
SMARTS, based on SMILES, focuses on localized substructures. SELFIES produces a string that guarantees valid molecular structure. b) Chemical fingerprint encodes a
compound into a binary bit vector by comparing the compound with pre-defined set of substructures. c) Graphical representation of chemical compounds transforms the
input molecule into a set of matrices - adjacency and node features.
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networks (GCNs). The main role of GCN is to generate the context
of a node by considering neighboring nodes. There are two major
GCN types for updating neighboring information. The spectral
GCN is to consider a graph as a whole while the spatial GCN uses
only neighboring nodes, thus considering local subgraphs. The spa-
tial GCN is more popular and scalable due to its power that learns
graphs by handling atoms in batches. More details on the graph
encoding of chemical compounds can be found in a recent review
paper [11].
2.2. Target proteins

Various formats and encoding schemes are available for protein
sequences and structures. Protein is basically a sequence of amino
acid residues that are highly-conserved evolutionary information.
Thus, a protein can be encoded in a sequential way considering
its evolutionary, structural property, or inter-similarity with one-
hot, word2vec, or k-mer-based methods (Fig. 3). Among them,
one-hot encoding is to transform a character into a binary-bit vec-
tor [42,43]. One-hot encoding scheme is popular since deep learn-
ing models require grid-like input with numbers. For protein
structures, it is common to convert a protein structure to a chem-
ically attributed spatial graph with nodes for residues and edges
between two residues within a preset distance. Structural informa-
tion of a protein can be coordinates, electrostatic properties, or
surface-area at individual amino-acid level [44–46]. UniProt and
Protein Data Bank (PDB) are major resources for protein sequence
and structural information, respectively [47,48]. PDB contains
1544
compound-protein interaction information including ligand-
specific spatial conformation. One issue with PDB is that the num-
ber of structurally characterized proteins are much smaller than
proteins with amino acid sequence determined [49]. Thus, use of
protein structure information for computer-aided drug design
(CADD) is limited. However, AlphaFold [50] and AlphaFold2
demonstrated that use of protein evolutionary information with
protein structural information can be very powerful for predicting
protein structure from protein sequence. This recent remarkable
advance will have a deep impact on CADD.
3. Databases for CPI prediction

Commonly used databases for drug discovery tasks are summa-
rized in the following subsections as either chemistry-centric,
protein-centric, or integrated databases (Table 1). Chemistry-
centric databases include FDA-approved drugs in TTD, BindingDB,
PharmKGBandDrugBank, andcommercially availabledrugs inZINC.
Protein Databases contain mostly sequence-based information. CPI
information is present in either of databases or as standalone
databases including chemical/protein entity-based attributes.
3.1. Chemistry-centric databases

As a chemistry-centric database, PubChem contains 2D and 3D
structural information of compounds and interacting protein infor-
mation from various bio/chemical experiments and the literature.
It also compiles benchmark fingerprints of 881 chemical substruc-



Fig. 3. Formats and corresponding encoding schemes of proteins. a) String: Represent protein as amino acid sequence. b) Evolutionary information: Encode protein
considering its evolutionary information. c) Graph: Encode protein structure whether by considering sequentially connected relations (Middle), or by calculating the spatial
distance between the residues (Right).
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tures that are widely used to transform chemicals into learnable
forms [51]. ChEMBL, one of the most comprehensive databases in
cheminformatics, contains a large amount of CPI information
including potentially druggable compounds. Using the chemical
compound and activity assay data from ChEMBL, Lim et al. [52]
used IC50 value to compile a dataset for model evaluation. Drug-
Bank provides more detailed information on drugs including anno-
tations such as approved, experimental, and nutraceutical. Using
this annotated information, Zeng et al. [53] constructed a dataset
for target-driven drug repurposing on GPCR proteins. Drug-drug
interaction, drug indications, and FDA-approved from DrugBank
were also used by Zeng et al. [54] to construct a drug-gene-
disease network which was used for identifying novel antagonists
of a nuclear receptor (ROR-ct). DUD-E [55] provides active-interact
molecules and sets of decoy molecules that are similar in physical
properties but dissimilar in topology with the active molecules.
These active compounds and decoys can be used as positive and
negative samples for CPI prediction [46]. In DUD-E, interaction
labels and binding affinities are provided.
3.2. Protein-centric databases

UniProt is the representative protein sequence database that
compiles 563,552 reviewed proteins in Swiss-Prot (version: Uni-
ProtKB 2020_05). PDB assembles a large number of 3D structural
data that are obtained by X-ray crystallography or other methods.
PDBbind provides a comprehensive experimentally-measured
binding affinity data between protein and ligand complexes. Bal-
1545
lester and Mitchell [56] suggested a new machine learning-based
scoring function and PDBbind benchmark was used for validation
of CPI predictions [57,58]. However, compared with the number
of AA sequences, protein 3D structure data is much smaller partly
because of technical difficulties for establishing crystallization.
Moreover, compound-protein interactions usually take place at
preferred sites on the protein surface named ‘pockets’. The utiliza-
tion of protein pocket information can generate more precise CPI
prediction with structural insights [59]. In a work by Torng and
Altman [46] that considers protein pockets as graphs of key resi-
dues, FEATURE [60] software was used to model local protein
pocket using 480 physicochemical properties into protein-
encoding vectors.

3.3. Integrated databases

There are databases that provide integrated annotations with
extra curation efforts. BindingDB collects detailed binding data
from experiments, such as enzyme inhibition or calorimetry, and
curated the literature information from PubChem and ChEMBL.
Gao et al. [61] compiled the CPI information of 39,747 positive
and 31,218 negative records by IC50 value from BindingDB. This
customized dataset was utilized by Zheng et al. [62].
4. AI methods for CPI prediction

Computational models for CPI prediction have been extensively
developed over the decades. As shown in Fig. 4, CPI prediction



Table 1
List of databases used in CPI prediction. The databases are organized in three separate categories: chemistry-centric, protein-centric and integrated databases. (a) Chemistry-
centric databases mostly focus on integrating the information from chemical experiments. They comprise SMILES, InChI key, or other accession data and their
interacting/targeting proteins with corresponding affinities. (b) Protein databases provide sequence information in general. They rarely contain information linked with
chemical compounds. (c) Other databases include integrated information in addition to compounds or proteins, such as association with genes, diseases, or phenotypes.

Database Coverage (Number of entities) ML methods to use DB Reference

Compounds Proteins Interactions T F G S P D

PubChem 111 m 99 k 273 m – [51,63,64] [44,65,66] [44,66] [44] [67,66] [68,69]
ChEMBL 1,961,462 13,382 16,066,124 [53] [70,71] [70] [52] [53,54] [72]
DUD-E 22,886 102 22.8 k* [45,62,71,73] [62] [52,45,46,73] [46] [55]
DrugBank 13,791 5,696 27,954 [53,74–

76]
[51,63,64,
74,76–78]

[44,65,70,73,79] [34,44,70,80] [44,46,73] [46,53,54,77,79] [81,82]

STITCH 0.5 m 9.6 m 1.6b [75,76] [76] [66] [66] – [66,67] [83,84]
TTD 2,251 3,473*** 43,875 [53] – – – – [53,54] [85]
PharmGKB 708 – – [53] [53,54] [86]
Matador 801 2,901 15,843 [74] [74] [73,79] [73] [79] [87]
DrugCentral 2,529 2,003 17,390 [53] – – – – [53] [88]
SuperTarget 195,770 6,219 332,828 [76,89] [76,78] – [80] – [87,90]
Metz 3,858 172 258,094 – – – – – [91] [92]
MUV 93 k 17 – – – [71] – [46] [46] [93]
ZINC 750 m** 2,864 (for

eukaryotes)
638,174 – – [71] – – – [94]

Protein-centric databases
Compounds Proteins Interactions T F G S P D

UniProt – 20,385 – – [51,63] [70] [70] – – [47]
Protein Data

Bank
– 170,597 – – [64] [45] – [45,46] [46] [48,95]

PDBbind 11,762 3,566 17,679* – – [45] – [45,52,96] – [97,98]
Pfam – 18,259 – – [51,63,64] – – – [67] [99–101]
BRENDA 46 8083** 500 k [74,89] [74,78] [65] – – – [102]

Integrated databases

Compounds Proteins Interactions T F G S P D

KEGG 18,749*** 31,224,482**** – [74–
76,89]

[74,76–
78]

[79] [80] – [77,79] [103]

BindingDB 910,479 8,161 2.1 m – – [45,61,62,65,66] [34,61,62,66,104] [45,61,104] [54,66]
Davis 72 442 30 k – [44,105] [44] [44] [91,106] [107]
K KIBA 229 211 118 k [44,105] [44] [44] [91,106] [108]
IUPHAR/BPS 10,053 2,943 48,902 [53] – [79] – – [53,54,79] [109]

� positives.
�� 213 m 3D information available.
� � �raw file downloaded on Nov 11th, 2020.
� protein-ligand complexes.
�� EC numbers (online).
� � �drugs:11.3 k
� � ��human proteins:19.7 k
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models can be grouped into five categories according to the com-
putational techniques used. In the subsequent subsections, we dis-
cuss models in each category in detail.

4.1. Tree-based methods

Technical background. The decision tree (DT) is a flowchart-like
tree structure, where each node denotes a test on an attribute
value, each branch represents an outcome of the test, and tree
leaves represent classes or class distributions [110]. Because a
decision tree shows how decision is made clearly as ‘if-then’ rules,
DT is one of the most widely used classification techniques. When
the number of dimensions is higher than the number of data sam-
ples, DT is limited in predictive power. To increase the predictive
power of the decision tree, a group of decision trees can be used.
Popular techniques are random forest (RF) and tree-boosting algo-
rithms. In fact, model performance can be improved by aggregating
a group of prediction ‘trees’ as a ‘forest’ which is a widely used
ensemble learning strategy [111]. Another important issue of using
the decision tree for CPI prediction is generation of features since
the use of nodes or edges in the compound graph or protein struc-
ture as features results in too many features and can also lose con-
textual information.
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CPI data is naturally of very high dimensions since the search
space is a cartesian product of two large dimensions, dimension
for compounds and dimension for protein targets. Unfortunately,
the number of samples, i.e., CPI examples, is relatively small. Thus,
the generalization power of a decision tree is quite limited for CPI
prediction. For this reason, random forests are used for CPI to avoid
over-fitting to the training set [15,53,76]. Beyond the simple use of
RF as a model predictor, Zeng et al. [53] proposed a network-based
computational framework called AOPEDF to infer CPI prediction.
Inspired by the work of Zhou and Feng 00[112], they constructed
a heterogeneous network by uniquely integrating 15 networks
covering chemical, genomic, phenotypic, network profiles among
drugs, proteins, and disease. The network features are used as
input to the cascade deep forest classifier to infer new drug-
target interactions. The entire system was termed as an
arbitrary-order proximity embedded deep forest approach
(AOPEDF). In addition to RF, other boosting methods are also
widely used for protein–ligand prediction [74,75,89]. Using the
Bayesian approach as a prior, Li et al. [75] built a Bayesian Additive
Regression Trees (BART) [113] based model that provides a reliable
posterior mean of the results instead of simply producing a binary
answer for prediction. XGBoost is another tree boosting system
that follows a similar procedure as the Gradient Boosting Tree



Fig. 4. Overview of the process of CPI prediction. After obtaining the original chemical or protein data from databases, various encoding techniques are used to prepare the
data with model-readable vector formats (left). These encoded data are then submitted to a model or a combination of several models to learn the pattern of data. We
categorize these models into two main groups (machine learning and deep learning) that contain five subgroups together (middle). After training models with the data,
different metrics are chosen to evaluate the model. Note that CPI is predicted whether in a regression style by predicting the affinity value or in a classification style by
predicting the interaction label (right).
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(GBT) algorithm. XGBoost uses the regularized learning objective
to improve the model efficiency [114]. Mahmud et al. [74] used
XGBoost on the reduced features to train the computational model
for CPI prediction, whose result shows that the XGBoost classifier
outperforms other three learning methods.

4.2. Network-based and Kernel-based methods

Technical background. Compounds are naturally a graph with
nodes of chemical elements and edges that connect chemical ele-
ments. Protein structure is also a graph of nodes of amino acids.
This natural representation of graphs requires computational
methods to generate features for compounds and proteins. A
widely used feature generation method is to use random walks
on a graph, which results in generation of many sub-graphs as fea-
tures. Once features are determined, the decision boundary
between true CPIs and non-CPIs needs to be constructed by
machine learning methods such as support vector machine
(SVM), Lasso regression-based classifiers, and canonical correlation
analysis. Since the decision boundary for CPI can be complicated,
kernel trick or kernel-based methods are frequently used for han-
dling non-linear decision boundaries.

Network-based and kernel-based ML methods have long been
used for CPI prediction. A number of computational methods uti-
lized the CPI network of known/identified edges between com-
pounds and proteins to identify novel targets [116–118]. For CPI
prediction at the network level, Lo et al. [119] developed a scoring
function and used a concept of ‘chemotype’ to reduce the size of
CPI space by measuring the fingerprint-based pairwise similarity
of chemical compounds. The search space for this problem is called
bow-pharmacological space to integrate both chemical and target
spaces [75,120]. By building the CPI space with known interactions,
new interactions are predicted. A seminal work on CPI space explo-
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ration was done by Chen et al. [121] that they proposed network-
based random walk with restart on two heterogeneous network
(NRWRH) of drugs and target proteins. They built a network by
integrating similarity information among homogeneous com-
pound/protein entities and compound-protein interactions from
four different databases (EGG BRITE, BRENDA, SuperTarget, and
DrugBank databases. See Table 1) where four separate protein sub-
categories (enzyme, ion channel, GPCR and nuclear receptor) were
dealt individually. This work provided a novel perspective on CPI
that considers topological importance with nearby entities.
Another interesting study measured chemical similarity using fin-
gerprints for predicting drug responses [122].

Rather than using fingerprints as is, kernel-based methods are
frequently used to determine complex non-linear decision bound-
aries for CPI. A representative kernel-based method is support vec-
tor machine (SVM) that it maps data points in the high-
dimensional space into the feature space and then constructs deci-
sion boundaries in the feature space. SVM-based methods have
been used for CPI prediction extensively [63,74,76]. Although
SVM itself is a powerful classification method, selection of features
(herein chemical/protein features) is very important for construct-
ing decision boundaries and also for interpretability. Tabei et al.
[63] used chemical fingerprints and protein domains as features.
Yu et al. [76] chose description methods to extract protein features
from amino acid sequences for the representation of structural and
physicochemical information. ML methods like LASSO (Least Abso-
lute Shrinkage and Selection Operator) [123] are also widely used
for feature extraction. Shi et al. [15] proposed a LASSO-DNNmodel,
where multiple LASSO models are used to integrate different com-
binations of feature sets of protein and compound features, reduc-
ing the effect of less significant features. Other types of feature
manipulation methods such as sparse CCA [51] were used to match
chemical substructures with protein domains.
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4.3. Deep learning – RNN and CNN

Technical background. Recently, deep learning (DL) technologies
have advanced rapidly. A class of DL methods are designed for han-
dling sequential information and had remarkable success in lan-
guage translation and speech recognition. Recurrent neural
network (RNN) is a classical feed-forward neural network that uses
a sequence of building blocks or states to process a sequence of
input. Recent progress of RNN is due to the change in the architec-
ture of building blocks for modeling sequential dependency and
also due to the attention mechanism to model arbitrary inter-
dependence among building blocks. For CPI, a chemical compound
can be represented in a sequential format, e.g, SMILES, and target
protein as a sequence of amino acids. Thus, sequential deep learn-
ing technologies are aggressively tried for CPI prediction. Convolu-
tional Neural Network (CNN) is a class of feed-forward neural
networks to extract relevant features from input data using a series
of convolution operations and, optionally, pooling operations. CNN
is originally developed for processing and analyzing image data,
thus CNN usually takes data in the 2D format. When linear repre-
sentations of compounds and proteins are used, it is necessary to
transform the linear representation into a 2D format. This is usu-
ally done by representing sequences in one-hot or multi-hot
encoding, which becomes a 2D format. CNN has the power of high-
lighting sub-images of an image that correspond to objects, e.g.,
tree, human or dog in a photo image of a public park. For CPI,
CNN can identify subsequences of compounds and proteins that
can interact each other for CPI.

Recurrent Neural Networks. In [61], RNN was used to project
sequential input of amino acid sequences to dense vector represen-
tations by building embedding lookups in terms of both GO anno-
tations and amino acids sequence. Considering dependencies
between residues or atoms that may be close in 3D structure, Kar-
imi et al. [66] used RNN-based seq2seq autoencoder to learn
embedding vectors and subsequently used the attention mecha-
nism to learn binding site information between a compound and
a protein while training the CPI prediction model with convolution
neural network (CNN). LSTM (Long Short-Term Memory), a variant
of RNN, uses memory blocks instead of summation units, which
results in good performance in [80]. In addition, by replacing two
gates of LSTM (input and forget gates) with the updated gate,
GRU (gated recurrent unit) was proposed in [129] and used to cap-
ture local and global context information in molecular or protein
strings [45,128]. Shin et al. [44] used a BERT [130] model that
model the word-like embeddings and the position embeddings of
molecule sequences, for CPI prediction. Transformer, another
sequence-based method, is widely used in CPI prediction tasks
[44,70]. Transformer has both an encoder and a decoder, unlike
BERT only with an encoder, so that training can be possible to
improve prediction accuracies.

Convolutional Neural Networks. Inspired by the success in the
computer vision domain, CNN was used to make structure-based
binding affinity prediction in [124]. Ragoza et al. [125] used CNN
to score CPI with the structural information of protein–ligand com-
plexes. In addition, CNN is also used for feature extraction: 1D
protein-sequence-encoded vector [44,66,73,105,126,127], or
molecular SMILES encoded vector [66,105,127], or combined vec-
tor of protein and small molecule [65]. In Lee et al. [79], local resi-
due patterns of generalized protein classes are captured from AA
sub-sequences of various lengths. To utilize evolutionary informa-
tion of protein data, protein sequences are encoded with BLO-
SUM62 matrix [131] and further processed with CNN module in
the work of Li et al. [45]. Attention mechanism [66,73] or RNN
[66] are also coupled with CNN to provide interpretation or unsu-
pervised pre-training to achieve better performance. However,
considering only 1D information is limited in reflecting 3D struc-
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tures of a protein. In the work of Zheng et al. [62], 2D distance
map of a protein was used to provide structural information of a
protein. Given a 2D distance map as input, a CNN-based Visual
Question Answering (VQA) system can be used to generate the
answer to ’whether a pair of compound and protein interact with
each other’ when taking molecular linear notations as a query.
Recently, to reduce information loss during the process of data
transformation, 2D images of compounds also used as input by
Rifaioglu et al. [71] to predict interactions between compounds
and proteins.

4.4. Deep learning – graph based methods

Technical background. The compound and the protein can be
naturally represented as a graph with nodes of chemical elements
or amino acids and edges between nodes. Handling graphs is a
complicated task. Fortunately, DL methods for graph learning,
specifically Graph Neural Network (GNN), have recently advanced
dramatically. The basic strategy is to learn embedding vectors of a
compound graph and a protein graph separately and combine two
embedding vectors for CPI prediction, which is called the late inte-
gration strategy. Alternatively, embedding vectors can be learned
simultaneously for compounds and proteins, which is called the
early integration strategy. Among various GNN methods, Graph
Convolutional Network (GCN) uses convolution operations on
adjacent nodes to update the central node. Message Passing Neural
Network (MPNN) learns the structure of a graph topology by prop-
agating information of each node to neighboring nodes via the
edges, which results in considering edge and node features
simultaneously.

GCN was used to learn embedding vectors of molecular graphs
in [61,66]. Torng and Altman [46] used two graph autoencoder, one
for molecular graph structure and the other for protein pockets, to
construct embedding vectors that are combined to determine the
interaction patterns. Protein–ligand complexes are considered as
input to embed 3D graph representation similarly in the work of
Lim et al. [52]. In addition, attention mechanisms are often coupled
with GCN to provide better interpretability while achieving better
CPI prediction performance [44,52,73]. One limitation of GCN is
that GCN considers local neighboring nodes only and has difficulty
in reflecting the global 3D structure and edge information. To over-
come the limitation, Karlov et al. [96] used MPNN to embed drug
compounds by considering both nodes and edges. In a recent study,
ensembles of DL methods were used for CPI prediction Li et al. [45].
Both MPNN and GWU (Graph Wrap Unit) were used to generate
chemical graph features.

4.5. Deep learning – emerging methods

In addition to DL models that learn latent representation (e.g.
autoencoder), generative models such as variational autoencoder
(VAE) or generative adversarial network (GAN) are extensively
used. Autoencoder (AE) is an artificial neural network model that
compresses input data effectively and reconstructs data as com-
pressed reduced representation in an unsupervised manner. VAE
is for learning parameters that estimate the distribution of input
data. On the other hand, GAN is based on game theory that one
network (generator) generates fake data in order to deceive the
other (descriptor).

The features of the input data can be extended using the afore-
mentioned models. AE uses the output of the encoder network as a
required latent representation. GAN uses the discriminator net-
work as a feature extraction network while the last classification
layer of the discriminator is useless and usually be removed. In a
recent study of Mao et al. [132], researchers have shown that
GAN can be used to extract features of the input sequence. In the
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GAN model, a discriminator network can be used as a feature
extractor which can be decomposed into feature extractor layers
and a classification layer. Between these two compositions, the fea-
ture extraction layer can effectively learn the latent representation
of the input sequence.
5. Discussions

5.1. Major issues

For the successful CPI interaction, there are two major issues.
The one is data representation and the other is decision boundaries
with negative samples.

Data representation. Widely used representations of compounds
and proteins are human-readable formats such as SMILES and AA
sequences. However, these human-readable formats often fail to
carry critical information such as neighborhood in the 3D space.
Thus, various data formats have been designed and tried for CPI
prediction. The selection of methods for representing compounds
and proteins depends on the technologies used for CPI prediction.
For example, DL technologies use latent vector representation of
compounds and proteins. This is because DL methods are not
designed to handle symbolic information such as chemical ele-
ments and AA. Instead, DL methods generate latent vectors and
combine these latent vectors to predict CPI. It is a merit of DL
strategies that, since the amount of data for CPI is small compared
to the joint interaction space of compounds and proteins, embed-
ding vectors can have more generalization power for to predict
CPIs beyond the training data. For compounds, Sanchez-Lengeling
and Aspuru-Guzik [133] classified molecular representations into
three categories: discrete, continuous, and weighted graphs. For
compounds, SMILES string is a typical 1D representation of molec-
ular graphs, fingerprints of compounds are useful for quantifying
the molecular environment [69,134,135], and other representa-
tions such as Coulomb matrix [136] or electron density [137] can
mimic electrostatic environment among nuclei. For representing
proteins, AA sequences are mostly widely used. Instead of using
AA sequence as is, many of current methods also consider evolu-
tionary information of proteins by encoding AA sequence with
PSSM or BLOSUM62 [45,74]. In addition, sequence-based features
with PseAAC (Pseudo Amino Acid Composition Chou [138]), or
structure-based features with 3D protein information [74] can be
used together with AA sequences.

Decision boundary with negative examples. Constructing decision
boundary for true CPIs requires sophisticated computational meth-
ods such as DL-based latent vector representations of compounds
and proteins. In addition to the computational methods, it is
important to filter true negative interactions when predicting
compound-protein interactions [38]. Based on the converse nega-
tive proposition with the assumption that similar compounds are
likely to interact with similar target proteins and vice versa, Liu
et al. [139] presented a systematic method of screening reliable
negative samples. They computed chemical structural similarity
and protein structural similarity from various chemogenomic
resources (e.g. Chemical fingerprints, side effects, sequence simi-
larity, GO annotations and protein domain). These similarities are
integrated to calculate feature divergence for further screening
negative samples from validated/predicted interactions. With dif-
ferent experiment settings on classical classifiers and existing pre-
dictive models, they demonstrated that screened negative samples
by their framework are highly credible and helpful for identifying
CPIs. Recently the human and C.elegans datasets that were
screened by the work are successfully used in the prediction of CPIs
achieving a significant performance improvement [79,73].
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5.2. Interpretable learning

ML model perspective. Two main approaches should be consid-
ered for interpretable learning from the ML point of view: 1) design
an algorithm that is inherently interpretable; 2) build an effective
encoding scheme that helps human-level interpretation of data,
and subsequently uses a separate set of re-representation tech-
niques to assist the user in understanding the prediction results
from the algorithm [140]. (Fig. 5) One way for interpretable learn-
ing is to use structural information. PDB database is the represen-
tative database that provide co-crystallized information of
protein–ligand combinations. Leveraging PDB database was well
demonstrated in a recent work by Torng and Altman [46]. Moti-
vated by the fact that CPI is a docking process between a ligand
and a small part of a target protein, the authors treated compounds
as graphs and target proteins as a pocket graph, with node features
retrieved from their own program using PDB database. Generation
of salient features at the trained graph convolution layers provides
atom/residue-level contributions on molecular docking for inter-
pretation [141]. Existing works also demonstrated the improved
interpretability of GCN convolutional filters by progressively nar-
rowing down features extracted from GCN [142]. see Table 2–6.

Attention mechanism. DLmethods are often criticized for making
black-box decisions in that interpretation on how the final decision
was made is difficult. Attention mechanism [143] is suggested as
the most promising way to address this issue. Attention mecha-
nism basically tries to capture instance-level importance to the
final classification result by highlighting weights of features that
are most relevant to prediction decisions. It has been widely used
for image processing or speech recognition [144,145]. Attention is
extensively used for CPI prediction as summarized in Table 7. ML
models with attention mechanism can capture atom-level contri-
butions for CPI prediction. For example, Gao et al. [61] used atten-
tion on protein and compound latent vectors in LSTM and GCN
layers, respectively. Their method enabled visual investigation on
the contribution of atoms related to target proteins which can
characterize pharmacophores. Karimi et al. [66] used attention
mechanism for training model, identifying ligand binding sites,
and also predicting corresponding protein segments. Shin et al.
[44] proposed a molecular transformer that models SMILES strings
into better representation vectors with a self-attention mecha-
nism. To capture interaction sites between a subgraph of com-
pound and a subsequence of protein, Tsubaki et al. [73] used the
neural attention mechanism on GNN and CNN output, to measure
the molecule-protein pair interaction strength represented by
attention weight for CPI prediction. In addition, Agyemang et al.
[91] used the multi-head self-attention mechanism to generate
an information-rich representation of compounds and targets by
combining various unimodal representations.
5.3. Emerging technologies

Data description. Most CPI methods provide interpretation on
either chemical or protein space. Interaction fingerprint (IFP) is a
method to represent and analyze 3D protein–ligand complex that
it encodes the presence or absence of specific interactions of bind-
ing sites with one-dimensional vector. Deng et al. [146] pioneered
the use of IFPs to identify and cluster docking poses with similar
binding modes, revealing distinct binding interactions and demon-
strating that IFP is useful for visualizing and analyzing CPI. Inspired
by this work, Chupakhin et al. [147] devised a novel type of fixed
size fingerprint called SILIRID (Simple Ligand-Receptor Interaction
Descriptor). SILIRID is calculated from IFPs by summing up bits
corresponding to identical AAs. It consists of 168 integer values



Table 2
Tree-based methods for CPI prediction.

Tool Year Format Encoding

Description

Yu et al. [76] 2012 C: - DRAGON
P: - PROFEAT WEBSEVER

A method that integrates the chemical, genomic, and
pharmacological information to predict CPI.

Zhang et al. [89] 2017 C: - *-
P: AA properties AAindex1

An ensemble of REPTree classifiers by random
projection to identify drug-target interactions.

Li et al. [75] 2019 C: - MACCS
P: AA seq AAC and *

A method that applies Bayesian Additive Regression
Trees on uniform proteochemical space to predict
protein–ligand interactions.

Shi et al. [15] 2019 C: FP2 Pubchem (binary vector)
P: AA seq PSSM matrix

A method that uses LASSO to remove redundant
information from protein PsePSSM and molecular FP2
description and makes prediction with Random
Forest.

Mahmud et al. [74] 2020 C: SMILES MSF
P: AA seq PseAAC and **

A computational model that uses balancing
techniques and applies feature eliminator to extract
features for CPI prediction.

Zeng et al. [53] 2020 C: - interaction and ***
P: - interaction and ***

A network-based computational framework that
learns low-dimensional vector representation of
features and predicts CPI with cascade deep forest.

C: Compound, P: Protein, �: Physicochemical features, Property groups.
MSF: Molecular Substructure Fingerprint, ��: PSSM-Bigram and SPIDER2.
� � �: association and similarity matrices.

Table 3
Network- and Kernel-based machine learning methods for CPI prediction.

Tool Year Format Encoding

Description

Yamanishi et al. [51] 2011 C: FP Pubchem *
P: domains binary coding scheme

A method that utilizes sparse CCA to extract
chemical substructures and protein domains.

Cheng et al. [78] 2012 C: - -
P: - –

A network-based inference method to create
compound-protein network and predict new CPI.

Tabei et al. [63] 2012 C: FP Pubchem *
P: domains binary coding scheme

A classifier-based approach to identify
chemogenomic features that are involved in
compound-protein interaction networks.

Yu et al. [76] 2012 C: - DRAGON
P: - PROFEAT WEBSEVER

A method that integrates the chemical, genomic, and
pharmacological information to predict CPI.

Zu et al. [64] 2015 C: FP Pubchem *
P: domains binary coding scheme

A statistical model to evaluate substructure-domain
interactions globally and infer interactions.

Hu et al. [77] 2016 C: FP Pubchem *
P: AA seq binary coding scheme

A hybrid model based on stacked sparse autoencoder
and SVM.

You et al. [115] 2019 C: structural info OCHEM
P: AA seq AAC **

A LASSO-DNN model for compound and protein
feature extraction and CPI prediction.

Mahmud et al. [74] 2020 C: SMILES MSF
P: AA seq PseAAC ***

A computational model that uses balancing
techniques and applies feature eliminator to extract
features for CPI prediction.

C: Compound, P: Protein, MSF: Molecular Substructure Fingerprint, *: binary vector.
**: DC, TC, ajacency matrix, ***: PSSM-Bigram and SPIDER2.

Fig. 5. Methods for interpretation of deep learning models divided into 3 types: inherently interpretable method, saliency map, and attention mechanism. (a) Inherently
interpretable method refers to the method whose components can be further used to comprehend how the machine makes decisions. Hierarchical division of molecular
structures can classify compounds in terms of the existing substructures determine given class labels (b) Saliency map is widely used to reveal the most contributed part of an
input that activates the specific layer of the network. (c) Attention mechanism is mainly applied to neural networks, revealing where the model focuses on the input
representation when making predictions.
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that describe the complex of ligand-receptor (compound-protein)
by considering the set of eight types of interaction for a pair of
AA and an atom. In addition, Nguyen et al. [148] reviewed in detail
how biomolecular data of high complexity and dimensionality are
converted to features using mathematical methods.
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Generative model with reinforcement learning. As discussed in
Section 4.5, we can use the hidden representation of data to gener-
ate new compounds for specific targets. Zhavoronkov et al. [24]



Table 4
RNN and CNN methods for DTI prediction.

Tool Year Format Encoding

Description

Wallach et al. [124] 2015 co-complex structure * with 1Åspacing
The first structure-based CNN model to predict CPI.

Ragoza et al.[125] 2017 co-complex structure * with 0.5Åresolution
A CNN based model to predict protein–ligand interaction with 3D depiction of co-complex structure.

Gao et al. [61] 2018 C: SMILES chemical structure graph
P: AA seq, GO term lookup embedding

An end-to-end deep neural network that embedded with two-way attention mechanism for identifying compound-
protein interactions.

Öztürk et al. [105] 2018 C: SMILES label encoding **
P: AA seq label encoding **

An end-to-end CNN-based CPI prediction model that eliminates the need for feature engineering.

Feng et al. [65] 2018 C: SMILES MGC, ECFP
P: AA seq PSC descriptor

A feature-engineering free deep learning-based model for CPI prediction.

Karimi et al. [66] 2019 C: SMILES seq2seq **
P: AA seq seq2seq (SPS)

A semi-supervised unified RNN-CNN model for jointly learning protein/compound representations and predicting
affinity.

Karimi et al. [104] 2019 C: SMILES chemical structure graph
P: AA seq k-mers (SSPro/ACCPro)

An intrinsically explainable neural network architecture for predicting compound-protein interactions.

Lee et al. [79] 2019 C: SMILES Morgan/Circular Fingerprint
P: AA seq lookup embedding

A CNN-based model for detecting local residue patterns and predicting CPI.

Nguyen et al. [126] 2019 C: SMILES chemical structure graph
P: AA seq label encoding ***

A deep learning based network for capturing compound structural information and predict binding affinity.

Öztürk et al. [127] 2019 C: SMILES label encoding *
P: AA seq, motifs, domains label encoding

A deep-learning based prediction model that employs chemical and biological textual sequence information to predict
binding affinity.

Shin et al. [44] 2019 C: SMILES word embedding
P: AA seq label encoding **

A self-attention-based molecular transformer for CPI prediction.

Tsubaki et al. [73] 2019 C: SMILES chemical structure graph
P: AA seq overlapping 3-gram AA vector

A deep learning based CPI prediction model that captures interaction sites between compound and protein with neural
attention mechanism.

Huang et al. [70] 2020 C: SMILES one-hot encoding ****
P: AA seq one-hot encoding ****

An end-to-end biologically inspired transformer based framework for CPI modeling.

Li et al. [45] 2020 C: SMILES chemical structure graph
P: AA seq BLOSUM62 matrix

A multi-objective neural network to predict non-covalent interaction and binding affinity.

Peng et al. [128] 2020 C: SMILES word embedding
P: - –

An end-to-end deep learning-based framework to learn molecular representation and predict toxicity.

Rifaioglu et al. [71] 2020 C: SMILES label encoding
P: AA seq Physicochemical features

An end-to-end parallel convolution neural networks to obtain 1D representations from protein sequences and
compounds SMILES.

Rifaioglu et al. [71] 2020 C: SMILES 2D compound image
P: - P: -

A CPI prediction system that takes compound 2D image as input.

Wang et al. [80] 2020 C: SMILES MSF
P: AA seq PSSM matrix

A DeepLSTM-based method for representing and compressing features for compound-protein pairs interaction
prediction.

Zhang et al. [34] 2020 C: SMILES SMILES2Vec ****
P: AA seq encoded with ProtVec

A word2vec-inspired featrue representation method for CPI prediction

Zheng et al. [62] 2020 C: SMILES token embedding
P: AA seq pairwise distance matrix

A Visual Question Answering (VQA)-inspired interpretable deep learning model for compound-protein interaction
prediction.
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C: Compound, P: Protein, MGC: Molecular Graph Convolutio, MSF: Molecular Substructure Fingerprint.
*: fixed-size grid, **: fixed-size vector, SPS: SSPro/ACCPro.
***: SMILES, Max Common Substructure, ****: substructure representation.

Table 5
Graph based methods for CPI prediction.

Tool Year Format Encoding

Description

Gao et al. [61] 2018 C: SMILES CSG
P: AA seq, GO
term

lookup embedding

An end-to-end deep neural network that embedded with
two-way attention mechanism for identifying
compound-protein interactions.

Karimi et al. [104] 2019 C: SMILES CSG
P: AA seq k-mers (k-mers)

An intrinsically explainable neural network architecture
for predicting compound-protein interactions.

Lim et al. [52] 2019 co-complex
structure

ajacency matrix (graph
embedding)

A GNN-based model that predict CPI with 3D structure-
embedded graph representation of protein–ligand
complex.

Shin et al. [44] 2019 C: SMILES word embedding
P: AA seq label encoding

A self-attention-based molecular transformer for CPI
prediction.

Torng and Altman
[46]

2019 C: SMILES CSG
P: PDB file FEATURE *

A GNN-based method to learn fixed-size representations
of protein pockets and chemical structural graph
synchronously and predict CPI.

Tsubaki et al. [73] 2019 C: SMILES CSG
P: AA seq overlapping 3-gram AA vector

A deep learning based CPI prediction model that
captures interaction sites between compound and
protein with neural attention mechanism.

Li et al. [45] 2020 C: SMILES CSG
P: AA seq BLOSUM62 matrix

A multi-objective neural network to predict non-
covalent interactions and binding affinites.

Karlov et al. [96] 2020 co-complex
structure

3D grid representation map

An MPNN framework for learning protein–ligand
complex features and predicting binding affinity.

C: Compound, P: Protein, CSG: Chemical Structure Graph, SPS: SSPro/ACCPro.
�: graph of key residues.

Table 6
Emerging methods for CPI prediction.

Tool Year Format Encoding

Description

Hu et al. [77] 2016 C: FP PubChem FP
P: AA seq binary coding scheme

A hybrid model based on stacked sparse autoencoder
and SVM.

Tian et al. [67] 2016 C: FP PubChem FP
P: domains binary coding scheme

A DNN model to extract features from chemical
subsrtucture and protein domain and predict CPI.

Karimi et al. [66] 2019 C: SMILES seq2seq *
P: AA seq seq2seq (SPS)

A semi-supervised unified RNN-CNN model for jointly
learning protein/compound representations and
predicting affinities.

Lee et al. [79] 2019 C: SMILES Morgan/Circular Fingerprint
P: AA seq lookup embedding

A CNN-based model for detecting local residue
patterns and predicting CPI.

Zhao et al. [106] 2019 C: SMILES text embedding
P: AA seq text embedding

A semi-supervised GAN-based GANs to learn
representations from the raw sequence data of
proteins and compounds and predict affinity.

Agyemang et al. [91] 2020 C: SMILES various descriptor schemes
P: AA seq various descriptor schemes

A multi-view self-attention-based architecture for
learning the representation of compounds and targets
from different unimodal descriptor schemes.

Zeng et al. [53] 2020 C: - interaction and **
P: - interaction and **

A network-based computational framework that
learns low-dimensional vector representation of
features and predict CPI with cascade deep forest.

Zeng et al. [54] 2020 C: - probabilistic co-occurrence matrix
P: - probabilistic co-occurrence matrix

A network-based deep learning methodology for CPI
prediction that embeds various types of chemical,
genomic, phenotypic, and cellular networks.

C: Compound, P: Protein, �: fixed-size vector, SPS: SSPro/ACCPro.
��: association and similarity matrics.
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developed an innovative software framework to generate com-
pounds for DDR1 kinase inhibitor. They used several strategies
for exploring CPI space. First, they used VAE to model compound
space for DDR1 kinase inhibitor. Generation of compounds is
guided with a strong prior for VAE that was learned from the Zinc
Clean Leads collection [94] by tensor train decomposition. In this
work, the exploration of compound space by VAE is confined by
limiting the target gene space to DDR1 kinase. To guide search
for commercially valid compounds, they used a strong prior from
the Zinc Clean Leads collection. Second, they used reinforcement
learning (RL) to explore the target gene space of kinase inhibitors
by evaluating compounds generated by VAE using three self-
organizing maps (SOM) as a reward function. They developed
1552
and used a search framework, called GENTRY, to discover potent
inhibitors of discoidin domain receptor 1 (DDR1), a kinase target
implicated in fibrosis and other diseases. This entire discovery pro-
cess was done only in 21 days. This work is an outstanding exam-
ple of exploring the compound space and the target gene space in
terms of CPI interaction. In other recent studies, VAE and RL were
used independently or in combination to explore the data space to
design a compound with desired properties [149–152].

Challenges and issues. There is a challenge named ‘D3R Grand
Challenge’, a worldwide competition to test state-of-the-art meth-
ods for compound design, which has been organized by the Drug
Design Data Resource since 2015 [153]. In each year, a number of
co-crystal structures of protein–ligand and affinity data were



Table 7
Applications of the attention mechanism in CPI methods.

a) molecular string, protein string

Study Description

Karimi et al.
[66]

Included different attention mechanisms in the unified RNN-
CNN models to quantify the contribution of compound and
protein.

Shin et al. [44] Proposed a Molecule Transformer that models molecular
SMILES strings into better representation vectors with self-
attention mechanism.

Tsubaki et al.
[73]

Used a neural attention mechanism to weight for hidden
vectors of subsequences in protein considering molecular
vector.

b) molecular graph, protein string

Study Description

Gao et al. [61] Used two-way attention mechanism to estimate how CPI
pair interacts.

Agyemang
et al. [91]

Used multi-head self-attention mechanism to learn most
significant segments (segment refers to an atom in molecule
or a residue in target) that may be vital to protein–ligand
recognition.

c) molecular graph, protein graph

Study Description

Lim et al. [52] Devised distance-aware graph attention mechanism to find
the significant nodes and differentiate the contribution of
each interaction to binding affinity.
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provided to estimate pose, affinity, and free energy of ligands.
Nguyen et al. [154] developed the winning model to predict the
free energy of Cathepsin S (set 1) in D3R Grand Challenges 3. The
latest D3R challenge was held in December 2018 where Nguyen
et al. [155] shows the top-placed performances in estimating the
pose of BACE ligands by GAN- and CNN-based deep learning model.
For protein structure prediction, CASP13 is one of the well-known
competition series in the protein structure prediction technology
field. Last year, AlphaFold2, an advanced version of AlphaFold
[50] by Google’s Deepmind demonstrated that AI techniques can
infer structures of proteins from AA sequences with high accuracy.

Furthermore, the selection of suitable evaluating metrics is an
important issue. Performance of the protein–ligand scoring metrics
was extensively compared in terms of scoring power, ranking
power, docking power, and screening power in Comparative
Assessment of Scoring Functions (CASF) [58,98,156].
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