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Abstract

Motivation: Sequence graphs are versatile data structures that are, for instance, able to represent

the genetic variation found in a population and to facilitate genome assembly. Read mapping to se-

quence graphs constitutes an important step for many applications and is usually done by first

finding exact seed matches, which are then extended by alignment. Existing methods for finding

seed hits prune the graph in complex regions, leading to a loss of information especially in highly

polymorphic regions of the genome. While such complex graph structures can indeed lead to a

combinatorial explosion of possible alleles, the query set of reads from a diploid individual realizes

only two alleles per locus—a property that is not exploited by extant methods.

Results: We present the Pan-genome Seed Index (PSI), a fully-sensitive hybrid method for seed

finding, which takes full advantage of this property by combining an index over selected paths in

the graph with an index over the query reads. This enables PSI to find all seeds while eliminating

the need to prune the graph. We demonstrate its performance with different parameter settings on

both simulated data and on a whole human genome graph constructed from variants in the 1000

Genome Project dataset. On this graph, PSI outperforms GCSA2 in terms of index size, query time

and sensitivity.

Availability and implementation: The Cþþ implementation is publicly available at: https://github.

com/cartoonist/psi.

Contact: ghaffari@mpi-inf.mpg.de or t.marschall@mpi-inf.mpg.de

1 Introduction

The reference genome of a species is intended to be the representa-

tive genome of its population. The ‘linear’ reference genomes in use

today, at best, reflect a consensus genome of all individuals, but do

not capture small variants and structural diversity of a population

(Church et al., 2015). When mapping reads to such references, this

leads to a reference bias: reads supporting the reference allele have a

higher chance of being aligned compared to reads supporting an al-

ternative allele (Garrison et al., 2018; Paten et al., 2017; Rakocevic

et al., 2019; ). This limitation hampers the performance of down-

stream analyses such as variant calling. In particular, short reads

coming from highly divergent regions, such as the human leukocyte

antigen (HLA) genes, often remain unmapped or misaligned

(Dilthey et al., 2015).

At the same time, advances in high-throughput sequencing tech-

nologies have enabled gathering extensive catalogs of genetic vari-

ation, for instance by the 1000 Genomes Project (1 KGP) (Auton

et al., 2015). With the advent of long-read technologies, the de novo

assembly of individual human genomes has now become feasible,

which additionally uncovers substantial amounts of structural vari-

ation missed in short-read-based studies (Audano et al., 2019;

Chaisson et al., 2015, 2017). Importantly, such assembly-based

approaches are able to resolve the full sequences of alternative

alleles. Translating this growing knowledge about genomic diversity

in humans into improved analysis pipelines for (re-)sequencing data

constitutes a pressing challenge in bioinformatics.

Consequently, there is a growing interest in data structures cap-

able of representing a species’ pan-genome, that is, to encode a com-

prehensive amount of sequence found in the genomes of a

population (Computational Pan-Genomics Consortium, 2018). Pan-

genomes can be represented in different ways that come with vary-

ing computational advantages and limitations. One simple approach

consists in augmenting the reference genome with alternative alleles

for important loci, a strategy that is implemented (to a limited ex-
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tend) in the current version of the human reference genome

GRCh38 (Church et al., 2015). Graph-based representations, in

contrast, can express polymorphisms more flexibly and succinctly,

but introduce substantial computational challenges (Computational

Pan-Genomics Consortium, 2018; Paten et al., 2017). Initial studies

have demonstrated clear benefits, including a reduced reference bias

(Garrison et al., 2018; Rakocevic et al., 2019), enhanced variant

calling (Eggertsson et al., 2017), as well as improved allele inference

of difficult loci, such as the HLA genes (Dilthey et al., 2015, 2016).

Despite these successes, considerable algorithmic challenges re-

main. In particular, we are not aware of any read alignment tool

able to map reads to (arbitrary) graphs at speeds comparable to

tools for mapping reads to linear sequences. Most read aligners,

both for mapping to linear sequences and for mapping to graphs,

rely on a seed-and-extend approach (Li and Homer, 2010; Reinert

et al., 2015). That is, they first find short (exact or approximate)

matches, called seed hits, and subsequently extend these seed hits to

obtain alignments. The seed finding step can be fundamentally more

challenging on graphs than on sequences, because complex regions

in the graph can give rise to a combinatorial explosion in the num-

ber of possible paths. Notably, the process of aligning reads to

graphs is not disturbed by this, and efficient algorithms for aligning

sequences to graphs exist (Myers and Miller, 1989; Navarro, 2000;

Rautiainen et al., 2019). In this article, we therefore focus on the

seed finding step with a particular focus on handling variant-dense

regions in the input graph.

1.1 Related work
Collections of similar sequences can be indexed using Burrows–

Wheeler transform (BWT)-based techniques (Mäkinen et al., 2010),

which exploit similarities between the sequences in order to save

space. We refer the reader to the review by Gagie and Puglisi (2015)

for further discussion of related techniques for indexing collections

of sequences and focus on specific techniques to index sequence-

labeled graphs in the following.

Most existing indexing schemes for sequence graphs attempt to

index k-mers in the graph, and they can broadly be categorized as

being either hashing based or BWT based. The first hashing-based

approach was introduced by Schneeberger et al. (2009), and several

related approaches based on hashing k-mers have been put forward

since then (Danek et al., 2014; Eggertsson et al., 2017; Limasset

et al., 2016; Petrov et al., 2018).

Instead of hashing methods, de Bruijn graphs can be used as a

basis for indexing k-mers occurring in sequence graphs. The XBW

transform (Ferragina et al., 2009), which is an extension of the

FM index (Ferragina and Manzini, 2005) to labeled trees, has

inspired approaches like Succinct de Bruijn graphs by Bowe et al.

(2012), kFM-index by Rødland (2013) and GCSA by Sirén et al.

(2014). Later, GCSA2 (Sirén, 2017) was introduced to improve

the original GCSA by employing the ideas of succinct de Bruijn

graphs. This modification relaxed the constraints on cycles in the

graph while it imposed an upper-bound limit on the length of

query searches.

The key limitation of all above approaches is the combinatorial

explosion of the k-mer space as more variants are added to the se-

quence graph. Thus, the index size can grow exponentially which,

consequently, increases the memory footprint and runtime of the

read alignment. In order to handle human genomes, these methods

therefore need to prune the input graph, which can potentially lead

to breaking haplotype paths, or to removing known variants from

the sequence graph.

1.2 Contributions
In this article, we propose the first scalable, fully-sensitive method

for finding seeds in a node-labeled directed graph. We call our ap-

proach PSI, which is short for Pan-genome Seed Index. PSI is a hy-

brid approach that utilizes the indexes of both reference graph and

query reads. We leverage the idea that the k-mer space in the read li-

brary is much more limited than that in the graph. In particular, it is

independent of the number of variants in the graph.

In a preprocessing phase, we construct a collection of paths

through the graph and index them using a conventional FM index.

Our method for selecting these paths is designed to cover as many k-

mers present in the graph as possible. Our evaluation shows that

this path index alone outperforms GCSA2—a highly optimized

indexing method proposed by (Sirén, 2017)—in terms of index size,

query time and sensitivity when indexing all SNVs with allele fre-

quency above 1% found in the 1000 Genomes Project.

Still, our path index does not reach full sensitivity; that is, it

misses k-mers in variant-dense regions of the graph. We refer to

such loci in the graph where the path index misses k-mers as uncov-

ered loci. To rescue missed k-mers at uncovered loci, we index a

chunk (¼subset) of input reads at a time. We then traverse the

graph, starting from all uncovered loci, and the read index in paral-

lel. The full workflow is illustrated in Figure 1. This approach turns

out to be efficient in practice for multiple reasons: (i) by traversing

read index and graph simultaneously, k-mers that are not repre-

sented in the read set are avoided, circumventing extra k-mers pre-

sent in the graph; (ii) even when including all variants from the 1000

Genomes Project, the number of these uncovered loci remains man-

ageable and (iii) the size of the chunks is a tuning parameter that can

be adjusted such that the read index fits into the processor cache,

which makes traversing it very fast. As a result, our hybrid indexing

strategy reaches full sensitivity at a moderate overhead compared to

the path-only index, and is (to our knowledge) the first scalable

technique providing full sensitivity for large, variant-dense graphs.

2 Background

2.1 Notation
A sequence S of length n is a tuple S 2 Rn where R is a finite set R ¼
f0; . . . ; r� 1g called alphabet. The alphabet set for a DNA sequence

can be defined as RDNA ¼ fA;C;G;T;Ng, where N represents an un-

known or ambiguous nucleotide. Since we primarily focus on DNA

sequences in this study, the alphabet set is assumed to be the nucleo-

tide alphabet denoted by R for simplicity throughout the article. The

ith element of the sequence can be referred to as si and the sequence

can be represented by concatenating all its elements s0s1 . . . sn�1.

The text string T is a sequence terminated by a sentinel $ 62 R. A sub-

string of sequence S is indicated by S½i . . . j� ¼ si . . . sj. The substring

S½0 . . . j� and S½j . . . n� 1� are called prefix and suffix of S and are

denoted by S½. . . j� and S½j . . .�, respectively. The term k-mer refers to

any substring of length k in a string.

2.2 Sequence graphs
Given an alphabet R, a tuple G ¼ ðV;E; kÞ is a sequence graph over

R; where V ¼ fv1; . . . ; vjVjg is a set of nodes, E � V � V is a set of

directed edges, and k : V ! R� is a function that maps each node in

the graph to a label (see Fig. 3a). We define ‘ðvÞ :¼ jkðvÞj as a short

hand for the label length of node v. We additionally assume that the

graph is ‘deterministic’, in the sense that two outgoing edges starting

at the same node are assumed to never target two nodes whose
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labels start with the same character. For a given node v 2 V, the

out-degree of v is the number of outward edges from v, denoted by

Gout(v), and in-degree Gin(v) is the number of incoming edges. Any

base c in the graph can be located by a tuple (v, o) where v 2 V is

the corresponding node containing c and o 2 f0; . . . ; ‘ðvÞ � 1g is the

offset of c in kðvÞ. We call such a tuple l ¼ ðv; oÞ a locus in the

graph.

In the literature, sequence graphs are sometimes defined such

that each node implicitly represents a sequences and its reverse com-

plement. For simplicity, we stick to the simpler definition here

and consider the graph representing only the forward strand.

However, it can be easily extended to bi-directed sequence graphs.

Alternatively, this complication can be avoided by additionally

querying the reverse complement seeds.

A path P in the graph is a sequence of nodes ðu; . . . ;wÞ; where

any two consecutive nodes in the path are connected by an edge in

the graph. We define the sequence corresponding to the path P as

the concatenation of its nodes: kðPÞ ¼ kðuÞ . . . kðwÞ. A path in the

graph that starts at offset l of the first node and ends at offset r – 1

of the last node is indicated by Pr
l .

The sequence graph of a species usually consists of multiple con-

nected components corresponding to the multiple chromosomes.

For each connected component M, we augment the graph with two

additional nodes: a head node hM and a tail node tM with label

kðhMÞ ¼ kðtMÞ ¼ �, where � denotes the empty string. We also add

edges (h, v) for all v 2 VM which has zero in-degree and edges (v, t)

for all v 2 VM that has zero out-degree. There are some special paths

of interest: a spanning path of the component M is a path starting

from head node hM and ending in tail node tM. For any locus l ¼
ðv; oÞ in the graph G ¼ ðV;E; kÞ, a k-path is defined to be a path

starting at l whose corresponding sequence length is k.

3 Methods

We consider a set of reads R � Rþ. First, a seed set Q is extracted

from R:

Definition 1 (Seed set). Given the set R of reads sequences, a length k> 0

and a distance d> 0. The seed set Qk;dðRÞ is defined as the set of all k-

mers starting at positions md in the read sequences for any m 2 N0.

Fig. 1. Conceptual overview of the PSI approach. A sequence graph and a set of reads are provided as inputs (yellow). The graph is preprocessed to create a path

index (left/dark blue). The read set is split into chunks and seeds are indexed (right/red). Seed finding proceeds in two stages (middle/light blue)

Algorithm 1. Path selection

Require: sequence graph G ¼ ðV;E; kÞ, path count N

1: function SELECTNEXTNODE(p, P)

2: p0  p:COVERABLEFRONTIERPATH(jPj)
3: v p:LASTNODE()

4: covmin  1
5: vc  0

6: for u in G:ADJACENT(v) do

7: cov P:COVERAGEðp0 � uÞ
8: if covmin > cov then

9: covmin  cov

10: vc  u

11: report vc

12: function SELECTPATHS(G, N)

13: P empty set

14: while P contains less than N paths do

15: p G:HEADNODEðÞ
16: while p can be extended do

17: c SELECTNEXTNODEðp;PÞ
18: p:APPENDðcÞ
19: report P
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Note that for d¼ 1, the seed set Qk;dðRÞ is simply the set of all k-mers

in reads r 2 R, while for d¼ k it contains all non-overlapping k-mers.

We now formalize the problem of seed finding as follows.

Problem 2 (Seed finding). Given a set R of read sequences, a sequence

graph G, and parameters k> 0, d> 0. Find all occurrences of seeds q 2
Qk;dðRÞ in paths in the graph G, where Qk;dðRÞ is the seed set according

to Definition 1.

As discussed above, seed finding is a filtering strategy to limit the

search space of sequence alignment algorithms. The choice of the seed

length k controls the trade-off between specificity and sensitivity of this

filter. Longer seeds increase specificity while reducing sensitivity. In this

article, we assume the value of k to be given as a parameter, which is

usually chosen dependent on read length and error rate of the underlying

sequencing technology.

3.1 Path index
In the preprocessing phase, we create a path index of the genome

graph (Fig. 1, left/dark blue). The path index is essentially a com-

pressed full-text index of a set of selected paths through the graph.

Once constructed, it can be re-used for fast queries to find exact

matches on these paths. The number of paths N is a tuning param-

eter of our indexing strategy; it can range from zero, which turns the

path index off and seed finding happens purely in the traversal

phase, to high numbers that lead to covering every k-path present in

the graph. Constructing the path index proceeds in multiple steps:

3.1.1 Path selection

The first step for constructing the path index is selecting a set of N

paths. This step aims to cover as many k-paths in the graph as

possible.

Definition 3 (Path set coverage). A path p0 is covered by another path

p if the node sequence of p0 is a contiguous subsequence of the node se-

quence of p. We can generalize this to path sets: a set of paths P covers

another path p0 if and only if there is a path p 2 P such that p covers p0.

We define the coverage of path p0 by set P as the number of paths in P

that cover p0.

Definition 4. A set of paths P in the graph k-covers a locus l ¼ ðv; oÞ
if and only if, for all k-paths p starting at l, there is a path in P that

covers p.

Based on Definition 4, P partitions the loci in the graph into two sets

of covered and uncovered loci (for a given value of k). Every uncovered

locus lowers the sensitivity of our path index. In order to reach full sensi-

tivity, all uncovered loci later need to be visited in the graph traversal

phase, which we discuss below in Section 3.3. Consequently, maximizing

the number of loci covered by the N selected paths minimizes the num-

ber of loci to be traversed. On the other hand, longer paths, ideally span-

ning paths, represent all covered k-paths in a more memory efficient way

than shorter paths covering the same set of k-paths. So, the goal of path

selection is finding a subset of P � U such that the number of loci cov-

ered by P would be maximized, where U is the set of all possible paths

that start from the head node h and end at tail node t. More precisely,

we seek to select N paths for each connected components of the graph

(e.g. corresponding to the different chromosomes), resulting in a set

P ¼ fp1; p2; . . . ;pN�mg, where m is the number components in the graph.

For the sake of simplicity (and without loss of generality), we assume

that the graph has only one component in the following.

We propose a heuristic greedy algorithm for selecting a set of paths

that aims at covering as many loci as possible. This algorithm assumes

that the input sequence graph is a directed acyclic graph (DAG).

Although we do not pursue this further in this article, the ideas we pre-

sent could be extended to cyclic graphs, for instance by locally

‘unrolling’ the graph into a DAG as done by VG (Garrison et al., 2018).

Our algorithm starts from an empty set P, and proceeds by incremen-

tally adding paths to the set until it contains the desired number of paths.

The basic idea is simple: To select an additional path, we walk the graph

from the head to the tail node and greedily try to cover sub-paths that

we have not covered before. That is, we want to extend a new path p

such that it contains a little piece that is not yet covered by any other

path selected thus far. To do this, we examine a local window around

the present end of our new path p and refer to this window as the fron-

tier sub-path (Fig. 2). But how far should we look back, i.e. how many

nodes should be included in this frontier sub-path? To determine this,

we use a heuristic that reflects how many paths might possibly exist in

this local neighborhood: We call a path i-coverable, if the product of the

out-degrees of the nodes in that path is at most i. Assume that we have

selected i paths so far and p is the (iþ 1)-th path that we are presently

selecting. We consider the shortest frontier sub-path of p that is i-cover-

able. Assume that v is the last node in p. To decide which node to ap-

pend to p (i.e. choosing between u and w in Fig. 2), we consider the

paths selected so far and determine their coverage (see Definition 3) of

the frontier sub-path extended by each node adjacent to v. We then

choose the node with the lowest coverage, where ties are broken

randomly.

Pseudocode for the path selection algorithm is given in Algorithm 1.

We have visualized the outcome of this path selection algorithm for dif-

ferent numbers of paths in Figure 3 by using Sequence Tube Maps

(https://github.com/vgteam/sequenceTubeMap). This greedy choice ul-

timately enumerates all paths in the graph for large values of N, while

prioritizing them such that the first m paths aim to cover as many k-

Fig. 2. Illustration of path selection algorithm. The path p that is currently

being generated is shown in dark blue. The i-coverable frontier sub-path is

indicated in yellow. The product of the out-degrees on this path (1 � 3 �
2¼6) is smaller than i

(a)

(b)

(c)

(d)

Fig. 3. (a) Sequence graph with nodes displayed as boxes and edges indi-

cated by blue arrows. The remaining three panels show the result of our path

selection algorithm for different number of paths: (b) N¼2, (c) N¼ 4 and (d)

N¼8. Selected paths are represented by red lines and k-covered loci for

k¼10 are shown by dots
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paths as possible in the graph. For simple graph topologies, such as the

ones shown in Figure 3, this strategy maximizes the number of covered

k-paths.

3.1.2 From paths to patches

The set of selected paths P can contain redundancies. That is, there

can be sub-paths shared between multiple paths in P. This redun-

dancy not only affects the memory footprint of our index, it also

slows down the process of locating the occurrences in the graph. We

therefore modify the selection procedure to generate compressed

path sequences that avoid duplicate sub-paths. To this end, we de-

fine a parameter T, named context length. The idea is to produce the

same paths as before but to ‘cut out’ any redundant sub-paths while

ensuring that all sub-paths of size T remain represented. Therefore,

we add paths one-by-one and, before adding each path, determine

which of its length-T sub-paths are not yet contained in any other

path and refer to these sub-paths as novel. We remove all parts of

the path that do not overlap with such a novel sub-path, and hence

retain a set of disconnected patches of the path. This procedure

ensures that all queries for strings of length at most T will remain

unaffected. As a result, we usually obtain few genome-wide paths

along with many smaller paths, the patches, cover variation sites.

3.1.3 Indexing

To build an index, we concatenate the set of these patches to form

one sequence SP wherein the patches pi and piþ1 are separated by a

sentinel $i and SP is terminated by $M–1, with $i 62 RDNA for

0 	 i < M. Then, we construct an FM index of SP (Ferragina and

Manzini, 2005), which we refer to as path index. The path index is

accompanied by a two auxiliary data structures that allow us to

later locate the nodes (and offsets within the nodes) for seed hits on

these paths, which we will refer to as the LOCATE operation in

Algorithm 2. This is facilitated by a data structure to support rank/

select queries and a self-delimited integer vector encoded by Elias

delta for storing the node IDs. The constructed path index can be

used effectively to query any string shorter than the context length

T. Note that smaller values of T usually lead to a smaller path index.

In practice, we set T to the length of the seed hits we want to query.

For the path index and the auxiliary data structures, we rely on the

implementations available as part of the sdsl-lite library (Gog

et al., 2014).

3.2 Chunk index
One of the central ideas to enable full-sensitivity seed finding con-

sists in processing the input read set R in chunks R1;R2; . . . ;RC � R

and finding all seeds within a chunk simultaneously. To achieve this,

we build an index over all seeds we want to query for the present

read chunk Rc, that is, we index the seed set Qk;dðRcÞ as introduced

in Definition 1 (Fig. 1, right/red). The underlying index structure

could be a suffix tree, enhanced suffix array or an FM index as long

as top-down traversal operations are supported. After some prelim-

inary experimentation, we decided to employ suffix trees con-

structed in a write-only top-down (WOTD) manner (Giegerich and

Kurtz, 1995), since we observed best performance in practice and

can tolerate the larger memory footprint compared to an FM index.

WOTD trees are lazy suffix trees that are constructed during traversal

and only evaluate parts of the tree that are actually traversed. Our

key motivation for proceeding in chunks—rather than indexing the

full read set—is rooted in the idea that the index over a chunk can

fit in the processor cache (e.g. in L3 cache) and hence can answer

queries swiftly in practice.

3.3 Traversing graph, path index and chunk index
Given a set of reads R, a seed length k and a seed distance d, our

goal is to find all seed hits in a sequence graph G ¼ ðV;E; kÞ, that is,

to solve Problem 2. For this purpose, we propose a novel strategy

that proceeds in two phases. First, we perform a simultaneous tra-

versal of path index and chunk index, yielding all seed hits repre-

sented in the selected paths. Second, we perform a simultaneous

traversal of all uncovered graph loci and the chunk index, yielded

seed hits missed by the path index, typically in variant-dense regions

of the graph.

Even though represented by quite different data structures, se-

quence graph, path index and chunk index support a common set of

abstract traversal operations. In the following, we describe our

method in terms of such abstract operations and refer the reader to

excellent text books on the details of these data structures (Mäkinen

et al., 2015; Ohlebusch, 2013) as well as to mature implementations

in libraries such as Seqan (Döring et al., 2008; Reinert et al., 2017)

and SDSL (Gog et al., 2014).

More concretely, all three data structures (graph, path index and

chunk index) can be traversed using the following three operations:

• INITTRAVERSAL returns an initial traversal location ‘
• ADVANCEð‘;rÞ starts from traversal location ‘, consumes character

r, outputs the resulting location ‘0 or 1 in case reading r from

location ‘ is not possible
• EXTENSIONSð‘Þ returns the set of possible characters r for which

ADVANCEð‘; rÞ 6¼1

In case of the suffix tree for the chunk index, a traversal location

is described by a suffix tree node and an offset inside the node label,

INITTRAVERSAL returns the root node and ADVANCE walks down the

tree along the corresponding labels. For an FM index (which we use

as path index), a traversal location is usually characterized by an

interval in the BWT, but just like for a suffix tree, traversal can be

implemented such that ADVANCE returns a non-empty location as

long as the spelled string is a substring of the indexed text. For the

graph, a traversal can start from any locus and INITTRAVERSAL there-

fore needs to be supplied with a graph locus (which consists of node

v and offset o, as described above). ADVANCE then walks along the

graph in accordance with the node labels.

Algorithm 2. Finding seed hits on paths by simultaneous tra-

versal of path index and chunk index

Require: chunk index CI, path index PI, length k

1: function FINDSEEDSONPATHS(CI, PI, k)

2: ‘CI  CI:INITTRAVERSAL()

3: ‘PI  PI:INITTRAVERSAL()

4: states empty queue

5: states:Pushðð‘CI; ‘PI; 0ÞÞ
6: while states is not empty do

7: ð‘CI; ‘PI; k
0Þ  states:POP()

8: if k0 þ 1 < k then

9: Rext  CI:EXTENSIONSð‘CIÞ \ PI:EXTENSIONSð‘PIÞ
10: for r in Rext do

11: ‘0CI  CI:ADVANCEð‘CI;rÞ
12: ‘0PI  PI:ADVANCEð‘PI; rÞ
13: states:PUSHðð‘0CI; ‘

0
PI; k

0 þ 1ÞÞ
14: else

15: report PI:LOCATEð‘PIÞ � CI:LOCATEð‘CIÞ
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3.3.1 Phase 1: finding seeds on paths

To find seeds represented on the selected paths, we can simply query

the path index. While, in principle, one could query each seed separ-

ately, we prefer to query all seeds in a chunk of reads at once

through the simultaneous traversal of chunk index and path index

(Algorithm 2 and Fig. 1, Box 1). In this way, we benefit from the

same chunk index that is also used in Phase 2 described below.

Algorithm 2 assumes that the path index supports the additional

operation LOCATE, which translates a traversal location in the

path index into a set of corresponding locations in the graph (see

Section 3.1).

3.3.2 Phase 2: finding seeds off paths

Since the path index can occasionally miss k-paths, we handle

variant-dense parts of the graph in a second phase. During the selec-

tion of paths, we keep track of loci that are not covered by paths

and store the set L of these uncovered loci. For each chunk, we

examine all these uncovered loci and, starting from these loci, simul-

taneously traverse the graph and the chunk index (Algorithm 3 and

Fig. 1, Box 2). In this way, the seeds that are contained in the chunk

of reads guide the traversal of the graph. This allows us to avoid

enumerating all k-paths at the uncovered loci, which would be in-

feasible. For traversing an uncovered graph locus, the number of

ADVANCE operations is bounded by the size of the chunk sequence,

i.e. C � m; where C is the number of reads in the chunk, and m is

the average reads length. Thus, the total time complexity of finding

seeds off paths is OðjLjCmRÞ, where L is the set of uncovered loci.

4 Experimental results

4.1 Implementation
PSI has been implemented in Cþþ. It gets the reads set in FASTQ

and the graph in vg format as inputs, and finds occurrences of all

seeds with given length k and distance d. The output is provided in

GAM format which represents seed alignments to the graph. Both vg

and GAM are file formats introduced by the VG toolkit to represent

sequence graph and sequence alignment, respectively (Garrison

et al., 2018). In order to maintain interoperability between tools in

this domain, we reuse these file formats. For internal usage, the

graph is represented by xg, the succinct graph data structure of VG,

which allows to access node sequences and connectivities efficiently.

We use the sdsl-lite library (Gog et al., 2014) for succinct and

compressed data structures: bit vector with efficient rank and se-

lect operations, compressed integer vector using Elias delta coding

and FM index. The WOTD-tree we use is provided by the SeqAn2 li-

brary (Reinert et al., 2017).

All running times are measured on a system with a 3-GHz Intel

Xeon E7-8857 processor running Debian 9.4 with Linux kernel

4.9.91. We used libvg version 1.7.0 and sdsl-lite version 2.1.1

for the benchmarks. Seed finding is done using a single thread.

4.2 Datasets
We benchmark our algorithm using both synthetic and real graphs.

In both cases, we start from a linear reference genome and a set of

small variants and use VG version 1.7.0 (Garrison et al., 2018) to

construct a corresponding graph (using vg construct command).

This process results in a DAG with one bubble for each implanted

variant.

Simulated graphs. To systematically explore parameter settings

and to benchmark the performance across a wide range of graphs

with different complexities, we created a simulated dataset. This

dataset is constructed from the complete genome of Nasuia

deltocephalinicola, a bacterial species with a short genome of

around 112 kb (Bennett et al., 2016). Starting from this linear gen-

ome, single-nucleotide variants (SNVs) are implanted uniformly at

random throughout the genome with three different mutation rates

(0.01, 0.1, 0.3) to obtain three graphs ranging from moderate vari-

ant density (0.01) to an extreme variant density (0.3).

1000 Genomes graphs. The real dataset consists of graphs con-

structed from the autosomes of the human reference genome

(hs37d5) and small variants reported by Phase 3 of the 1000

Genome Project (Auton et al., 2015). We created two versions of

this graph, one constructed from all small variants, and a second

one that only includes variants with an allele frequency above 1%.

Statistics for the resulting graphs are reported in Table 1.

Read simulation. To benchmark our seed finding method, we

simulated one million reads of length 150 bp with error rate 1% for

each graph. The reads were simulated from random haplotypes, cre-

ated by a random walk through the respective graph. The number of

haplotypes used for read simulation corresponds to the ploidy of

underlying genome: one haplotype for the simulated graph (bac-

teria) and two haplotypes for the 1000 Genomes graphs (human).

During seed finding, we query all non-overlapping seeds of length

30 bp.

4.3 Performance on simulated graphs
We used the controlled environments provided by the simulated

graphs to comprehensively explore the properties of our path index

when confronted with graphs of varying variant densities.

Index size. First, we examined the influence of the number of

paths N on the path index size. When turning off the path

Table 1. Human genome variation graph statistics

Nodes Edges Loci SNPs Indels Multiallelic sites

AF > 1% 40 M 54 M 2 895 M 13 M 1 M 167 K

All 236 M 323 M 2 963 M 81 M 3 M 447 K

Algorithm 3. Finding seed hits off paths by simultaneous tra-

versal of graph and chunk index

Require: chunk index CI, graph G ¼ ðV;E; kÞ, set of uncov-

ered locations L, length k

1: function FINDSEEDSOFFPATHS(CI, G, L k)

2: for ‘G in L do

3: ‘ ‘G
4: ‘CI  CI:INITTRAVERSAL()

5: states empty queue

6: states:Pushðð‘CI; ‘G; 0ÞÞ
7: while states is not empty do

8: ð‘CI; ‘G;k
0Þ  states:Pop()

9: if k0 þ 1 < k then

10: Rext  CI:EXTENSIONSð‘CIÞ \G:EXTENSIONSð‘GÞ
11: for r in Rext do

12: ‘0G  G:ADVANCEð‘G;rÞ
13: ‘0CI  CI:ADVANCEð‘CI;rÞ
14: states:PUSHðð‘0CI; ‘

0
G; k

0 þ 1ÞÞ
15: else

16: report f‘g � CI:LOCATEð‘CIÞ
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compression, that is, indexing all paths in full without removing re-

dundant parts, then the index size increases linearly in the number

of paths (Fig. 4, red curves). As shown by the cyan curves, the com-

pression/patching considerably decreases the size of the index, par-

ticularly for simple graphs. In complex graphs, paths share fewer

identical substrings that can be dropped. Another factor that affects

the compression rate is the context length T. Higher value of T

results in longer patches which leads to a bigger index. Figure 4

includes results for two context lengths 32 and 64. Recall that the

context length imposes an upper limit for query pattern length,

where 32 constitutes a typical value for seed finding in Illumina

short reads.

Indexing time. Figure 5 shows the time spent on different phases

of creating the path index, namely on path selection (‘pick’) on cre-

ating the FM index (‘index’) and on writing the index to disk

(‘save’). As Figure 5 shows, the times spent on the indexing phase

are dominated by the path selection phase, while the time for saving

is negligible. The growth of the runtime of the path selection is

slightly super-linear in practice.

Path coverage. The efficiency of the path selection algorithm in

terms of covering k-mers (for k¼30, referred to as ‘loci’) and graph

nodes is plotted in Figure 6. The number of uncovered loci is shown

for different sizes of the path set P. These curves show a behavior

that is consistent with the distribution of the number of SNPs

covered by each k-mers (Fig. 7). For the intermediate SNP density of

0.1 (middle), for example, we expect a 30-mer to cover 3 SNPs on

average, which translates into 23 ¼ 8 paths needed to cover all

‘versions’ of this 30-mer.

Seed finding. We now employ the hybrid index using both the

stages of querying the path index and traversing the graph to recover

seeds that are missed by the path index. We measure the total run-

time of both phases. To make the numbers comparable to the

human data, where the same seed can sometimes occur many times,

we divide the total runtime by the number of occurrences found to

obtain the average runtime per seed query. Figure 8 shows the result-

ing seed query times for the three graphs as a function of number of

selected paths and the chunk size. In line with our expectation, the

query time decreases when adding more paths and when increasing

the chunk size. For more variant-rich graphs, the queries become

slower.

4.4 Performance on 1000 Genomes graphs
Experiments on the large 1000 Genomes graphs reveal that the path

index behaves similarly favorable as for the small simulated graphs.

Figure 9 shows different measurements for the graph with all var-

iants with allele frequency of 1% and above. We observe that our

path compression (patching) routine is very effective in limiting the

size of the index. Even when indexing patches corresponding to 256

paths through the full human genome, we observe path index sizes

(a) (b) (c)

Fig. 8. Average query time per k-mer occurrence for different number of paths

and chunk sizes (given in the number of reads/chunk) on simulated dataset

with mutation rates: (a) 0.01, (b) 0.1 and (c) 0.3

(a) (b) (c)

Fig. 4. Compressed (patched) path index size in MB versus different number

of paths with context lengths 32 and 64 compared to uncompressed (full) one

for simulated dataset with mutation rates: (a) 0.01, (b) 0.1 and (c) 0.3

(a) (b) (c)

Fig. 5. Time spent on different phases of path indexing for simulated dataset

with mutation rates: (a) 0.01, (b) 0.1 and (c) 0.3

(a) (b) (c)

Fig. 6. Number of uncovered loci/nodes by indexes with different number of

paths for simulated dataset with mutation rates: (a) 0.01, (b) 0.1 and (c) 0.3

(a) (b) (c)

Fig. 7. Histogram of SNPs frequency in 30-mers for simulated dataset with

mutation rates: (a) 0.01, (b) 0.1 and (c) 0.3

(a) (b) (c)

Fig. 9. Human genome path index benchmark for different number of paths:

(a) path index size, (b) indexing time and (c) number of uncovered loci/nodes
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below 7 GB (Fig. 9a). While we see the same super-linear growth in

runtime as for the simulated graphs, the construction of the path

index is easily feasible, with less than 10 h for 128 paths and less

than 30 h for 256 paths (Fig. 9b). Again, the number of uncovered

k-mers is quickly driven down by adding more paths (Fig. 9c).

In Figure 10, we examine the dependency of the k-mer query per-

formance on the chunk size, which reveals that finding seeds in

chunks of 100 000 reads is most favorable. The performance

becomes worse when using even larger chunks, which we attribute

to cache effects.

Finally, we compare the performance to GCSA2, a state-of-the-

art method for indexing graphs developed by Sirén (2017) and used

in VG (Garrison et al., 2018). The results are displayed in Table 2.

For the graph with variants of AF > 1%, we obtain an index less

than half the size (6.3 GB) of that produced by GCSA2 (15 GB),

while we only need slightly longer to construct it (28 h versus 22 h).

Our path index (‘PSI/Path-only’) covers more k-mers (99.24%

versus 99.09%) and allows for faster queries, 4.8 ls per occurrence

where GCSA2 needs 6.28 ls per occurrence—a speedup of 30.8%.

When additionally using the graph traversal (‘PSI/Hybrid’) to rescue

the uncovered k-mers, our query time is virtually the same as

GCSA2 while reaching full sensitivity, which is not feasible with

GSCA2.

The graph with all variants contains drastically more k-mers

(22.2 � 1010) than the graph with variants of AF > 1% (6.7 � 109).

In this setting, the pruning steps required to build the GCSA2 index

(which we run as described in the GCSA2 documentation) lead to a

drastic loss in the number of indexed k-mers: the GCSA2 index only

captures 6.24% of all k-mers in the graph. Even though the lost

k-mers are concentrated in the complex regions of the graph, we

argue that making such regions accessible is one important objec-

tives of switching from linear reference genomes to graphs in the

first place. Using PSI/Hybrid, we reach full sensitivity for this graph

with a comparable query time (21.05 ls for PSI/Hybrid and 20.03

ls for GCSA2).

5 Discussion

We have introduced an approach to index sequence graphs that

scales to human genomes while delivering full sensitivity. Our path

selection procedure coupled with an FM index results in a competi-

tive index structure, even when used in isolation without the graph

traversal phase. By traversing the graph and the chunk index simul-

taneously, we take advantage of the fact that the set of k-mers in the

reads is more restricted than the one represented in the graph. In

other words, we let the reads guide the traversal of the graph and, in

this way, circumvent the combinatorial explosion of k-mers in the

graph. For the first time, this techniques enables scalable full-

sensitivity seed finding in variation graphs.

Here, we focused on introducing a new algorithmic technique

for finding seeds in variation graphs. Our results show that full-

sensitivity seed finding is indeed possible in polynomial time and

that it can be done efficiently in practice. We plan to use this method

to build a full-read mapper by combining it with our recent algo-

rithm for bit-parallel sequence-to-graph alignment (Rautiainen

et al., 2019).

Recently, Sirén et al. (2018) have proposed to augment sequence

graphs with paths that represent haplotypes found in a population,

to then restrict the indexing to those haplotypes. This idea could nat-

urally be combined with our method by replacing the path selection

step accordingly, which we plan to explore in future research.

Beyond that, Pritt et al. (2018) have argued that it might be benefi-

cial to restrict the set of variants used for graph construction to a

well-selected subset for two reasons: to avoid introducing unneces-

sary ambiguity and to simplify indexing. By providing a full-

sensitivity index, we have removed the necessity for the latter, creat-

ing the opportunity for comprehensive evaluations on the trade-off

between added ambiguity and reduced read mapping bias.
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