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Despite co-evolving with humans for centuries and being intensely studied for decades,
the immune correlates of protection againstMycobacterium tuberculosis (Mtb) have yet to
be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and
advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory
responses have a significant role in controlling Mtb infection, the historically narrow focus
on this cell population may have eclipsed the characterization of other requisite arms of the
immune system. Over the last decade, the tuberculosis (TB) research community has
intentionally and intensely increased the breadth of investigation of other immune players.
Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest
the degree to which different cell types, such as NK cells, CD8+ T cells, g d T cells, and B
cells, influence infection or disease prevention. Additionally, we categorically outline the
observed role each major cell type plays in vaccine-induced immunity, including
Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates
advancing through either the preclinical or clinical pipeline leverage different platforms
(e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex
immune responses, and we review those design rationales and results to date. The better
we as a community understand the essential composition, magnitude, timing, and
trafficking of immune responses against Mtb, the closer we are to reducing the severe
disease burden and toll on human health inflicted by TB globally.

Keywords: infection, immunity, vaccines, BCG, Mycobacterium tuberculosis, prevention of infection (POI),
prevention of disease (POD)
INTRODUCTION

Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) was the leading
infectious killer globally for the 4 years (1) predating the severe acute respiratory syndrome
corona virus 2 (SARS-CoV-2) pandemic (2). Approximately 1.5 million individuals succumbed to
TB in 2020, up from 1.4 million in 2019, marking the first increase in global TB deaths in more than
org March 2022 | Volume 13 | Article 8402251

https://www.frontiersin.org/articles/10.3389/fimmu.2022.840225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840225/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840225/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Susan.Baldwin@Seattlechildrens.org
https://doi.org/10.3389/fimmu.2022.840225
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.840225
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.840225&domain=pdf&date_stamp=2022-03-10


Larsen et al. Multifaceted Immunity to Mtb
a decade (3, 4). Furthermore, the World Health Organization
(WHO) and others estimate that COVID-19-related disruptions
in care, including a 21% reduction in people receiving care for TB
in 2020, could result in an additional half million deaths (5),
likely in low- and middle-income countries (LMICs), which
continue to bear a disproportionate burden of TB (6, 7). New
therapies or interventions aimed towards prevention of infection
(POI), prevention of disease (POD), and subsequent
transmission are urgently needed (8). Moreover, Mtb drug
resistance (DR) is steadily increasing globally. In each year
since 2017, roughly half a million Mtb-infected individuals
developed rifampicin resistance and ~80% of those cases had
multidrug-resistant (MDR) TB (1, 3, 9). Focused efforts to design
and evaluate low-cost and highly effective TB vaccines are
urgently needed as current interventions alone are insufficient
by many models (10, 11) to achieve the WHO End TB Strategy
milestones. Several TB vaccines have been tested in clinical trials;
however, only Mycobacterium bovis Bacillus Calmette Guérin
(BCG) (0%–80% efficacy) (12) and M72/AS01E (~50% effective
against the progression of TB disease) (13, 14) have shown
protection in humans. Additionally, no defined correlates of
protection (COP) are solidified for Mtb infection or TB disease.
Therefore, it is worth taking note of the immune responses
elicited by these vaccines (15) and others showing promise in the
pipeline. The aim of this review is to focus on immune cells and
immunological mediators against Mtb, induced both
preclinically and clinically by TB vaccine candidates and BCG,
that have been overshadowed by a myopic focus on CD4+ T
helper 1 (TH1) cells. We hope that this collection informs future
immune efficacy endpoints and helps draw the field closer to
predictive COP endpoints.

The TB vaccine landscape is poised to make formidable leaps
forward. This is in part due to courageous work by the
international research communities and seminal publications
demonstrating near sterilizing protection from Mtb challenge
in preclinical models (16). Findings of a recent study showing
that intravenous (i.v.) BCG prevents or substantially limits Mtb
infection in a susceptible rhesus macaque model (16) provides a
benchmark against which future vaccines will be evaluated and
importantly a new framework to understand the immune
correlates and mechanisms of protection against TB. For
example, many arms of the immune response are engaged
following i.v. BCG delivery compared to intradermal (i.d.)
delivery. In the airway (bronchioalveolar lavage fluid), early gd
T-cell, invariant natural killer T cell (iNKT), natural killer (NK)
cell, B-cell, neutrophil, myeloid dendritic cell (mDC), and
mucosal-associated invariant T (MAIT) cell responses are
observed. In the i.v. group, both memory CD4+ and CD8+ T
cells producing TH1 and TH17 cytokines were captured, whereas
only CD4+ responses are elicited in the i.d. cohort (16). Mucosal
airway and peripheral antibody responses (IgG, IgA, and IgM)
were also highest in the i.v. group, 4 weeks after vaccination (16,
17). These data help to highlight the diversity of immune
responses that may be working in concert to afford protection
from Mtb, but to date have not been so well captured across a
single study with robust correlating efficacy. Between this
Frontiers in Immunology | www.frontiersin.org 2
seminal investigation and other recent groundbreaking
discoveries of immune COP, the research community is
highlighting the critical roles of commonly overlooked and
bypassed immune responses.
CELL SUBSETS, WIDENING THE VIEW

While most primary endpoints for vaccine immunogenicity
preferentially evaluate anti-Mtb specific TH1-type responses
(18), the full mechanism of protection has yet to be
determined (19). Despite many candidates inducing robust
classical TH1 CD4+ T-cell responses in preclinical and clinical
trials, no candidate has met the target product profile for an
efficacious TB vaccine, so we need to collectively look beyond this
subset. In a phase 2b safety and efficacy trial of candidate
MVA85A, researchers observed robust TH1 responses but a
dramatic lack of efficacy in previously BCG-vaccinated
neonates (20). This is a recent example of how the reliance on
this primary endpoint has led to disappointing efficacy results
and stalling of funding support for clinical candidates. Indeed,
protection from Mtb infection and TB disease is likely a
multifaceted process involving many cell types beyond
canonical CD4+ T cells and their main proinflammatory
cytokine interferon gamma (IFNg). In a 2017 review of
polyfunctional CD4+ T cells induced by BCG and TB vaccine
candidates in preclinical and clinical studies, Lewinsohn and
colleagues conclude that this subset is likely not sufficient for
protective efficacy (18) and suggested that further studies were
warranted to specifically address their mechanistic role in
protection. Now, several years later, in the collaborative cross
mouse model (21), researchers have succinctly uncoupled the
magnitude of IFNg expression and subsequent control of Mtb,
where a proportion of genotypes evaluated for Mtb susceptibility
had low IFNg production but still controlled the infection (22).
This dissociation found in mice has also been recently observed
in human resister (RSTR) cohorts. A prospective household
contact study in Uganda found that RSTRs consistently test
negative by tuberculin skin testing (TST) despite constant Mtb
challenge, suggesting IFNg-independent immunity in this
population (23). Given these findings, it is even more
important to diversify our understanding of the cellular
contributors to Mtb immunity. Here, we have reviewed the
effector functions, role(s) during infection, and what is known
about specific cell subsets’ [alveolar macrophages (AM),
neutrophils, DCs, NK cells, B cells, CD8+ T cells, and gd T
cells] induction with different vaccine candidates in the
preclinical or clinical pipeline (Figure 1 and Table 1). While
animal models of TB do not fully represent the spectrum of
human infection and disease pathogenesis or align within the
preclinical pipeline itself, they are improving and can be
informative (95); therefore, the information presented here
reflects a review of primary in vitro or ex vivo data from
animal models as well as observations from human
clinical studies.
March 2022 | Volume 13 | Article 840225
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Neutrophils/PMNs
Effector functions. Innate immune cells such as neutrophils have
been shown to help mediate early inflammatory responses that
are critical for controlling infection (96–98). Initial immunology
work focused on the role of specific phagocytes in infection,
leaving neutrophils understudied and underappreciated.
However, neutrophils account for 50%–80% of all circulating
white blood cells in humans and contribute to the innate
immune response via phagocytosis of invading bacteria,
degranulation, and subsequent secretion of cytokines such as
tumor-necrosis factor-alpha (TNF-a) and interleukin 1 (IL-1)
(96, 99–102). Neutrophils provide a non-specific immediate
innate response that helps contain and control invading
pathogens, preventing dissemination and recruiting other cell
types. Discovery of the various functions of neutrophils such as
neutrophil extracellular trap (NET) formation, phagocytosis,
heterogeneity, and plasticity has increased and opened new
avenues in recent neutrophil research (103). For example, NET
structures, made up of sticky extruded DNA, are unique to
neutrophils and not only limit microbial spread and
dissemination, but also enhance the concentration of
Frontiers in Immunology | www.frontiersin.org 3
microbicidal agents in human ex vivo evaluations (104–107).
Neutrophils secrete reactive oxygen species (ROS), elastase,
collagenase, and myeloperoxidase, factors that can both
combat invading mycobacteria and, when overabundant,
damage host cells in a nonselective manner (98, 102, 108).

Neutrophils in circulation can be recruited to lung
parenchyma by cytokines, leading to their activation and
phagocytosis of pathogen. In preclinical rodent models, CXC
chemokines are a potent chemoattractant pulling neutrophils
from circulation into an infected or damaged lung space (109).
Neutrophils are also an important amplifying cell as they are a
significant source of specific cytokines that help promote early
recruitment and activation of other innate immune cells,
contributing to cellular immunity against mycobacterial
infection, as observed in a Balb/c mouse model challenged
with H37Rv Mtb (110) (Figure 2). For example, ex vivo
human neutrophils have been shown to modulate the effector
mechanisms of resident AM (111), another crucial cell for
control of Mtb, through the localization of antimicrobials and
proteins like heat shock protein 72 (Hsp72), which induce
inflammatory responses in AMs. Neutrophils employ an
FIGURE 1 | Immune cell subsets with critical roles during different stages of Mtb infection or generated by specific vaccine strategies. Known contributions
(heatmap of light: low, dark: high, checked: mixed) of specific subsets are outlined during infection (left) or following vaccine induction (right). Macrophages,
neutrophils, and B cells have known and defined contributions to controlling infection and preventing disease. Interestingly, both macrophages and neutrophils can
contribute to Mtb control or serve as a niche for bacterial growth and dissemination and their dual role is highlighted (checked). Dendritic cells participate in early
stages of infection and post vaccination as an APC. NK cells contribute moderately to infection control and little is known about their induction with different
vaccination regimens. Antigen-specific cytolytic CD8+ T target Mtb and Mtb-infected cells, and their part in controlling latent infection, important in POD vaccination
strategies, is expanding. While a multi-faceted immune response is induced to control Mtb infection, vaccine-induced immune responses essential for protection by
many of these cell subsets are still understudied as endpoints. The summary presented here is a collection of information from many models and clinical data and do
not reflect the data known or observed for each model (created with BioRender.com).
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arsenal of bactericidal proteolytic enzymes that are in an arms
race with evasive countermeasures deployed by certain bacterial
processes (112). Therefore, neutrophil enzyme activation and
secretion help shape the early innate immune response during
bacterial infection (111).

Role in Mtb infections. While neutrophils provide early
protection and participate in the early formation of granuloma
structures, they can also be detrimental to the host if overabundant
in later TB disease states. Studies of human neutrophils ex vivo
observe that this subset can directly kill virulent Mtb lineages and
suggest that TNF stimulation can aid this killing and the
mechanism may be nonoxidative (113, 114). Indeed, neutrophils
from patients with chronic granulomatous disease, which harbor
defects in certain oxidase pathways, are equally efficient at Mtb
killing compared to normal healthy control cells (113). However,
there are many mechanisms by which neutrophils kill Mtb and
eliminating one pathway may be compensated for by another. For
example, human neutrophils have been shown to release
lysosomal enzymes, human neutrophil peptides, and ROS,
which can directly lyse Mtb in ex vivo co-culture situations (115,
116). Furthermore, depletion of neutrophils from patient whole
blood samples significantly reduces the ability of those samples to
restrict mycobacterial growth of both recombinant BCG and Mtb
containing luciferase for kinetic evaluations (116). Arguably,
neutrophils’ most iconic tool against bacterial pathogens are
NETs, which play a significant role in controlling Mtb and
Frontiers in Immunology | www.frontiersin.org 4
subsequent immune activation. Indeed, DNA NET induction
has been shown to be induced by Mtb in a guinea pig model
(117), be at higher levels in plasma in patients with active TB
disease (118), and activate human macrophages ex vivo (105).
Mtb-induced NETs can also help sequester toxic contents from
dying neutrophils, including lysozyme, ion chelators (calgranulin),
and histones (119), to limit damage to surrounding tissue, which
have been observed in humans and preclinical models (105, 106).
NETs play a vital role in the partnership between neutrophils and
macrophages. As mentioned above, Hsp72-containing NETs
trigger a pro-inflammatory response in resident AMs, inducing
the release of IL-6, TNF-a, and IL-1b (105). Therefore, these
important innate immune cells can help contain the infection and
contribute to early granuloma formation (Figure 2) (104–107,
113, 114). Despite these many tools for Mtb killing and growth
inhibition, there is also evidence of bacterial immune evasion from
neutrophils. For instance, neutrophils isolated from healthy
human blood have been shown to effectively phagocytose Mtb
ex vivo but not kill up to 6 h in co-culture, eluding bacterial escape
mechanisms (120). In these studies, neutrophils were activated but
also underwent necrosis, which may enable Mtb survival (120).

An effective host innate immune response against Mtb is based
not only on successful cell-mediated killing ofMtb, but also on the
efficient regulation of innate immune cells, often via cytokines
(114, 121). Activated neutrophils express TNF-a, IL-8, and
granzyme effectors, which all further influence other cell subsets.
TABLE 1 | Clinical vaccine candidate status and induction of cell subsets.

Candidate* Route Interval Stage POD or
POI

Evidence cell subset is vaccine-induced

CD4+ T CD8+ T gd T B cell NK DC Mac PMN

MTBVAC (24–27) i.d. 1 × Ph 2a POI YpYc YpYc Yp YpYc Yp (-) (-) (-)
VPM1002 (28–31) i.d. 1 × Ph 3 POI &

POD
YpYc YpYc Yp YpYc Yp (-) (-) Yp

Ad5 Ag85A (32–34) i.m. or
aero

1 × Ph 1 POI YpYc YpYc (-) (-) (-) (-) (-) (-)

ChadOx1.85A +
MVA (35–37)

i.m. Prime—8 weeks boost Ph 1 POI YpYc YpYc (-) YpYc (-) (-) (-) (-)

AEC/BC02** (38) i.m. 6 × 2 weeks Ph 1b POI (-) (-) (-) (-) (-) (-) (-) (-)
TB/Flu04L*** (39) i.n. 2 × 3 weeks Ph 2a POI &

POD
Yp (-) (-) (-) (-) (-) (-) (-)

ID93+GLA-SE (40–53) i.m. 3 × 4 weeks; or 2 × 8 weeks, or 3 × D0,
weeks 4 and 16

Ph 2a POI &
POD

YpYc Yp (-) YpYc Yc YpYc Yp Yp

GamTBVac (54–56) s.c. 2 × 8 weeks Ph 2a POI YpYc (-) (-) YpYc (-) Yp (-) (-)
M72+ASO1 (13, 14, 53,
57–65)

i.m. 2 × 4 weeks Ph 2b POI &
POD

YpYc Yc (-) Yc Yc Yp Yp Yp

DAR-901 (66–68) i.d. 3 × 8 weeks Ph 2b POI Yc (-) (-) YpYc (-) (-) (-) (-)
H56:IC31 (53, 69–79) i.m. 2 or 3 × 8 weeks Ph 2b POI &

POD
YpYc (-) (-) YpYc (-) Yp^Yc Yp^ Yp^

BCG revaccination (53,
74, 80–84)

i.d. 1 × Ph 2b POI YC YC YC YpYc YC (-) (-) (-)

MIP (85–91) i.d. 6 × 2 weeks Ph 3 POI YpYc YpYc (-) Yp (-) (-) Yp Yp
RUTI (92–94) i.m. 1 × Ph 2a POD YpYc YpYc (-) (-) (-) (-) Yp (-)
M
arch 2
022 | V
olume
 13 | Ar
ticle 84
*Candidates in Phase 1 clinical trials or beyond included, based on the Tuberculosis Vaccine Initiative Pipeline Tracker (www.treatmentactiongroup.org) in 2021. ELISPOT or T-cell
proliferative assay data were omitted if they did not specify the subset tested.
**Phase 1 clinical trial for AEC/BC02 was completed in 2019 but as yet the results have not been reported.
***Phase 1 clinical trial for TB/Flu04L was completed in 2015 but as yet the results have not been reported.
POI, prevention of infection, pre-infection target population; POD, prevention of disease, post-infection target population.
Yp = yes, observed in preclinical studies; Tc = yes, observed in clinical studies; (-) not yet observed or reported for candidate.
i.d., intradermal; i.m, intramuscular; i.n., intranasal; aero, aerosol; s.c., subcutaneous.
^H56 with CAF01 i.m. prime/mucosal pull or with IC31 activation alone.
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TNF-a stimulates dendritic cells and macrophage differentiation
and activation, which are vital host responses to Mtb infection
(100, 101, 122). Additionally, TNF-a aids in the activation of T
cells and helps promote granuloma formation (123, 124). In
response to Mtb, neutrophils have also been shown to secrete
the chemokine IL-8 (125), which has autocrine properties,
enhancing direct neutrophil killing of Mtb, as well as paracrine
recruitment of leukocytes to areas of granuloma formation (126–
130). Interestingly, IL-8 concentrations are increased following the
completion of a 9-month-long antibacterial therapy of Mtb both
in vivo and in LPS-stimulated ex vivo plasma. Lastly, neutrophils
in macaque and human granulomas have been shown to be
Frontiers in Immunology | www.frontiersin.org 5
significant contributors of granzyme B (GRZB) (131) and that
GRZB+ expression in neutrophils positively associated with higher
granuloma bacterial loads. GRZB is known to act on intracellular
substrates including pro-caspase 3, contributing to pathogen
clearance (132), but in the study discussed above, it correlates
with a negative outcome (131). These data collectively suggest that
based on timing and location, responses from neutrophils can be
beneficial or detrimental and that intermediates like cytokines and
chemokines play complex roles in these processes (131–134).

The role of neutrophils in TB disease progression is of
importance. Whereas early neutrophil responses may be
beneficial for reasons outlined above, several inflammatory
FIGURE 2 | Mtb therapies focus on two main strategies, early prevention of infection or later prevention of disease. In early infection (POI, upper), detection of Mtb
bacilli in the pulmonary alveoli by macrophages leads to downstream activation of innate immune cells, which may include neutrophils, NK cells, and DCs. Activated
APCs can then prime T cells (CD4+ or CD8+) for further Mtb-specific adaptive responses to target Mtb and Mtb-infected cells and control infection. Novel therapies
are working to skew innate immune responses to be protective and less permissive and accelerate T-cell priming and effector responses that traffic to the pulmonary
space. Later stages of Mtb infection (POD, lower) and pathology are defined by formation of a granuloma, which contains Mtb by a surrounding composition of
immune cells. While a hallmark of disease, there are still questions surrounding the factors that can affect granuloma formation and composition that can help resolve
infection and prevent progression to active disease. Containment and POD progression seem to correlate with IgM, robust pulmonary CD4+ and CD8+ T cells, and
activated inflammatory M1 macrophages and DCs at the granuloma. In contrast, regulatory TH2 CD4+ T cells, abundance of IgA or IgG4, and M2 macrophages are
more associated with loss of control. Higher peripheral gd T cells are associated with active TB disease in humans, but their direct role in granuloma control or
bacterial dissemination requires further study. The balance of both the composition and magnitude of specific cellular and humoral players is becoming clearer and
POD vaccine strategies will be able to benchmark these parameters in preclinical and clinical studies. The summary presented here is a collection of information from
many models and clinical data and does not reflect the data known or observed for each model (created with BioRender.com).
March 2022 | Volume 13 | Article 840225
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mediators stemming from neutrophils cause lung damage and
contribute to the development of caseous necrotic granulomas
leading to active TB disease and transmission of Mtb (Figure 1).
An important contribution to understanding the role of
neutrophils in the late stage of active TB disease was the
human blood IFN signature of active disease derived from
neutrophils (135). In addition, a recent review discusses
neutrophil-specific mediators that impact destructive
inflammation resulting in increased disease and mortality
(136). Indeed, disease severity and reduction of long-term
pulmonary function seem to correlate with neutrophil
mechanisms in patients with TB disease (136). These
mediators include matrix metalloproteinases (MMPs), which
modify tissue architecture and facilitate transmembrane
migration of neutrophils (136). The role of MMPs in TB
pathogenesis has been known for some time (137). Several
exciting new host-directed therapies against these lung-
damaging mediators are being pursued including anti-
tuberculosis drugs that also reduce lung damage including the
combined use of an eicosanoid inhibitor (used against asthma;
zileuton) along with Prostaglandin E2, in addition to other host-
directed therapies such as statins, as discussed in the review by
Muefong and Sutherland (136).

Vaccine induced. Previous publications have highlighted the
importance of the innate immune system during BCG
vaccination and have indicated that non-specific effects of BCG
vaccination may benefit young children even if protection
against Mtb is not attained (138–141). A recent study
employing depletion and knockout (KO) mouse studies
identified that following subcutaneous BCG inoculation,
neutrophils, circulating monocytes, and AMs are sufficient to
reduce Mtb burden. This study also provided evidence that
neutrophils play a significant role in establishing innate
immunity, possibly through an early inflammatory response
that initiates the reduction in Mtb burden (142). Specifically,
depletion of neutrophils in these mouse models was associated
with diminished protection by BCG, which supports findings in
humans where intradermal BCG was associated with a
neutrophil transcriptional signature and elevated neutrophil
counts in BCG-vaccinated infants (143). While BCG is effective
at preventing disseminated disease in infants, it confers highly
variable efficacy against pulmonary TB in adults, particularly in
the developing world (12). A greater understanding of the
reasons for this variabil i ty , together with a better
understanding of the early, innate, and non-antigen-specific
mechanisms of protection would facilitate the design and
development of more effective vaccines (15). Next-generation
live-attenuated vaccines based on BCG that aimed to enhance
efficacy and durability are well reviewed here (144).

Emerging evidence about the cross-talk between neutrophils
and T cells suggests that a balanced targeting of these cell types
may improve vaccine-induced immunity (145). While the role of
IL-17 in protection against Mtb infection may be related to its
role in the induction of TH1 cells (146), IL-17 is also known to
activate and recruit neutrophils (147–150). Furthermore, IL-17
favors the recall of vaccine-specific memory T cells in response to
Frontiers in Immunology | www.frontiersin.org 6
Mtb challenge through an IL-23-dependent mechanism (151),
and neutrophils when activated by IL-23 also produce IL-17 and
IL-22 (152). The role of neutrophils in the induction of specific
TH1 and TH17 cells in response to vaccination against TB and
the subsequent protective outcome is being investigated. For
example, vaccine candidate M. smegmatis-Ag85C-MPT51-HspX
(mc2-CMX) recombinant live vaccine vector has been shown to
elicit a humoral and cellular response against Mtb in mice that is
superior to BCG (153), largely due to the TH1- and TH17-
specific responses promoted by neutrophils (154). Given the
tremendous role of neutrophils in eliciting an enhanced immune
response in mice vaccinated with mc2-CMX, neutrophils may
represent an underappreciated/bystander innate target for TB
vaccine candidates, particularly those targeting POI mechanisms.

Monocytes/Macrophages
Effector functions. Lung resident myeloid cells, including
specialized AM, have dual and opposing roles in Mtb control:
contributing to host resistance, and a niche for infection
(Figure 1). Derived from hematopoietic precursors,
macrophages are central innate immune cells that function in
host defense and maintenance of tissue homeostasis. When
tissue homeostasis is perturbed, bone marrow-derived
monocytes are recruited from the blood to the affected site
where they differentiate into macrophages. Both tissue-resident
and monocyte-derived macrophages (MDM) are at the leading
edge of an innate immune response through phagocytosis and
cytokine release, as well as forming a bridge to adaptive immune
responses through antigen presentation (155). Human and
animal model macrophages express scavenger receptors and
immunoglobulin receptors, which promote phagocytosis (156),
antibody-dependent cell phagocytosis (ADCP) (157), and
antibody-dependent cell cytotoxicity (ADCC) (158). One of
their most robust innate tools are germ-line encoded pattern
recognition receptors (PRRs) that sense microbial- or danger-
associated molecular patterns (MAMPs/DAMPs). AMs and
monocyte-derived macrophages (MDM) are activated by Toll-
like receptors (TLRs) TLR2, TLR4, and TLR9 during the early
stage of infection with Mtb (159). Furthermore, AM express
innate immune receptors, C-type lectin receptors (CLRs),
Dectin-1, nucleotide-binding oligomerization domain-like
receptors (NLRs), inflammasome-IL-1b activator, and DC-
specific intracel lular adhesion molecule-3–grabbing
nonintegrin (DC-SIGN), for non-specific pathogen recognition
and induction of effector functions as observed in ex vivo human
macrophage studies and surveys of human genetic variants that
influence TB susceptibility and outcomes (160–163). Following
PRR stimulation, signal transduction cascades converge on the
activation of master transcription factors, proteases, and effectors
of phagocytosis, allowing for rapid non-specific innate immune
responses (156). PRR engagement also ensures durable responses
through trained immunity, which is established by metabolic and
epigenetic reprogramming of transcriptional pathways in
myeloid progenitors (164).

For their role in host defense and inflammatory resolution,
activated macrophages from various mouse backgrounds have
March 2022 | Volume 13 | Article 840225
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been divided into two major subgroups from in vitro phenotypes.
First are classically activated macrophages (M1) associated with
inflammatory responses, which can be induced by stimulating
resting macrophages with lipopolysaccharide (LPS) and IFNg.
Second, alternatively activated macrophages (M2) are associated
with tissue remodeling, resolution of inflammation, and anti-
inflammatory responses, and are generated in vitro using IL-4
and/or IL-13 (165). While an M1/M2 classification is useful for
mapping metabolic pathways of differentially activated
macrophages, this does not necessarily reflect the heterogeneity
of macrophages present in vivo. Macrophages in vivo responding
to specific external stimuli result in unique subsets that fall
between the two extremes of M1 and M2 on a continuum of
phenotypes observed in humans (166–168). Metabolic
intermediates may have some role as effector molecules like
nitric oxide (NO), reactive oxygen species (ROS), and
tricarboxylic acid (TCA) derivatives have been shown to
regulate macrophage phenotypes and functions by modulating
signaling pathways, leading to the production of cytokines, anti-
microbial peptides, or tissue repair factors (169).

Role in Mtb infections. Macrophages and specifically AM
serve as both the first line of defense against Mtb as well as a
major intracellular niche for long-term survival in the host
(Figures 1, 2). This dual role of macrophages in vivo appears
to be driven by the cellular activation state. Although a
nonselective depletion of macrophages after Mtb challenge in
mice improved the outcome of disease, a specific depletion of
activated macrophages led to impaired resistance, as reflected by
enhanced mycobacterial outgrowth (170). Interestingly, alveolar
epithelial type II cells (AECII) have a similar dichotomy in Mtb
clearance or protection depending on the progression of
infection. While the prevailing dogma is that Mtb is
phagocytosed by AMs and dendritic cells once entering the
alveolar sac, AECs have also been found to uptake Mtb despite
not being professional antigen-presenting cells (APCs). Infected
AECs may provide some early innate signaling and cross-talk
with innate immune cells, including neutrophils and AMs, and
those hypotheses are well discussed here (171). While we focus
on the role of AMs in the sections below, it is of note that there is
an active and well-warranted study of AECs, and their roles
during Mtb infection or control may well be intertwined.

Macrophages are stimulated by PRRs, NLRs, and TLRs
to endocytose/phagocytose Mtb and sequester the pathogen
in intracellular phagosomes (160, 161, 163, 172). A
proinflammatory status activates the intrinsic capacity of
macrophages to generate reactive oxygen intermediates (ROI),
phagosome maturation, and consequent microbicidal activity
(173, 174). Once activated, macrophages in the airway and
lamina propria produce a range of pro-inflammatory cytokines
and chemokines in response to and in defense against Mtb (160,
161, 175). Within this defense, there is a constant battle of metals
going on inside the phagosome of the macrophage between the
host cell and Mtb (176). The macrophage delivers an overload of
copper and zinc, which are toxic to Mtb deploys a series of
protective mechanisms to capture metals, including oxidation
and by promoting an increase in metal efflux (176).
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The upregulation of ctpC gene encoding for the P-type ATPase
that regulates the intra-bacterial levels of zinc is another example
of how Mtb manages to prevent heavy metal poisoning, observed
in an ex vivo human macrophage model of challenge (177). As a
countermeasure, the macrophage then attempts to block the
arrival of nutrients to Mtb, including iron and manganese (176).

A central role of macrophages is the production of TNF and its
importance to immunity against Mtb. One of the key pieces of
evidence that TNF plays a role in this function comes from the
neutralization of TNF in cynomolgus macaques, where TNF
neutralization leads to disseminated disease within 8 weeks of
infection following adalimumab, also known as Humera® (178).
Furthermore, TNF neutralization during latency using a soluble
TNF inhibitor, p55-TNFR1, in latently infected nonhuman
primates (NHPs) leads to increased lung pathology, bacterial
burden, and reactivation (178). Whereas in mice the
neutralization of TNF appears to affect the organization of the
granuloma leading to lack of control of Mtb (179), the mechanism
appears different in NHP, where the granuloma structure does not
appear to be impacted (178); however, more neutrophils appear to
be present in the granulomas of these NHPs. Immune suppression
via TNF inhibitors seems to universally increase susceptibility to
TB disease across humans and preclinical models. Indeed, in
humans, it is well known that the use of TNFa inhibitors are
associated with an increased risk of TB disease; therefore, careful
screening is applied to individuals requiring treatment for
immune-mediated inflammatory diseases needing this treatment
course (180).

While IFNg has been observed to increase survival of mouse
bone marrow-derived macrophages by inhibiting bacterial
replication (181), it has also been shown to struggle against the
ESX system, a sophisticated Mtb secretion system also involved
in reducing phagosome maturation (182). Interestingly, host
Vitamin D allows the macrophage to increase phagosome
maturation (183). In human macrophages, activated Vitamin
D3 induces autophagy, as well as direct Mtb killing via
cathelicidin activation, an antimicrobial peptide that activates
the transcription of autophagy-related genes (184). Indeed,
previous clinical studies have indicated that Vitamin D
deficiency or receptor polymorphisms are associated with an
increased risk of Mtb (185–188), and a meta-analysis in 2008
found that low serum Vitamin D levels are associated with a
higher risk of active TB (189). A more recent study showed that a
serum Vitamin D concentration ≤ 25 nmol/L was significantly
associated with an increased risk of active TB, while the range
51–75 nmol/L was not associated with an increased risk of TB
(190), suggesting that a threshold of Vitamin D can help promote
host anti-Mtb activity.

A strong innate host defense tool against Mtb is bystander
macrophages that use efferocytosis for infected cells, which is an
efficient means of killing the intracellular bacilli and disposal of
debris (191, 192). Apoptosis of Mtb-containing macrophages
may result from endoplasmic reticulum (ER) stress and
subsequent accumulation of misfolded proteins. ER stress may
also induce apoptosis via macrophage signaling factors such as
inositol-requiring-1a (IRE-1a), double-stranded RNA-
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dependent protein kinase (PKR)-like ER kinase (PERK), and
activating transcription factor-6 (ATF-6) (192). A clinical trial
with 185 TB patients showed that clinical Mtb isolates induce
autophagosome formation in ex vivo macrophages to a variable
degree, as measured by LC3II marker protein. Severity of active
TB disease in this cohort was inversely related to levels of LC3II
production. Collectively, these data indicate a significant
protection–mitigation from TB in humans, owing to a
macrophage autophagy response (193).

Alternative receptor engagement and immune evasion can
lead to different outcomes post macrophage challenge with Mtb.
For example, mannose receptor (MR) recognizes mannose
present on Mtb, which does not induce bactericidal ROS or
phagosome maturation but instead produces anti-inflammatory
cytokine signals that help set up a more permissive cell state for
Mtb to survive in this intracellular immune niche (172, 174). Mtb
can also subvert bactericidal activity in macrophages by escaping
the phagosome and persisting in the cytosol of the cell, and
specific Mtb antigens can limit or induce macrophage apoptosis
and autophagy (174, 182, 194–196). Furthermore, the relatively
low dose of challenge with Mtb in normal transmission settings
means AM are the first cells infected by Mtb for several days and,
in the absence of other inflammatory signals, can be
preferentially skewed to promote survival and dissemination,
as observed in a mouse aerosol challenge model (197). The
dissemination of infected AM from the airway into lung tissues
is driven largely by the ESX-1 secretion system in Mtb (197).
Work done by Rothchild and colleagues helped demonstrate that
AM have an inherent delay in proinflammatory gene
transcription post in vivo challenge in mice and they instead
induce an antioxidant transcriptional program more conducive
to Mtb survival (198). Similarly tissue resident macrophages M1
and M2 differentially allow mycobacterial growth, where M2
cells allow more robust Mtb survival than M1 cells, and this
seems linked to metabolic profiles in the host (199). Interestingly,
Mtb uses cholesterol and fatty acids from the host; therefore, host
cells in divergent metabolic states are differentially able to control
or support Mtb fitness (199). So, while events following the initial
infection of specialized macrophages with Mtb are worth noting,
in the absence of activation, metabolic reprogramming, or other
proinflammatory signals, these cells become the main permissive
hosts for Mtb.

Vaccine induced. BCG vaccination has been shown to result
in an increase in inflammatory mediators produced by
monocytes from healthy volunteers, correlating with histone
modification and specific gene activation (138). Indeed, healthy
volunteers vaccinated with BCG were observed to have hyper
Mtb responsive circulating monocytes 2 and 3 weeks post
immunization. This immune potentiation was monitored by
secretion of pro-inflammatory cytokines, upregulation of PRRs,
and distinct myeloid markers such as CD14, CD11b, and TLR4.
Immunized participant PBMCs, when stimulated ex vivo with
sonicated Mtb lysate, induced a sevenfold increase in IFNg
secretion when compared with basal levels from donors before
their BCG vaccination. Furthermore, monocyte secretion of
TNF-a and IL-1b was augmented 2-fold. Such trained immune
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effects associated with histone epigenetic reprogramming
depended on the activation of NOD2 receptor, increasing
methylation of histone 2 at lysine 4 (H3K4m3) through
methyltransferase (138). A follow-up study determined that
BCG-trained immunity can be long-lived and effective over 1
year in healthy volunteers’ post-vaccination. Trained monocytes
upregulated their PRRs and other innate activation markers,
such as myeloid CD14+ TH cells, complement receptor 3
integrin-CD11b+, TLR4, and C-type-1 lectin mannose
receptor. These data indicate that non-specific TH cells as well
as BCG primed monocytes may collaborate in host protection
against Mtb, which help inform and influence vaccine candidate
design (200).

To enhance the efficacy, recombinant BCG (rBCG) vaccines
(201, 202) are being thoroughly explored and developed.
VPM1002, for example, is a rBCG expressing listeriolysin
(LLO, encoded by the hly gene used by Listeria monocytogenes
as a virulence factor for cell to cell spread), which is a clinical
stage candidate (28, 203) (Table 1). LLO combined with a urease
c gene (urec) allows for escape of BCG antigens into the cytosol
through perforation of the phagosomal membrane in an optimal
pH of 5.5 (urease), promoting MHCI binding of antigens as well
as apoptosis induction (203). Another rBCG evaluated in a phase
1 clinical trial was rBCG30 (204). In this case, the strategy was to
overexpress Ag85b to increase host immunity to an
immunodominant TB antigen. In the Phase 1 clinical trial,
both Ag85b-specific CD4+ and CD8+ Th1 immunity in
addition to memory T cells were induced and the vaccine was
determined to be safe in humans (204). Since this clinical trial,
however, rBCG30 has not progressed further.

While BCG is incredibly safe, safer vaccines are needed for
t ho s e w i t h unde r l y i ng d i s e a s e s s u ch a s human
immunodeficiency virus (HIV), and any acquired or inherited
immunodeficiencies where attenuated vaccines can cause
unchecked disseminated infection (205, 206). Subunit vaccines,
for example, are safe, induce strong antigen-specific immune
responses, and have shown promise against TB disease in
humans. Protein antigens, which are, on average, weak
immune stimulants, are partnered with immune driving
adjuvants that classically target PRR signaling pathways that
are abundant on macrophages (207, 208). Several subunit
vaccines are currently in the clinical pipeline (19, 209), and the
recent success of candidate M72+AS01E has provided confidence
that an adjuvanted subunit vaccine is a feasible approach for
prevention of TB disease (13, 14). The AS01E adjuvant includes
bacterially derived monophosphoryl lipid A (MPL) from
Salmonella minnesota, in addition to saponin QS-21 (210).
Vaccinating mice with AS01 directs monocytes to help
dendritic cells as well as activation of adaptive immune players
like CD8+ T cells or NK cells (57). Another promising adjuvant
contains a synthetic version of MPL, glucopyranosyl lipid
adjuvant (GLA), that, when combined with a stable emulsion
(SE) and ID93 antigen, constitutes a candidate with documented
efficacy in several animal models including mice, guinea pigs,
and NHPs, and is in late Phase 2 clinical trials (40–49, 211, 212).
The mechanism of action of GLA-SE has been previously
March 2022 | Volume 13 | Article 840225

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Larsen et al. Multifaceted Immunity to Mtb
described, where its drive of innate immune responses via TLR4
promotes the generation of antigen-specific TH1 CD4+ T cells in
mice (50, 51, 213, 214). Another candidate subunit vaccine in the
TB vaccine clinical pipeline is H56:IC31 (215). IC31 is a two-
component adjuvant that contains a KLK antimicrobial synthetic
cat ionic pept ide vehic le a long with TLR9 agonis t
phosphodiester-backboned oligodeoxynucleotide (ODN1a),
which induces type 1 IFN (69). Unlike the MPL-based
adjuvants discussed above, in mouse models of vaccination,
IC31 has been shown to induce both TH1 and TH17
polarizing T-cell response (216–218). While these subunit
vaccine adjuvants (AS01E, GLA-SE, and IC31) drive some
innate responses in macrophages, their main influence is on
dendritic cells (51, 69, 218), which will be discussed at length
below (Table 1). In addition to adjuvant strategies designed to
drive innate immune responses, Mtb antigen selection in vaccine
candidates can also be used to combat Mtb immune evasion tools
specifically at the macrophage. For example, ESAT-6 is a well-
studied candidate antigen included in subunit vaccines, and is
encoded by esxA in genetic locus region of difference 1 (RD1)
(219). ESAT-6 has been shown to inhibit autophagic flux by
impeding autophagosome–lysosome fusion in ex vivo cell
culture, which assists in Mtb immune escape from
macrophages (220–222). Preclinical studies in Balb/c mice
show that vaccination with ESAT-6 and c-di-AMP regulate
macrophage autophagy, resulting in the inhibition of Mtb
growth in macrophages during early infection (223).

Beyond vaccination regimens, therapeutic-based strategies
are being developed to target macrophages and overcome
metabolic barriers to Mtb killing in these cells (224, 225).
There is growing interest in the induction of autophagy in
Mtb-infected host cells using autophagy-inducing compounds
(AICs). Nanoparticles (NPs) can be utilized as a delivery system
to improve the activity of AICs against intracellular Mtb by
transporting the encapsulated AICs to their target sites while
protecting them from biodegradation and enhancing their
absorption across biological barriers (226, 227), which has
been demonstrated nicely for delivery of rifampicin to
macrophages in vitro (227). NPs sustain drug release in the
target tissues, allowing for the reduction of dosing frequency and
lessening drug-associated side effects in the process (228). In
addition, the materials used to synthesize the NPs can possess
autophagy-inducing activity or the surface of the NPs can be
integrated with an AIC (229). Upadhyay et al. reported the
capacity of yeast-derived glucan particles (GP) loaded with high
payload of rifabutin (RB) NPs [(RB-NPs)-GP] to induce anti-
mycobacterial and cellular activation responses in Mtb-infected
J774 macrophage cells. The exposure to (RB-NPs)-GP triggered
strong innate immune responses in Mtb-infected macrophages
including the induction of apoptosis, autophagy, as well as ROS
and NOS. Macrophage targeting particles containing rapamycin
are also in development to induce Mtb killing in infected cells via
mTOR inhibition to drive autophagy, and have shown promise
as spray dried formulations delivered to mice (225, 230). Careful
examination of bacterial evasion and host regulation can lead to
more promising candidates for targeted therapies. For example,
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the absence of Alox5 leads to increased CD8+ and CD4+ T-cell
responses in mice by cross-presentation and MHCII antigen
presentation pathways (231), which may be carefully exploited.
However, additional investigations in vivo as well as studies to
target and deliver known AICs are required to advance these
therapies (232).

Dendritic Cells
Effector functions.Dendritic cells (DCs) are considered APCs and
immature or less differentiated DCs are present in many tissues.
Like macrophages, DCs use PRRs to survey for potential
antigenic material and leverage phagocytosis as well as
macropinocytosis, receptor-mediated endocytosis, or direct
contact with damaged or infected cells (233–235). In contrast
to other phagocytes, once DCs receive activation signals resulting
from pathogenic interaction or inflammatory stimuli, they
mature and migrate to secondary lymphoid organs for antigen
presentation (236) (Figure 2). Antigens can be prepared by
lysosomal proteases within the endocytic pathway or
proteosomes for MCH I or II presentation, allowing for both
naïve CD4+ and CD8+ T-cell priming (236). Additionally,
endocytosed proteins can be cross-presented via MHCI (235,
237). Activated DCs serve as a bridge between innate immune
surveillance and adaptive immune activation.

In both humans and preclinical mouse models, DCs are
observed to be a heterogeneous population containing subsets
with unique surface markers and specialized functions (238).
There are two overarching subsets to which human and mouse
DCs are traditionally characterized: conventional DCs (cDCs)
and non-conventional DCs (239). While certain markers and
subsets of human and mouse DCs may differ, their general
functions are similar. Conventional DCs, derived from
conventional DC progenitors, are characterized by their APC
functionality and can be found within lymphoid tissues and
barrier tissues (lung, skin, intestinal tract, kidney, and liver) (240,
241). Further development of cDCs is directed by transcription
factors differentiating the cDC1 subset, which cross present to
naïve CD8+ T cells, or cDC2 subset, with focused presentation to
naïve CD4+ T cells (240–245). Plasmacytoid cells (pDCs),
derived from common DC progenitors, largely encompass the
non-conventional DC subset. pDCs primarily circulate in the
blood and secondary lymphoid organs, but also localize to skin,
intestine, and epithelial tissue during inflammation (246). pDCs
are characterized by large production of type I IFNs during viral
infection, and when activated, pDCs secrete TNF-a, IL-1, and
IL-6 (246).

Role in Mtb infections. DCs are critical for initiating anti-Mtb
responses as primary APCs that present antigens and induce
adaptive immunity. From the bone marrow, DC progenitors
enter the bloodstream and home to different epithelial tissues,
including airway epithelium and lung parenchyma, the primary
site of Mtb challenge. Like macrophages, human DCs are observed
to use a series of PRRs to bind and phagocytose Mtb in ex vivo co-
culture conditions; this includes complement receptors, MR,
TLRs, and DC-SIGN (247–249). Mtb uptake by DCs leads to
DCmaturation and upregulation of MHCI, MHCII, CD40, CD54,
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CD58, and CD80 (248). After reaching draining-secondary
lymphoid organs, DCs present antigens to prime naïve T cells
activating Mtb-specific responses and effector differentiation
(Figure 2). While this is the common response to infection,
studies have shown that DC activity may vary depending on
Mtb strain. Transcriptional analysis of human monocyte-derived
DCs (moDCs) infected with different Mtb strains found that
infection with Mtb H37Rv led to significant upregulation of
EBI3 and, compared to other mycobacteria, induced the least
level of IL-10 expression (250). In this same ex vivo moDC
challenge model, BCG-Japan induced CCR7 and TNF-a
expression and showed considerably lower intracellular growth,
suggesting that DC responses reflect challenge strain virulence.
Corroborating these findings, a study by Ramos-Martinez et al.
reported that human moDCs infected with a hypervirulent lineage
3 Mtb strain neutralized intracellular growth of the bacilli,
underwent decreased apoptosis, and led to poor T-cell
expansion compared to an Mtb H37Rv reference strain (250). In
contrast, human moDCs infected with hypovirulent lineage 4
strain displayed high apoptosis and consequently this precluded
their capacity to expand T cells. The relationship between host cell
responses and immune evasion strategies by virulent mycobacteria
is still an active area of research. However, as DCs help drive
adaptive immunity, they are a logical target for specific vaccine
strategies, which are discussed below.

Vaccine induced. Robust T-cell responses following
vaccination is vital for successful durable immunity against
Mtb. Delayed or low T-cell activity in the mouse model has
been observed and suggested as a bottleneck for protection
following vaccination (251). In order to overcome this delay,
researchers evaluated the adoptive transfer of stimulated DCs
intratracheally into BCG vaccinated mice and observed that this
group had a ~1.5 CFU log reduction compared to BCG
vaccinated only controls (252). Transfer of activated DCs into
non-vaccinated mice saw a reduction in lung CFU comparable to
the vaccinated controls, demonstrating the profound influence of
DCs in the correct location on maturing a protective immune
response. While mechanistically informative, adoptive transfer of
activated DCs is not a robust strategy for global TB protection,
but certain vaccine approaches instead preferentially target DC
activation. For example, one strategy is the selection of DC-
activating proteins into a recombinant vaccine (253). The
mycobacterial heat-shock protein Rv2299c (heat-shock protein
90 family) in mice leads to DCmaturation via the TLR4 pathway,
with TH1 leaning towards cytokine production and enhanced
expression of MHCI and MHCII. Administration of Rv2299c
fused with the T-cell-stimulating antigen ESAT-6 following BCG
immunization in mice showed significant reduction in lung
bacterial burden and inflammation compared to BCG control
16 weeks post challenge with Mtb HN878. This study helps to
underscore the importance and promise of DC activity
particularly in multiantigen vaccine designs. Additional studies
have investigated other novel antigens that target DC maturation
and enhance TH1 responses, including a DosR regulon-encoded
protein (Rv2005c) fused with macrophage-activating protein,
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Rv2882c, and Rv1876 (254, 255). Common to these mouse
immunological studies is enhanced DC maturation, increased
expression of IFNg, IL-2, and nitric oxide, and decreased
bacterial burden. Given the importance of DCs for priming T
cells and in turn robust T-cell activity for protection, new vaccine
approaches have wisely targeted DCs via antigen selection and
other vaccine components to boost downstream responses.

DCs are also targeted through use of immunogenic adjuvants.
For example, clinical stage saponin-based adjuvant, AS01,
composed of QS21 and TLR4 agonist MPL, leads to release of
alarmins and subsequent DC activation in mice (57). This study
of acute responses in mice after immunizations found that the
addition of AS01 to antigen led to an 8.6-fold increase of
MHCII+ DCs within the draining lymph node compared to
antigen alone, as well as enhanced T-cell priming, making DCs a
crucial target of the AS01-induced immune response (57). AS01E
is being utilized in human vaccines including the shingles
recombinant zoster vaccine (Shingrix), the RTS,S malaria
vaccine, as well as the M72 Mtb vaccine candidate. In a study
that analyzed the RNA expression in PBMCs and whole blood
from participants who had received the M72/AS01E vaccine,
researchers found that these samples were enriched in activated
dendritic cells compared to baseline measurements up to 31 days
post-injection (256). Despite the multiple safety and
immunogenicity studies completed for the M72/ASO1E
candidate, there are little data phenotyping the vaccine-
induced DC response in humans. Following the M72/AS01E
vaccine candidate was the release of a similar protein-adjuvant
strategy leveraging vaccine candidate ID93+GLA-SE. Early
studies on GLA showed its ability to stimulate both mouse and
human DCs leading to high production of TNF, IL-6, and IL-
12p40 (51). Administration of GLA-SE through intradermal
injection of human skin in an explant model showed that DC
enhanced CD4+ T-cell proliferation (257). Indeed, three major
subunit vaccine adjuvants (AS01E, GLA-SE, and IC31) rely on
DC activation for optimal protective responses in candidate
vaccines as they are the most efficient APCs for adaptive
immune responses (51, 69, 218).

As for DC responses to BCG, which is currently the only
licensed TB vaccine, an in vitro study found that BCG-infected
human DCs produced TNF-a, IL-1b, IL-6, and IL-10 (258).
However, when BCG-DCs were co-cultured with human cord-
blood mononuclear cells, they produced anti-inflammatory
cytokine IL-4, which may partially contribute to low protection
garnered by BCG. In the elderly, a study surveying whole blood
and plasma samples 1 month post BCG immunization observed
enhanced plasmacytoid and myeloid DCs (259). Despite this,
plasma levels of type I IFNs (IFNa/b) were significantly
decreased, while type III IFNs (l), which comprise anti-viral
cytokines (also named IL-28A, IL28B, and IL-29), were
significantly enhanced, potentially showcasing the off-target
effects of BCG (259). Next-generation BCG vaccine candidates
may also work to improve and direct BCG-induced
i nfl amma t o r y DC a c t i v a t i o n a s a p r opo s a l f o r
enhanced protection.
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Natural Killer/NKT Cells
Effector functions. Natural killer (NK) cells are lymphocytes
within the innate immune system harboring potent cytotoxic
effector functions. NK cells help control diseased states by
identifying and attacking infected or malignant cells directly
through cellular toxicity and indirectly via cytokine signaling
(260). NK cell activation is regulated by activating inhibitory cell
surface receptors (261, 262). MHCI expressed by healthy
nucleated cells bind NK inhibitory receptors [killer cell Ig-like
receptors (KIRs), leukocyte Ig-like receptor (LIR), and CD94/
NKG2 receptors] and prevent cytotoxic activity (262).
Conversely, infected cells downregulate surface MHCI and
upregulate co-stimulatory ligands to engage NK cell-activating
receptors. The cytokine milieu induced downstream by other
activated innate cell subsets can also direct and help influence
NK cell activity. In vitro studies with mouse and human-derived
cells have shown enhanced NK cell activation from DC-
produced IL-12, IL-18, IL-15, and IFN-a/b (263, 264).

Once activated, NK cells have multiple mechanisms of
cytotoxicity that are largely shared with CD8+ T cells,
including release of granzymes, perforin, and utilization of
death receptors (265, 266). Perforin, a glycoprotein, binds the
cell membrane of the target cell and forms pores (267). The pores
can disrupt the cell membrane and subsequently destabilize
mineral homeostasis, which can indirectly induce apoptosis.
Additionally, perforin can aid in other targeted cytotoxic
effects, including the entry of granzyme through perforin-
formed pores (268, 269). Granzymes, a family of serine
proteases, cleave proteins such as procaspases, which initiate
intrinsic apoptotic signaling cascades and induce target cell death
(270). NK cells can also induce extrinsic apoptotic signaling via
two primary TNF receptors, Fas (CD95) and TNF-related
apoptosis-inducing ligand (TRAIL) (271). Binding of Fas,
widely expressed on tissues, and Fas ligand, expressed by
activated NK cells and cytotoxic T lymphocytes, results in
nuclear condensation, membrane blebbing, caspase activation,
and eventual cell death (272). Similarly, cross-linking of TRAIL,
and TRAIL-R1 and -R2, leads to caspase activation and apoptosis
(273–275).

In addition to cytotoxic effects on infected cell targets, NK
cells can regulate immune responses via T-cell activity, indirectly
via IFNg signaling or directly via cytotoxic-mediated killing
(276). In vitro and in vivo studies have found that IFNg
produced by NK cells promote DC production of IL-12,
leading to downstream enhanced CD8+ T-cell activity (277,
278). In addition, NK cells can regulate T-cell activity
indirectly via IFNg signaling or directly via cytotoxic-mediated
killing (276). In vitro studies of human cells and in vivo mouse
models have found that IFNg produced by NK cells promote DC
production of IL-12, leading to downstream enhanced CD8+ T-
cell activity (277, 278). IFNg signaling also is known to promote
CD4+T cell TH1 differentiation (276, 279–281). Beyond
downstream cytokine activity, both in vivo and in vitro studies
have shown that NK cells can target T cells via secretion of
cytolytic granules or death receptors (282–284).
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Role in Mtb infection. As discussed above, NK cells have
multiple roles in driving immune responses, illustrating their
importance in combatting infection. While NK cells have been
known to play a large part in immune responses to viral
infections, there has been growing interest in the role NK cells
play during Mtb infection (Figure 1). In vitro studies have found
that upregulation of stress-induced UL-16 binding protein by
Mtb-infected human monocytes leads to recognition by
NKG2D-activating receptor followed by NK cell-mediated lysis
(285, 286). Interestingly, while granzyme A-producing NK cells
are observed after challenge with Mtb in an in vivo mouse
challenge model, it did not correlate with protection from
bacterial burden (287). These data together may highlight the
differences between models, or suggest many compensating
pathways derived from NK cells that contribute to Mtb
control. For example, NK cells have been observed to restrict
intracellular Mtb growth in infected human monocytes through
direct contact and partially mediated through secretion of soluble
factors such as IL-22 and IFNg (288–290). In vivo studies in
C57BL/6 mice infected with Mtb showed that NK cell depletion
had no significant effect on bacterial burden (291). However, T-
cell-deficient Rag mice with further NK cell depletion
demonstrated enhanced bacterial burden post challenge, which
ma y h i g h l i g h t t h e impo r t a n c e o f NK c e l l s i n
immunocompromised environments and possible overlap of
NK and cytotoxic T-cell functions that make parsing out direct
contributions difficult. NK cells are also found in later stages of
Mtb infection and have been identified to infiltrate granuloma
lesions in Mtb-infected patients (292). The direct influence of
NK cells, like neutrophils, may depend on their location and
timing with respect to challenge with Mtb.

Adjacent to NK cells are NK T cells, which co-express the T-
cell receptor (TCR) and NK cell surface receptors (293, 294).
This co-expression confers both adaptive and innate immune
activity (294). Invariant NKT cells (iNKT) are the primary subset
of NK T cells identified. iNKT cells recognize self and foreign
lipids presented by the glycoprotein CD1d (295). As summarized
by Ruibal et al., there has been growing interest in iNKT cells’
role in controlling Mtb infection (296), largely due to the
observation that iNKT cells have increased activated
phenotypes in TB patients compared to LTBI and healthy
controls (297). Additionally, the number of NKT cells
measured in patients during TB diagnosis correlated with
faster responses to antibiotic treatment (298). Given these
dichotomies of NK/NKT cell activation and numbers in
different patient populations and outcomes, they may serve as
an important predictive correlate for TB protection and should
be examined closely in vaccine candidate evaluations.

Vaccine induced. NK cell’s ability to target infected cells and
regulate T-cell activity has enhanced interest in vaccine-induced
NK cell responses. An in vivo study found that C57BL/6 mice
immunized with BCG and subsequently challenged with Mtb
H37Rv showed increased IFNg- and IL-22-producing NK cells
compared to controls (299). To further determine if these cells
played a role in protection afforded by BCG, researchers treated
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mice with 0.3 mg of anti-NK1.1 for NK cell depletion during
BCG vaccination. This NK depletion led to an increase of
immunosuppressive T-regulatory cells, increase in bacterial
burden, and reduced T-cell activity after Mtb H37Rv challenge.
However, supplementing with IL-22 restored some BCG-
induced protection, exhibiting the importance of the IL-22–NK
cell axis in protection (299). Unfortunately, NK cells have been
an underappreciated subset of cells that should be evaluated in
POI and POD vaccine candidate screens.

B Cells
Effector functions. B cells are an immune target of many vaccines,
and their main effectors, antibodies, are crucial particularly for
viral and extracellular bacterial infections. B cells are, however,
also important for protection against intracellular bacteria
including Mtb as reviewed in depth by Chan et al. (300). T-cell
regulation, for example, can be geared towards regulation or
different helper T-cell phenotypes through cytokines produced
by B cells. Like T cells, B cells are also classified into different
subsets: B effector 1 (Be1) producing IFNg, IL-12, TNF, IL-10,
and IL6; B effector 2 (Be2) producing IL-2, lymphotoxin, IL-4,
IL-13, IL-10, and IL-6, as reviewed previously (300).

The effector functions of B cells during tuberculosis infection
are several-fold as discussed in a recent review by Rijnink et al.
(301). These properties include the production of antibodies,
antigen presentation, as well as cytokine production. Antibodies,
or immunoglobulins (Ig), can be cell bound or secreted, make up
five classes or isotypes (IgG, IgA, IgE, IgM, and IgD), and have
numerous functional capabilities due to the interaction with
other immune cells via constant fragment receptors (FcR) and
components that facilitate the host response to infection. Since
these B-cell and antibody functions have been extensively
reviewed in the context of tuberculosis by others in the field
(301–303), this section is only meant to serve as a broad overview
and highlight specific findings.

B cells, which constitutively express major histocompatibility
complex class II (MHCII), are in the “professional” APC
category along with DCs, monocytes, and macrophages (304).
As eloquently described in the review by Ghosh et al., once a
foreign antigen is recognized by the B-cell receptor (BCR), this
leads to internalization and ubiquitination steps that transport
the Ag-BCR clusters to MHCII loading compartments within the
cell in either endosomes or lysosomes. The MHCII molecule
assembles in the endoplasmic reticulum along with trimers of
invariant chain (Ii; CD74), which, when Ii is processed a place-
holder peptide (class II invariant chain peptide, or CLIP), binds
into the MHCII groove. Following a number of processes outside
the scope of this review, the antigen undergoes proteolytic
processing followed by a loading of higher-affinity peptide
from the pathogen (or other immunogen) into peptide/MHCII
complexes, displacing CLIP. These complexes are exported to the
surface of the cells and presented to CD4+ T cells (304). B cells
present antigen to T follicular helper cells (Tfh), and subsequent
differentiation of Tfh is dependent on B-cell cytokine production
following stimulation from pathogens. Antigen presentation on
B cells can also impact T-cell memory responses. Our group has
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shown that B-cell-deficient mice fail to generate vaccine
(ID93+GLA-SE)-induced MPEC (memory “precursor” effector
CD4+ T cells) in mice, and this deficiency reduces memory T-cell
recall responses (305). This is in alignment with other studies
that have shown evidence for decreased T-cell responses or
protective immunity against intracellular pathogens in animal
models with B-cell deficiencies (306–310).

Role in Mtb infections. There are several animal models,
particularly mouse models, and experimental studies that have
helped elucidate the effects of immune cells on the outcome of
Mtb infection. The use of B-cell-deficient mice for understanding
the role of B cells and antibodies has been reported by several
investigators, utilizing several different Mtb strains, doses, and
routes of infection, all leading to different conclusions regarding
the importance of B cells and/or antibody responses on early,
chronic, or disseminated TB [reviewed here (301)]. As increased
age has been associated with recrudescence of TB, Turner et al.
investigated the progression of TB disease in the aerosol model
using Mtb Erdman challenge in B-cell-disrupted C57BL/6j-IgH-
6 mice, IL-4 gene-disrupted mice, or in wild-type mice (311). An
aging immune response results in increasing numbers of B cells
and Th2-biased responses. In this study, bacterial burden was
similar in the lungs of the mice, regardless of the defect. In an
acute Mtb mouse study done in B-cell-deficient mice, infection
with Mtb CDC1551 resulted in a delay in bacterial dissemination
to the spleen and liver, and decreased lung pathology (312). In
contrast, in another study performed in B-cell-deficient mMT
mice infected with Mtb Erdman, researchers observed increased
recruitment of neutrophils and worsened immunopathology,
and increased IL-10 within the lung, suggesting that B cells
contribute to the modulation of inflammation and enhancement
of immunity against infection (313). With an increased
infectious dose of Mtb Erdman (300 CFU), B-cell-deficient
mice were slightly more susceptible to infection (40% mortality
compared to 0% mortality in the wild-type mice), demonstrated
increased pathology within the lung, had increased neutrophil
numbers in the lung, and enhanced IL-10 levels as well in the
lungs. Vordermeier et al. also demonstrated that, in µMT B-cell-
deficient mice given high-dose (106/mouse in 0.1 ml) i.v.
injection of Mtb H37Rv, B cells play a role in containing
infection in the lung, spleen, and liver (313), although higher
mortality was not shown in the B-cell-deficient mice over 18
weeks following infection (data not shown, but communicated in
the manuscript). In addition, vaccination of the B-cell-deficient
mice with BCG 4 weeks prior to challenge with Mtb provided
protection, suggesting that T-cell responses were not impaired
over that short period of time.

Vaccine induced. The design of preclinical vaccines against µtb
has typically relied on ways to generate a potent TH1 cellular
response. The correlates of vaccine efficacy against tuberculosis are
unclear, however, and attempts to determine these correlates could
aid in developing a vaccine that provides long-lived protection on
its own or as a vaccine that suitably boosts BCG.While few dispute
the benefits of generating a cellular response as a requirement for
immunity against TB, B cells and antibodies have convincingly
shown beneficial protective effects against TB. Recent research has
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shed additional light on the role of B cells against TB and may in
fact warrant further investigation particularly during vaccine
development (Figures 1, 2). A lot of attention has recently
focused on the results of superior (nearly sterilizing) protection
following i.v. BCG vaccination in rhesus macaques (16), where the
model has suggested prioritizing interesting correlates of
protection. The antibody responses induced from i.v. BCG
immunized rhesus macaques were thoroughly investigated (17).
In this study, significantly enhanced IgG1, IgA, and IgM titers
were observed against lipoarabinomannan (LAM) in the lungs
(bronchoalveolar lavage) 4 and 16 weeks after i.v. immunization,
and increased anti-LAM IgG1 and IgA responses at 8 and 24
weeks, and higher anti-LAM responses 8 weeks following i.v.
immunization in the plasma, all compared to i.d. administration.
In addition, various antibody responses to HspX and the
glycoproteins PstS1 and Apa were also elevated in the i.v. BCG-
immunized NHPs compared to the standard i.d. route. Enhanced
functional antibody responses in the BAL 4 weeks after
immunization was also importantly demonstrated, including an
increase in FcgR2A binding, NK cell degranulation,
and intracellular antibody-dependent Mtb killing within
macrophages with i.v. immunization in these studies (17).
Lastly, plasma LAM-specific IgG1 (week 8) and LAM-specific
IgM (week 24), in addition to HspX-specific IgM (week 4), were
predictive of vaccine-induced protection (<1,000 CFU) using
partial least-squares discriminant analysis. A comprehensive
analysis of the role of anti-LAM antibodies is well reviewed here
(314). While i.v. BCG is not being considered as a viable route of
immunization, these findings are valuable indicators of potential
humoral correlates of protection that can be tested for other
preclinical candidates and clinically in historical or planned trials.

The route of immunization can also play a role in vaccine-
specific antibody responses. Heat-killed MTBVAC (MTBVAC
HK) delivered mucosally in mice (via the intranasal route) and in
NHP (intrabronchial route) induces mucosal IgA, IgM, and IgG
responses (315). When BCG-primed C57BL/6 mice were given
intranasal immunization with MTBVAC HK, enhanced survival
following high-dose Mtb H37Rv was observed compared to BCG
(given s.c.) alone. One month following MTBVAC HK
immunization, antigen-specific IL-17 in addition to IFNg was
induced in the lung and spleen. Our group has also shown that
mucosal delivery with ID93+GLA-SE leads to antigen-specific
IL-17 production and increased protection 4 weeks after the last
immunization; however, both intramuscular and intranasal
delivery led to increased protection in the lungs of immunized
mice infected with low-dose Mtb H37Rv (52). Although
antibody responses were not measured following mucosal
delivery, i.m. immunization with ID93+GLA-SE routinely
induces antigen-specific IgG2 and IgG1 responses, and induces
TH1 CD4+ T cell cytokine responses (IFNg, TNF, and IL-2)
(40, 42).

A correlate of vaccine-induced protection against Mtb would
enable down-selection of vaccines that enter into the Mtb vaccine
clinical pipeline and would accelerate lengthy clinical trials, and
antibody responses should not be overlooked in defining these
correlates. A United Kingdom (U.K.) study conducted over 10
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years showed that people with hypogammaglobulinemia have an
increased risk of contracting Mtb (316). Several different
functional roles of antigen-specific antibodies against Mtb have
recently been described by the Alter lab in Lu et al (303). Fc-
mediated effector responses are dictated by the interactions of the
Fc domain of the antibody with the activating or inhibitory Fc
receptors on innate cells such as NKs, monocytes, and
neutrophils (303). PPD-specific responses from people latently
infected with Mtb had higher PPD-specific NK cell
enhancement, ADCC, and NK cell degranulation in
comparison to those with active TB. Different antibody Fc
effector profiles were also shown to correlate with different
states of TB disease utilizing a systems serology approach.
Antibodies may hold the key for biomarker indicators that
correlate with TB disease, providing an efficacy screen for
treatments, which, in turn, could help reduce the spread of Mtb.

Different TB-specific antibody subclasses and glycosylation
patterns have been characterized, offering interesting
perspectives on how a reduction in a humoral marker of TB
disease (IgG4) can potentially track the success of drug treatment
(317). Grace et al. have recently reported striking differences in
the TB-specific antibodies in four human cohorts in different
stages of TB: healthy, latent TB infection (LTBI), active TB
(ATB), and treated active TB (txATB) (317). ATB subjects
were enrolled within 1 week of treatment with isoniazid,
rifampicin, ethambutol, and pyrazinamide for 2 months
followed by 4 months of isoniazid and rifampicin. The treated
cohort were patients that completed 6-month antibiotic
treatment, and were culture negative at 2 and 6 months of
therapy. LTBI patients were contacts of patients with ATB,
with positive QuantiFERON-TB Gold results but no symptoms
of TB. Antibody profiling included responses to several TB
antigens including PPD, recombinant Ag85A/B (1:1 ratio),
ESAT6/CFP10 (1:1 ratio), GroES, glcB, and HspX (317). Of
note, enrichment of PPD-specific IgG4 was shown in the ATB
cohort, and depleting this specific subclass led to increases in
neutrophil and NK effector functions. In addition, this marker of
TB disease (PPD-IgG4) was decreased in the txATB cohort.
Besides the enrichment of PPD-specific IgG4 in ATB, higher
levels of Ag85-specific IgG were observed in the ATB cohort. In
the treated group, PPD-specific phagocytosis, and increased
HspX-IgG and Ag85-IgM were seen in the txATB subjects. In
the ATB group, expanded IgA titers to Ag85A/B whereas higher
PPD-IgM and HspX-IgG1 were significantly higher in the txATB
cohort, which may be indicative of effector functions used to
control infection (317).

One vaccine candidate success story warranting further
humoral endpoint evaluations is the M72+AS01E clinical trial,
which has shown ~50% efficacy against the development of
pulmonary TB disease (13, 14). For humoral immunity, only
the geometric mean anti-M72 IgG antibody responses were
assessed, where the participants were seropositive at 2 months
(highest responses) and had detectable anti-M72 titers through
36 months (13). Given the IgM correlation described above in
NHPs, it will be of interest to measure anti-M72 IgM responses
in these cohorts.
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Another success story is that of ID93+GLA-SE. This vaccine
is currently in Phase 2 and has shown promise both for safety
and immunogenicity (45). In the phase 1 trial, all ID93+GLA-SE
recipients showed significantly greater ID93-specific IgG titers
after one injection compared to the protein (ID93) alone, and
after three vaccinations, these responses persisted until Day 238.
There was a predominance of anti-ID93 IgG1 and IgG3 subtypes.
Anti-ID93 IgM responses were also measured following
immunization. Interestingly, stronger IgM responses were
observed against ID93, with some anti-IgM response against
Rv2608 and Rv1813, and low IgM responses to Rv3620 and
Rv3619 components of ID93 in the ID93+GLA-SE-immunized
cohorts. Antibody effector functions were also measured in
ID93+GLA-SE-immunized cohorts, including antibody-
dependent cellular cytotoxicity (ADCC), and ID93-specific
antibody-mediated NK cell degranulation and activation
determined by the enhanced IFNg, MIP1b, and CD107a
upregulation. In addition, antibody-mediated cellular
phagocytosis (ADCP) of ID93-coated beads was increased
from the sera of those vaccinated with ID93-GLA-SE
compared to ID93 alone (sera was analyzed 28 days after the
third immunization). Antibody functions in this study were
correlated with multiple subclasses and isotypes rather than
one. These responses also suggest that the adjuvant, GLA-SE,
is able to augment antibody effector functions as these responses
were not elicited in the ID93 protein alone group. To our
knowledge, this was the first candidate TB vaccine that was
analyzed for antibody effector functions. Specific antibody-
mediated immunity is well reviewed here (301, 318) and
provides ample rationale of why these endpoints should be
expanded for clinical TB vaccine candidates.

CD8+ T Cells
Effector functions. T cells expressing CD8 are largely known as
killer T cells with effector functions related to T-cell receptor
(TCR) engagement by antigen presented on MHC class I
molecules, helping to fight intracellular pathogens. CD8+ T
cells have an arsenal of cytotoxic molecules, including Fas
ligand (binding Fas [CD95] on target cells and inducing
apoptosis), perforin (driving membrane holes in target cells),
and granzymes (protease enzymes that induce target cell
apoptosis and usually enter perforin-induced holes) (319).
Perforin and granzyme are stored in lytic granules at the ready,
while other membrane-associated receptors and cytokines are
produced de novo upon receptor binding. Activated CD8+ T cells
express proinflammatory cytokines, notably IFNg and TNF
family members (319), as well as paracrine and autocrine
proliferation inducing IL-2, which combine to help activate
local and distal responses.

After activation, human CD8+ T-cell expansion and
contraction are regulated by distinct changes in metabolic
pathways and cel l death induct ion (320) , namely,
restimulation-induced cell death (RICD) (321) and cytokine
withdrawal-induced cell death (CWID) (322). Those cells that
survive these expansion and contraction phases make up the
memory compartment, which is leveraged for faster subsequent
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pathogen encounters, the hallmark of adaptive immunity.
Memory CD8+ T cells comprise a spectrum of subset lineages
with variable longevity, localization, and reactivity, which are
well reviewed here (323). Given their role in combating
intracellular pathogens and ability to form T-cell memory,
CD8+ T cells and their effector functions have been well
studied in Mtb infection and vaccine-induced immunity (321).

Role in Mtb infections. Mtb antigen-specific CD8+ T cells
have been isolated post challenge in preclinical models and can
migrate to the lung post infection in both preclinical and clinical
evaluations (324–326), induce IFNg and lyse Mtb-infected
macrophages in vitro (327–331). Depletion or disruption of
either MHC class I or CD8+ T cells significantly enhances Mtb
susceptibility in mouse models, and IFNg derived from CD8+ T
cells contributes to controlling bacteria in vivo (331–335). In
mice, granzyme A (GZMA)-producing CD8+ T cells are
observed after challenge with Mtb in vivo (287); however,
GZMA deficient (GZMA-/-) mice are not more susceptible to
Mtb infection or TB morbidity than wild-type mice. These data
suggest that while GZMA may play a role in infection and
immunity, there may be other pathways that compensate in its
absence, and indeed candidate vaccine MTBVAC-induced
protection was not reduced in GZMA-/- mice compared to
wild-type mice (287). Importantly, CD8+ T cells generate
pulmonary immune memory and can be activated post
challenge, as demonstrated by a C57BL/6 mouse model of i.v.
Mtb infection, drug treatment, and Mtb aerosol rechallenge
(329). It may be that the contribution of CD8+ T cells in
controlling Mtb has been underestimated because they are
more involved in the latent phases than acute phases of
infection and depletion studies may have lacked the dynamic
resolution to study these kinetics (Figures 1, 2). In an
exceptional murine study design from Pinxteren and
colleagues, depletion of CD8+ T cells during the acute stages
(days 1–21 post challenge) of infection did not result in higher
bacterial burden, whereas depletion during a latent phase (11
weeks post drug treatment) increased pulmonary bacterial
burden 10-fold (336).

In a screen of human cohorts with positive tuberculin skin
tests (TST), T cells were stimulated with synthetic peptide pools
(337) and 74 different Mtb proteins, 58 novel, were determined
by IFNg ELISPOT to have CD8+ immunodominant antigens
(338). In addition to antigen recognition, ex vivo human Mtb-
antigen specific CD8+ T-cell lines lyse Mtb-infected
macrophages and inhibit intracellular persistence (327).
Antigen specificity and localization may indeed be critical
components of CD8+ T-cell vaccine designs as a cohort of TB-
infected individuals from the Gambia showed reduced CD8+ T-
cell activation and cytotoxicity by flow cytometry after
stimulation with Mtb H37Rv compared to healthy BCG-
vaccinated controls (326). While the overall percent lysis of
target cells infected with Mtb H37Rv ex vivo was equal
between cohorts, the TB-infected group did have a significantly
higher specific cell lysis against target cells with recombinant
vaccinia virus (rVV)-ESAT6 compared to healthy controls (326).
Furthermore, the specific phenotype of CD8+ T cells has been
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observed to track with progressive disease where ex vivo
stimulated CD8+ T cells from participants with active TB
disease have increased TGFb and IL-10 and decreased
granzyme B expression that correlates with bacterial load in
induced sputum samples (339).

CD4+ T cells are decidedly not the focus of this review;
however it is critical to note their role in maintenance of other
cells, including CD8+ T cells across a variety of infectious disease
models (340). Interestingly, Lu and colleagues recently
demonstrated that in a mouse model, CD4+ T cells provide
help to CD8+ T cells, reducing exhaustion and improving
control of Mtb in vivo (341). These studies suggest that the
relative contribution of CD8+ T cells in CD4+ preclinical KO
experiments may have underestimated their role. Furthermore,
with the advancement of in situ analyses, single-cell evaluations,
and TCR sequencing, we will further unravel the complexities of
T-cell subsets and their role(s) in protection and disease. For
example, recent single-cell analysis of TB pleural effusion in
humans demonstrated that CD8+ T cells expressing GRZM K
are enriched in pleural fluid and may contribute to this disease
state (342). Balance of CD8+ T-cell phenotypes, localization, and
abundance are likely important for driving immunity
versus pathogenesis.

Vaccine induced. While RNA vaccine platforms (343) are in
development for TB vaccine candidates, many vaccine strategies
designed to induce robust anti-Mtb CD8+ T cells have been
evaluated and are well reviewed here (344–346). These platforms
include recombinant BCG encoding listeriolysin O (VPM1002),
recombinant adenoviruses containing Ag85A (Ad5Ag85A) and
Ad35 containing Ag85A, Ag85B, and TB10.4 (Aeras-402),
chimpanzee adenoviral vectored vaccine (ChAdOx185A),
recombinant vaccinia virus (rVV), modified vaccinia virus
Ankara (MVA85A), vaccinat ion with HSP65 DNA
(DNAhsp65), and Cytomegalovirus vector approaches such as
RhCMV/TB (CMV-6Ag) and MTBVAC (344, 345). Conversely,
for protein-adjuvant strategies like vaccine candidate
ID93+GLA-SE, which contains Mtb antigens confirmed to
contain immunodominant CD8+ T-cell epitopes (338),
preclinical and clinical trial data to date suggest that a paucity
of this subset is driven by this platform delivered intramuscularly
(45, 46). Some strategies, like that for VMP1002, a recombinant
BCG vaccine, are designed to drive CD8+ T-cell responses by
enhancing vector apoptosis and autophagy, resulting in greater
cytosolic antigen availability for MHCI presentation (29), which
are only weakly induced in human infants by parental BCG
vaccines (347, 348).

Along with platform of vaccination, route of delivery (also
discussed further below) may play a critical role in eliciting
pulmonary CD8+ T cells. In a mouse model, intranasal (i.n.)
vaccination with an adenovirus vaccine drives mucosal CD8+
Mtb-antigen specific T cells that have distinct effector memory
phenotypes and are maintained separate from circulating
populations (325), suggesting that CD8+ T cells can be elicited
at mucosal sites via vaccination and may persist. In the
remarkable paper showing that 6 of 10 NHPs were protected
from infection with Mtb in the cohort receiving i.v. BCG, CD8+
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T cells were enriched in the airways compared to i.d. vaccinated
groups (16). Importantly, vaccine-induced CD8+ T cells
contribute to reducing bacterial burden in preclinical models
of TB (325, 331, 345, 349). Our group has shown that a protein
prime/Ad5 vector boost induces both CD4+ and CD8+ T cells
and induces long-lived immunity in a preclinical mouse model of
TB (350). Other groups have similarly demonstrated that this
heterologous “prime-boost” strategy helps drive CD8+ T-cell
responses in vivo (350–355). With the advancement of novel and
existing viral vectored and nucleic-acid-based vaccines, the
focused targeting of Mtb-antigen-specific CD8+ T-cell
responses is set to expand (344). We expect that the
identification of high-priority immunodominant Mtb antigens
containing CD8+ T-cell epitopes (337, 338, 356, 357) will further
help drive candidate design for the heterologous immunity
contributing to Mtb control.

gd T Cells
Effector functions. CD3+ T cells that express a unique
combination of Vg and Vd in their TCR are known as gd T
cells. They depend heavily on junctional diversity, and in
humans, there is an interesting preference for Vg9Vd2 pairs
(358). They are less abundant than other T-cell types, making up
2%–10% of total circulating T cells in healthy individuals (359),
and seem to fill a niche in peripheral tissues including mucosal
airways, gastrointestinal tract, and epithelium (360). This
mucosal preference makes them an enticing cell type to study
for TB vaccine strategies. gd T cells interact with many other cell
subsets including DCs, NKs, and CD8+ T cells (359). Their
location along with the ability to produce proinflammatory
cytokines, including IL-17 and IFNg, make them well suited to
help in tissue repair and early recognition and combat of
pathogens (360).

Unlike conventional ab CD3+ T cells that recognize peptide
antigens viaMHC presentation, gd T-cell subsets recognize non-
peptide-based phosphorylated antigens and metabolic
intermediate molecules with co-stimulation but without
antigen processing or MHC presentation (361, 362). This
categorical difference may help explain why gd T cells are able
to quickly respond to stimuli. However, in human age
stratification studies, gd T cells are able to form resident
memory and persist in tissues after pathogen clearance (363),
making them an interesting adaptive subset with early innate
characteristics (361).

Role in Mtb infections. In preclinical models, gd T cells have
been shown to traffic to the airways and express IFNg and IL-17
early after Mtb challenge (364). Indeed, early induction of IL-17,
in particular, seems to be dominantly produced by gd T cells and
not CD4+ T cells, promoting early control of Mtb and
subsequent granuloma formation (360, 361, 365). IL-17 is
known to be protective against Mtb, as mice with depleted IL-
17 are more susceptible to Mtb (366) and humans with specific
IL-17 allelic genotypes are at a decreased risk of TB disease (367).
There is an interesting dichotomy between the reduction in IL-17
production and an observed increase in T-cell exhaustion,
including PD-1 expression, in individuals with TB disease,
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suggesting that beyond its pro-inflammatory role, IL-17 may also
help regulate T-cell exhaustion profiles during disease states
(368). In several clinical studies, adult and adolescent patients
with active TB have been shown to harbor robustly higher
cytolytic and IL-17-producing gd T cells compared with
healthy controls (369–371) (Figure 2), and this expansion
decreases with TB drug treatment (362). Interestingly, some
studies have reported a progression of TB disease severity to
correspond with a decrease in circulating gd T cells (372).
Connecting these trends is difficult as TCR sequencing has
revealed that distinct clones populate the periphery and lung
(371), suggesting that there may be dedicated roles for local and
disseminated control. Importantly, human Vg9Vd2 T cells are
able to kill intracellular and extracellular Mtb in vitro via
granulysin and perforin (373) and therefore may play both a
direct and an indirect role in pathogen control.

Vaccine induced. Readouts for functional gd T cells have
largely been left out of many TB vaccine candidate
assessments. Interestingly, while gd T cells can respond to BCG
immunization, depletion of this subset did not reduce protection
from BCG challenge in a mouse model (371, 374). However, like
CD8+ T cells, this may be an underappreciation of their full
contribution to TB control. For instance, Vg9Vd2 T cells have
been shown to provide help to CD8+ and CD4+ T cells (375),
and this help may be largely unrecognized in preclinical models
at singular time points. Indeed, rhesus macaques that received a
mucosal immunization of vaccine candidate L. monocytogenes
(Lm DactA prfA*) expressing Vg2Vd2 T-cell antigen (E)-4-
hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) had a
more rapid TH1 CD4+ and CD8+ T-cell response (376). These
nonhuman primates also demonstrated reduced dissemination
of Mtb post challenge compared to cohorts not immunized with
the HMBPP vaccine candidate (376).

Early in vitro studies suggested that human monocytes
infected with live Mtb were superior at activating and
expanding Vg2Vd2 T cells compared to heat-killed Mtb
preparations or protein antigens (377). These data may help
explain why the majority of vaccine studies that note gd T-cell
contributions are replicating platforms. For example, a non-
statistically significant increase in IL-17-producing gd T cells was
observed in cohorts of rhesus macaques immunized
intradermally with MTBVAC and BCG compared to saline
controls (24). In mouse models, it has been shown that gd T
cells are critical for vaccinia virus-induced CD8+ T-cell
responses (378), which may have further implications for
nucleic acid- or viral-based TB vaccine platforms (Figure 1).
As tools for studying gd T cells expand, the research community
will better understand and dissect their possible role(s) in
protective immunity.
REVIEW OF CLINICAL STAGE VACCINE
CANDIDATES AND STRATEGIES

Efficacious, durable, and globally available TB vaccines are on the
horizon. The diverse representation of candidate platforms and
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antigen usage in the pipeline demonstrate how the research
community is advancing despite the absence of robust
continual funding needed. An update of completed and
ongoing TB vaccine clinical trials is presented here (379). This
is not a trivial endeavor as the Mtb genome encodes thousands of
proteins, so protective antigen selection alone is a hurdle. For
example, antigen selection and dose have been shown to directly
influence T-cell differentiation and subsequent protection in
therapeutic mouse models where too high antigen burden in
vivo reduces vaccine efficacy and drives more terminal
differentiation and less memory formation of T cells (380–
382). When we examine clinical stage TB vaccine candidates
(based on the Tuberculosis Vaccine Initiative Pipeline Tracker
2021) for preclinical or clinical evidence of the cell subsets
reviewed above, it is evident that there is a paucity of
surveillance for most innate subsets and a lack of uniformity
for exploring adaptive responses (Table 1). Not surprisingly,
most vaccine candidates that have evaluated a reported innate
subset induction were subunit strategies that are affirming
adjuvant properties. In Table 1, we included data generated
from in vivo or ex vivo animal models or human clinical trial data
that specifically identify subset-specific results. Some data that
were excluded were T-cell ELISPOTs or proliferative assays,
which did not specify a subset or phenotype assayed. Many of
these subsets may fall into secondary endpoints for clinical
studies but are not well followed up or reported if the findings
are negative. Diversifying secondary immunogenicity endpoints
and including early innate markers of vaccine-induced responses
would only help the field continue to down-select those cell
subsets or combinations that most significantly correlate with
specific types of protection.

While Table 1 captures an overview of cell subsets identified
to be vaccine-induced in preclinical or clinical studies, there are
particularly important nuances not detailed including the
following: response kinetics, magnitude, lung homing, or
memory and effector phenotypes, which are sure to influence
protection. For example, route of vaccine delivery, may
specifically skew mucosal immunity. The compartmentalization
of immune responses between peripheral and local mucosa is
well reviewed here (383). Recent studies have shown that aerosol
and mucosal delivery of TB vaccine candidates help drive some
IL-17-dependent cellular immunity (384) and increase vaccine-
induced protective IgM antibody responses (385). Aerosol
delivery of an adenovirus TB vaccine candidate has been
described as safe and induces enhanced polyfunctional airway
responses, including CD8+ T cells, outperforming intramuscular
delivery of the same vaccine in mouse models of Mtb challenge
(349, 386) and a phase 1 human clinical trial (387). A similar
observation was made for an influenza vectored TB vaccine
candidate in an i.n. administration to mice (388). Our own
group has demonstrated that mucosal delivery of ID93+GLA-SE
in mice converts the response from a TH1 CD4+ T-cell response
typically seen following parenteral immunization, to a TH17
CD4+ T-cell response (52). The field has also demonstrated that
i.n. BCG administration provides enhanced protection in mice
and guinea pigs compared to subcutaneous delivery (389–391).
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Both the adaptive (392) and, most recently, trained innate
immune responses (393) have been independent ly
characterized for pulmonary BCG delivery-induced protection.
Heat-killed MTBVAC delivered intranasally induces mucosal
IgA, IgM, and IgG responses in both mouse and NHP models
(315). In summary, mucosal delivery fundamentally changes the
composition, localization, and functionality of vaccine-induced
responses. In addition to inducing robust airway responses,
mucosal delivery of TB vaccine candidates allow for dose
sparing (394), which is an essential consideration for products
intended for LMICs.

Selection of secondary immunogenicity endpoints and
alignment across vaccine studies will likely vary slightly
between POI and POD strategies. POD endpoints will likely
more heavily rely on memory adaptive immunity whereas POI
will be more innate and mucosal based. However, many
candidates are being evaluated for both POI and POD
indications (Table 1) and so comprehensive testing across the
spectrum of cells discussed is likely warranted. Many other target
population characteristics are also important to consider and
may dramatically change the vaccine-induced immune response.
TB vaccine candidates can be designed to be broadly effective
across population heterogeneity or specific for different groups of
people including naïve individuals or those who are BCG
vaccinated, persons living with HIV, and individuals with
latent TB, recovered from TB, or with TB disease recurrence
(395). For example, more balanced CD4+ and CD8+ T-cell
responses were observed in BCG primed individuals receiving
Ad5Ag85A than BCG naïve individuals (32). Furthermore, the
Ad5Ag85A candidate is likely best as a targeted childhood boost
of BCG, as anti-Ad5 vector immunity increases with age and may
reduce efficacy. “Prevention”, therefore, will have different
definitions depending on the strategy as described above. Phase
3 clinical trials evaluating prevention are difficult as they require
large numbers of participants followed for extended (2–5 years
for POD) lengths of time. POI and POD vaccine strategies, target
populations, efficacy endpoints, and novel strategies are
outlined below.

POI target populations are largely pre-infected or naïve/
unchallenged and a primary efficacy readout for these clinical
studies would be remaining IGRA negative for a specific follow-
up period. Prevention for POI in this case is absence of infection
and likely a lack of measurable infection-mediated adaptive
immune responses (e.g., IGRA-negative RSTRs). Populations
with regular high exposures to Mtb, such as healthcare workers
and household contacts of persons with active disease, are ideal
for POI studies since they have a higher chance of becoming
challenged than the general population, allowing for smaller trial
numbers. For example, the recent phase 2b trial of ID93+GLA-
SE completed in BCG-vaccinated healthcare workers in South
Korea required just 107 participants to study two doses of
vaccine against placebo (ClinicalTrials.gov Identifier:
NCT03806686). These community participant trials are needed
because there is currently no uniform human challenge model of
Mtb, although robust advances in the last few years have made
this more feasible. Experimental medicine studies in healthy
Frontiers in Immunology | www.frontiersin.org 17
volunteers leveraging BCG for pulmonary mycobacterial
challenge may help serve as a bridge in the field and advances
in this model are being made in Cape Town, South Africa (396,
397) as well as Oxford, UK (ClinicalTrials.gov Identifier:
NCT02709278 and NCT03912207).

Conversely, POD strategies have a target population, which is
post-Mtb challenge, and a primary efficacy readout is an absence
of clinically active TB symptoms whereby the individual clears
the infection (e.g., IGRA reversion) or remains latently infected
for a period of follow-up. The complexities of the spectrum of
latency and the research communities’ dated definitions of
latency (harboring live bacteria that may reactivate versus a
memory immune response to infection) and cure (clearance of
bacteria) are recently discussed here (398). These definitions are
not trivial as they are composed of information collected from
clinical, pathological, microbial, and immunological sources but
importantly inform vaccine trial endpoints (398). Better
agreement in defining and testing for POD in latent
individuals in particular would be beneficial for the field.
Advances in host correlate of risk (COR) for progression to
active disease signatures (399–402) are being evaluated as more
short-term endpoints that can inform efficacy outcomes for drug
and vaccine candidate regimens.

Exceptional efforts to mathematically model which vaccine
strategies will most disrupt the global burden of TB disease have
largely been led by the TB Modeling Group from the London
School of Hygiene and Tropical Medicine. Most recently, the
population-level impact of candidate POD or POI TB vaccines
was modeled for China, South Africa, and India as representative
high-burden regions with different demographics, healthcare
infrastructures, and epidemiological trends. Interestingly, these
models suggest that a candidate POD vaccine with ~70% efficacy
for adolescents/adults already infected with Mtb would have the
largest effect of incidence rate reduction (IRR) in all populations
tested over a targeted 10-year mass vaccination campaign period
(403), whereas the IRR was more variable by population for POI
vaccine candidates depending on amount of transmission and
less effective in regions modeled with reactivation as a primary
driver (403). These findings do not seem unique to drug-sensitive
Mtb, as this same Modeling Group next examined the influence
of POI or POD vaccine candidates on emergence of DR in China
and India as two representative regions that account for nearly
40% of the total global distribution of Mtb drug resistance (9).
Interestingly, a vaccine with POI and POD efficacy had the
largest influence of reducing DR incidence rates in both India
and China (>70% in both models) with a predicted 2 million
cases prevented in both regions (404), whereas a targeted vaccine
with POI efficacy alone was nearly cut in half comparatively
(404). Cost-effectiveness of these vaccine strategies against DR
Mtb was dependent on regional wealth scenarios, efficacy, and
POI or POD strategies, suggesting that a low-cost and age-
targeted vaccine should still be a main priority for the pipeline
(404, 405). Indeed, modeling deployment of M72/AS01E for
populations in South Africa and India suggests that this
vaccine candidate would be cost-effective in all scenarios for
South Africa based on thresholds for disability-adjusted life-
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years (DALY) avoided, but that adolescent vaccine campaigns in
India would be most cost-effective (406).
ANIMAL MODELING
FOR VACCINE EFFICACY

The integration of animal models across the pipeline will only help
to facilitate translational advancement of vaccine candidates.
While each main model used (mouse, guinea pig, and NHP) has
their own caveats for lack of fidelity to human infection, disease
progression, and pathology, they do still make up a functional
pipeline with tools for Mtb challenge, immunological study, and
pathology interrogations. A summary of strengths and weaknesses
of each model is presented here (407). Homogeneity of in-bred
models is a common complaint or worry for preclinical modeling.
However, the Collaborative Cross (CC) and Diversity Outbred
(DO) mouse models are elegant systems to examine host–
pathogen interactions and uncover more detailed mechanisms of
vaccine-mediated protection (408), including those in TB (409,
410), and we expect these genotypes to be further leveraged to
examine the contribution of cellular subsets to vaccine-mediated
immunity in the near future. These detailed studies should
carefully profile and capture the kinetics of cell activation,
metabolic states, trafficking, and contribution to containment in
early, middle, and late time points post challenge. The ultra-low
dose challenge mouse infection (1–3 CFU permouse), well defined
and leveraged by the Urdahl research team, is another recent
advancement bringing greater harmony across models that are
more physiologically relevant and representative of human
infections with resulting heterogeneous acute bacterial loads
(411). Historically, the mouse model represents acute and
chronic TB disease, but offered little symmetry with human
latent TB immunology and protection against reinfection.
Recently, researchers have pioneered a small animal model of
“contained Mtb infection” (CMTB). In this model, live Mtb is
administered into a mouse ear where it persists, which will be
exceedingly useful for differentiating immune profiles of active and
latent disease and for evaluating protective responses (412, 413).
The next model in the three-tiered pipeline is commonly rabbits or
guinea pigs, which are readily infected with aerosolized Mtb and
demonstrate more robust pathology, including human-like
necrotic granulomas, than mice. A lack of immunological
resources makes these models less than ideal for evaluating
immune mechanism(s) of protection; however, they are a readily
available model for vaccine and drug safety (PPD and DTH
responses) and efficacy evaluations (414). With the more
widespread adoption of in situ transcriptional evaluations and
pioneering researchers generating more immunological tools, the
guinea pig will likely become more beneficial for COP
interrogations in the coming decade. NHPs are the final model
in the preclinical pipeline, which demonstrate the closest
alignment with human TB disease and immunology. These
surrogates are used for a wide array of human diseases and
interventional studies, which can significantly hamper their
availability, as experienced during the SARS-CoV-2 pandemic
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(415). NHPs serve as not only an ideal model for late-stage vaccine
candidates but also a valuable tool for dissecting specific immune
COP, especially in light of the best protection data in NHPs
observed to date with the administration of i.v. BCG (16). AS
surrogate endpoints becomemore predictive of efficacy for human
protection, with or without reliance on mechanism, we expect
them to be evaluated and even back translated through the
pipeline. An example are host risk signatures predicting
progression to active disease, which were identified in human
clinical cohorts (416–421) and evaluated in preclinical
models (422).
DISCUSSION

This review is not exhaustive of all cellular compartments or
agents and many subsets have been well reviewed elsewhere.
Indeed, many of these cells or antimicrobial mediators may play
significant roles in the prevention of Mtb infection, as signs of
measurable memory immune responses in some cases are not
evident, and could explain why some individuals are resistant to
infection. For example, while trained innate immunity has been
widely studied in the HIV research community, it is more
recently being comprehensively followed by the TB research
community (423). Trained innate immune cells, including
myeloid lineages and NK cells, are those that display a
“memory-like” phenotype with metabolic and epigenetic
reprogramming (164, 423, 424). This strategy is of particular
interest for live-attenuated vaccine strategies like BCG and BCG-
based candidates and strategies with adjuvants that differentiate
innate cells through PRR pathways and induce specific metabolic
phenotypes (425). Donor-unrestricted T cells (DURTs),
including gd T-cell subsets discussed above, are exceedingly
unique in that they are not restricted by MHC presentation of
antigen but rather recognize non-peptide antigens on unique
non-polymorphic molecules including Cluster of Differentiation
1 (CD1), MHC-related 1 (MR1 molecules), HLAE, and
butyrophilin 3A1 (296, 426). These non-MHC molecules are
genetically shared across heterogenous populations and so the
responding cells are not donor-restricted in the way classical
TCRs are, making them attractive vaccine targets as they may be
more widely immunogenic across diverse regions. Generating
tools to better study DURTs are a significant research priority for
the field, including generation of DURT antigens and amenable
vaccine formulations (426). Indeed, the non-peptide nature of
DURT antigens makes them candidates for incorporation into
formulations such as emulsions and nanoparticles, which could
further be complexed with classical vaccine T-cell antigens as a
novel vaccine strategy. MAIT cells are T cells that are similarly
non-classically restricted but with a propensity for mucosal
homing, recognizing antigens presented on MR1 with rapid
response capabilities and the functional capacity to kill infected
cells (296, 427, 428). However, their active role is somewhat
confusing as some clinical data demonstrate that individuals
with TB have decreased numbers of circulating MAIT cells with
reduced activation (429), whereas others are detected with
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tetramers at similar frequencies in peripheral blood from TB-
infected and uninfected individuals (427). In mouse models of
TB challenge, MAIT cells have been shown to delay T-cell
priming early during challenge but are efficient targets of host-
directed therapies (428), making them an interesting target in
vaccine and drug therapy strategies. Beyond cell subsets,
antimicrobial peptides (AMP) likely play a significant role in
POI mechanisms. AMP are a wide array of multi-functional
peptides secreted by innate immune cells. They are capable of
targeting bacteria, viruses, and fungi. AMPs are broadly
classified by their structural characteristics and amino acid
composition, but all share similar mechanisms for targeting
pathogens. AMPs are known to primarily target the pathogen
membrane through permeation, although there has been
evidence of AMPs also disrupting DNA/RNA synthesis and
inducing ATP loss (430). AMPs identified in the human
defense against mycobacteria include cathelicidin, defensins,
hepcidin, lactoferrin, azurocidin, elastases, antimicrobial
RNases, eosinophil peroxidase, cathepsins, granulysin, and
lipocalin2 (430). While these AMPs are derived from many
different types of cells, the overwhelming majority are innate
and likely play early roles in protection from mycobacteria and
may contribute to RSTR phenotypes. More work needs to be
done to determine if genetics plays a role in abundance or
efficacy of AMPs against Mtb.

While many vaccine strategies are benchmarked against
induction of robust Mtb-antigen-specific CD4+ TH1 responses,
the data reviewed here and elsewhere make a strong case for
inclusion of many other subsets depending on POI or POD
strategy. While heterologous vaccine strategies such as subunit +
adjuvant prime with vector-based candidate boost may better
drive multifaceted adaptive immunity, their clinical deployment
may be further delayed than present candidates. However,
developing and screening vaccine platforms that induce
specific combinations of immunity against high-priority Mtb
protective antigens should be a major strategy for the pipeline
(Table 2). While it is true that candidates that show efficacy in
the preclinical pipeline may not ultimately be successful in
clinical trials (20), if we begin to look across candidates and
compile more data, trends that better predict success may
emerge. When we evaluate the many cell subsets that
contribute to Mtb control, it is essential to consider (1) the
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time in which they contribute, (2) the way they interact with
other cell subsets, and (3) how they may be preferentially
induced by a vaccine regimen platform, route of delivery, and
dosing interval (Table 1). As a research community, we need
better immune correlates that are mechanistic or that better
predict clinical efficacy. The simultaneous scrutiny of vaccines
and their potential for public health impact on a global scale have
never been higher. As national and international consortiums of
TB vaccine developers and researchers align across the pipeline,
we may soon have reliable models and vaccine endpoints that
more readily steer candidates to approval and clinical
deployment, relegating TB disease to a thing of the past.
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