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A B S T R A C T   

Aims: The aims of this study were to explore the molecular mechanism of mitophagy in multiple 
myeloma (MM) and to develop an effective prognostic signature for the disease based on 
mitophagy-related genes (MRGs). 
Methods: Three gene sets from the Reactome database were used to explore MRGs, following 
which those that were differentially expressed between MM and normal samples were investi-
gated using the data from the Genomic Data Commons–Multiple Myeloma Research Foundation- 
CoMMpass Study. Mitophagy-related molecular subtypes of MM were identified and their im-
mune infiltration, associated patient survival rates, immune checkpoint genes, and mitophagy 
scores were compared. Prognostic genes for MM were identified, and a prognostic model was 
constructed. Additionally, a nomogram was constructed using the prognostic model and 
prognosis-related clinical features. Finally, the drug sensitivity and correlation analyses of the 
subtypes were performed between the two risk groups. 
Results: We identified two MM molecular subtypes that exhibited significant differences in 
mitophagy scores, associated patient survival rates, immune infiltration, and immune checkpoint 
genes. An MRG-based prognostic signature was constructed using six genes (TRIP13, KIF7, 
GPR63, CRIP2, DNTT, and HSPB8), which had high predictive prognostic value. A nomogram was 
constructed by screening five indicators (risk score, subtype, age, sex, and stage) that could 
predict the 1-, 3-, and 5-year survival probabilities of patients with MM. The two risk groups 
displayed significant differences in their IC50 values of 33 drugs, such as bleomycin. Patients in 
the high-risk group tended to fall within Mitophagy_cluster_A. 
Conclusion: Our MRG-based signature is a promising prognostic biomarker for MM.   

1. Introduction 

Multiple myeloma (MM) is a malignant disease in which plasma cells that synthesize and secrete immunoglobulins become 
tumorous [1]. Although various therapeutic strategies have been implemented for the clinical treatment of MM, the overall survival 
(OS) rate of patients remains unsatisfactory [2], with the median survival time after chemotherapy without further intervention being 
only 7 months [3]. Moreover, the disease has a high recurrence rate [4]. Therefore, exploring the biological mechanisms that affect the 
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pathogenesis of MM is imperative. 
Mitophagy (also known as mitochondrial autophagy) is a process in which the number of mitochondria is regulated to correspond 

to the number of metabolic needs and damaged mitochondria are specifically removed to maintain quality control [5]. In recent years, 
interest in mitophagy has increased, especially in mitophagy-related genes (MRGs) in human cancers, including MM [6]. A previous 
study showed that MRGs, including the Unc-51-like kinase 1 (ULK1) gene, are critical for the induction of bone metastasis in human 
cancers via the mitogen-activated protein kinase (MAP2K/MEK) pathway [7]. MRGs are key quality control factors and regulators in 
human cancer cells [8]. For example, the PTEN-induced kinase 1 (PINK1) gene regulates MM cell migration and homing via the Mps 
one binder kinase activator (MOB1B)-mediated Hippo–Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding 
motif (TAZ) pathway [6]. Beider et al. indicated that transient receptor potential vanilloid 1 (TRPV1) contributed to the develop-
ment of MM by disturbing calcium homeostasis and the bortezomib-induced unfolded protein response [9]. As autophagic markers, 
genes encoding proteins such as beclin 1 (BECLIN1) and light chain 3 (LC3) have been shown to improve the prognosis and survival of 
patients with MM [10,11]. A recent study proposed a prognostic model based on 15 autophagy-related genes that could effectively 
predict the prognosis of patients with MM [12]. Deeper knowledge about the uniquely altered pattern of mitochondrial phagocytosis in 
MM will enhance our understanding of tumor development and provide innovations for the development of treatment and prognostic 
strategies for the disease. However, despite advances in the study of mitophagy, an effective and reliable prognostic model for MM 
based on a comprehensive understanding of mitophagy and MRGs in the tumor tissues is urgently needed. 

In this study, we obtained gene expression and clinical data on MM tumor samples from public databases and identified the 
differentially expressed (DE)-MRGs. After identifying the mitophagy-related molecular subtypes and prognostic genes of MM, a 
prognostic model for the disease was established. The independent prognostic indicators were analyzed and screened to establish a 
nomogram. Subsequently, the survival rates of patients in the high- and low-risk groups were identified using the nomogram and its 
predictive value was evaluated. Finally, drug sensitivity and correlation analyses with the molecular subtypes were performed and 
compared between the two risk groups. The aims of this study were to elucidate the molecular mechanisms of mitophagy in MM and to 
develop a promising MRG-based prognostic model for the disease. 

2. Materials and methods 

The workflow of this study is depicted in Supplementary Fig. S1. 

2.1. Microarray data 

Clinical information (patient age, patient sex, tumor stage, family history, disease type, OS, and OS time) and RNA-Seq data (log2 
(count+1) and fragments per kilobase of transcript per million mapped reads (FPKM)) from the Genomic Data Commons–Multiple 
Myeloma Research Foundation-CoMMpass (GDC MMRF-CoMMpass) Study were downloaded from the University of California Santa 
Cruz Xena database [13]. After filtering the cases with an OS of less than 30 days, a total of 774 MM samples (MM group) were retained 
for the analysis. For external validation, the microarray dataset GSE2658 in the Gene Expression Omnibus (GEO) database [14] was 
used. This dataset comprises 599 tumor samples, each of which has accompanying survival information (Platform: GPL570 Affymetrix 
Human Genome U133 Plus 2.0 Array). Probes lacking gene symbol matches were eliminated on the basis of their annotation file. For 
genes with multiple corresponding probes, the average value was used. Additionally, 755 normal blood samples (N group) were 
downloaded from the GTEx database (https://www. gtexportal. org/) for subsequent analysis. 

2.2. Differentially expressed mitophagy-related gene investigation and correlation analysis 

Three MRG sets (R-HSA-5205685.3, R-HSA-5205647.4, and R-HSA-8934903.3) were screened from the Reactome database 
(https://reactome.org/), and the MRGs in common among them were revealed through intersection analysis. Then, the differential 
expression of those MRGs between the MM and N groups was analyzed, and the DE-MRGs were investigated using the t-test and 
DESeq2 tool. Finally, correlation analysis between the DE-MRGs in the GDC MMRF-CoMMpass samples was performed using the ggcor 
package (version 0.9.8.1) in R [15]. 

2.3. Prediction and rationality validation of mitophagy-related subtypes of multiple myeloma and analysis of their correlation with clinical 
characteristics 

Unsupervised clustering of the patients with MM on the basis of MRGs was performed using the ConsensusClusterPlus package 
(version 1.60.0) in R [16]. The enrichment score of the REACTOME_MITOPHAGY (C2 CP) mitochondrial autophagy pathway in all 
samples was calculated using gene set variation analysis (GSVA, version 1.44.2) [17]. The enrichment scores of mitophagy pathways 
were compared between the subtypes using Student’s t-test. Moreover, to reveal the difference in prognosis between the molecular 
subtypes, Kaplan–Meier (K–M) survival analysis was performed using the survival package (version 3.4) in R [18]. Finally, the re-
lationships between the 28 MRGs and clinical characteristics (including age, sex, stage, molecular subtype, mitophagy-related pathway 
enrichment score, and OS time) were investigated. 
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2.4. Analysis of immune cell infiltration in the molecular subtypes of multiple myeloma 

To reveal the relationship between mitochondrial autophagy molecular subtypes and the tumor microenvironment, the algorithms 
ESTIMATE [19], CIBERSORT [20], and ssGSEA [17] were used to evaluate the immune microenvironment state of the GDC 
MMRF-CoMMpass samples. The immune cell infiltration levels among the molecular subtypes were compared using Wilcoxon’s 
signed-rank test. 

2.5. Analysis of immune checkpoint and human leukocyte antigen genes among the subtypes 

The expression levels of 48 immune checkpoint and 18 human leukocyte antigen (HLA) genes in the GDC MMRF-CoMMpass dataset 
were determined. The difference in expression between the mitophagy-related subtypes was revealed using Wilcoxon’s signed rank 
test. 

2.6. Revealing differentially expressed genes among the subtypes 

The DEGs between the molecular subtypes identified from the GDC MMRF-CoMMpass dataset were explored using the DESeq2 
package (version 1.36.0) in R [21]. The DEG selection thresholds were a false discovery rate (calculated using the Benjamini–Hochberg 
method [22]) of less than 0.05 and a |log2 fold change| of greater than 1. 

2.7. Definitions of the training, testing, and external verification datasets 

The data (FPKM) of the tumor samples in the GDC MMRF-CoMMpass Study were randomly partitioned into training and testing 
datasets at a ratio of 6:4. GEO data (log2(exp+1)) were used as an external verification set. The training dataset was used to establish 
the prognostic model, and the testing and external verification sets were used to confirm the model effectiveness. 

2.8. Prognostic gene investigation 

Prognostic genes related to OS were identified by investigating the relationships between the expression levels of DEGs and 
prognostic information of the samples, using univariate Cox regression analysis. The survival package (version 2.41-1) in R [23] was 
used to conduct this analysis. 

2.9. Prognostic model establishment 

From the prognostic DEGs, the optimal gene set for model establishment was selected through LASSO Cox regression analysis using 
the glmnet package (version 2.0-18) in R (version 3.6.1) [24]. A 10-fold cross-validation analysis was performed. Finally, the model 
was constructed using Equation (1):  

Risk score =
∑

βgene × Expgene                                                                                                                                                   (1) 

where βgene represents the Cox regression-derived prognostic coefficient pertaining to each MRG, and Expgene represents the MRG 
expression in the GDC MMRF-CoMMpass training dataset. 

2.10. Prognostic model validation 

To validate the prognostic model, the median risk score of samples in the GDC MMRF-CoMMpass testing dataset and external 
verification dataset (GSE2658) was calculated. All samples were then separated into high- and low-risk groups. K–M curves were 
plotted using the survival package in R [18][18] to analyze survival differences between the two risk groups. Additionally, the area 
under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the prognostic model in 
predicting patient survival. 

2.11. Independent analysis of the prognostic model 

Univariate and multivariate Cox regression analyses were used to assess the independence of the prognostic model from clinical 
factors, such as subtype, age, sex, and stage. The cutoff value was a log-rank P value of less than 0.05. Factors with independent 
prognoses were used to establish the nomogram, using the rms package in R [25]. On the basis of the independent prognostic factors, a 
clinical risk model was constructed, and the clinical risk value nomoScore of all GDC MMRF-CoMMpass samples was calculated. All 
GDC MMRF-CoMMpass samples were divided into high-nomoRisk and low-nomoRisk groups. The prognosis of these two groups was 
compared using K–M curve analysis, and the prognostic value of the clinical risk model was evaluated using the ROC curve. To assess 
the performance of the nomogram, calibration curve analysis and decision curve analysis (DCA) were conducted using the rms and 
dcurves packages [25] in R, respectively. 
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2.12. Drug sensitivity analysis 

The Cancer Drug Sensitivity Genomics database was used to estimate the sensitivity of each patient to various chemotherapy drugs. 
The difference in sensitivity (i.e., inhibitory concentration 50 (IC50) value) of the chemotherapy drugs was quantified using the 
pRRophic algorithm [26]. Then, Wilcoxon’s signed rank test was used to compare the IC50 value of each drug between the two risk 
groups. 

2.13. Analysis of the correlation between the multiple myeloma subtypes and different risk groups 

The correlations between the different risk groups and MM subtypes were analyzed using the chi-squared test. The subtype dis-
tribution in the risk groups was visualized as a bar chart. 

2.14. Statistical analysis 

R software (version 4.2.1) was used for all statistical analyses. Differences with a P value of less than 0.05 were considered sta-
tistically significant. 

3. Results 

3.1. Differentially expressed mitophagy-related genes in multiple myeloma 

In total, 29 MRGs in common were obtained through intersection analysis of three sets of MRGs. Differential expression analysis 

Fig. 1. Analysis of mitophagy-related genes (MRGs) that are differentially expressed between multiple myeloma (MM) and normal samples. A, The 
t-test reveals the difference in expression of 29 MRGs between the MM and normal samples: green represents normal samples, and yellow represents 
MM samples. B, DESeq2 reveals 9 upregulated and 10 downregulated MRGs: the height of the column represents the fold change. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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showed that, except for TOMM5, 28 MRGs were differentially expressed between the MM and N groups (Fig. 1A). DESeq2 analysis 
revealed 9 upregulated (MFN2, MAP1LC3A, MAP1LC3B, TOMM6, PINK1, UBB, UBA52, ULK1, and CSNK2B) and 10 downregulated 
MRGs (ATG5, MFN1, MTERF3, TOMM70, TOMM20, TOMM7, TOMM5, PRKN, RPS27A, and SRC) (Fig. 1B). Additionally, correlation 
analysis of the genes in the GDC MMRF-CoMMpass dataset showed co-expression between MRGs (Supplementary Fig. S2). 

3.2. Mitophagy-related subtypes of multiple myeloma and their correlation with clinical characteristics 

Unsupervised clustering based on the DE-MRGs revealed two molecular subtypes; namely, Mitophagy_cluster_A (473 patients) and 
Mitophagy_cluster_B (301 patients) (Fig. 2A–C). The t-test indicated a significantly higher mitophagy enrichment score in Mitopha-
gy_cluster_B than in Mitophagy_cluster_A (P < 0.01) (Fig. 2D). Moreover, K–M analysis showed that patients in Mitophagy_cluster_B 
had a higher survival probability than those in Mitophagy_cluster_A (P < 0.01) (Fig. 2E). The correlation between the DE-MRGs and 
clinical characteristics is shown in Supplementary Fig. S3. 

3.3. Differences in immune cell infiltration between the two mitophagy-related subtypes 

The difference in immune cell infiltration between the two mitophagy-related subtypes was investigated. The ssGSEA results 
revealed that 16 types of immune cells, including regulatory T cells, were significantly different between the two subtypes (all P <
0.01) (Fig. 3A). Moreover, the CIBERSORT analysis results revealed that the percentage of neutrophils and activated natural killer cells 
was significantly higher in Mitophagy_cluster_B than in Mitophagy_cluster_A (all P < 0.01) (Fig. 3B). Furthermore, according to the 
ESTIMATE analysis results, Mitophagy_cluster_A had significantly higher ESTIMATE scores, ImmuneScores, and StromalScores than 
Mitophagy_cluster_B (all P < 0.01) (Fig. 3C). 

3.4. Differences in immune checkpoint and HLA gene expression between the two mitophagy-related subtypes 

Except for TNFRSF4, TNFPSF18, NRP1, LAIR1, LAG3, KIR3DL1, CD276, CD27, and CD200R1, 29 other immune checkpoint genes 
showed differential expression when comparing the two subtypes (Fig. 4A). For example, the patients in Mitophagy_cluster_B 

Fig. 2. Mitophagy-related molecular subtypes of multiple myeloma (MM), rationality verification, and correlation with clinical characteristics. A, 
Consensus matrix showing K = 2. B, Consensus cumulative density function (CDF) under different K values. C, Delta area of each K value. D, Violin 
chart showing the mitophagy score of the two MM subtypes: the X-axis represents the MM clusters, and the Y-axis represents the mitophagy score. E, 
Kaplan–Meier (K–M) survival curve showing the survival probability of the two MM subtypes. 
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expressed significantly higher levels of TIGIT and CD40 than those in Mitophagy_cluster_A (P < 0.01). Furthermore, the expression 
levels of HLA genes (including HLA-E, HLA-F, HLA-DOB, HLA-DMA, HLA-C, HLA-B, and HLA-A) in Mitophagy_cluster_A were signif-
icantly higher than those in Mitophagy_cluster_B (all P < 0.05) (Fig. 4B). 

3.5. Prognostic model construction and validation 

The DEGs of the GDC MMRF-CoMMpass dataset were further investigated using DESeq2, revealing 364 DEGs between the two 
molecular subtypes (Supplementary Fig. S4). Univariate Cox regression analysis based on the training dataset revealed 46 DEGs related 
to OS in MM (P < 0.05). Of these, 16 genes were identified to have prognostic value according to LASSO Cox regression analysis 
(Supplementary Fig. S5A). Multivariate regression analysis identified six optimal prognostic signatures; that is, four upregulated 
(TRIP13, KIF7, GPR63, and CRIP2) and two downregulated genes (DNTT and HSPB8). A prognostic model was then constructed on the 
basis of these genes (Supplementary Fig. S5B). Additionally, the samples were stratified by two risk groups (Fig. 5A), whereupon the 
high-risk group was found to have worse survival than the low-risk group (P > 0.01). The results of the ROC curve analysis for 1-year 
(AUC = 0.737), 3-year (AUC = 0.684), and 5-year survival (AUC = 0.643) are shown in Fig. 5B. Furthermore, the prognosis difference 
was significant between the two risk groups in both the GDC MMRF-CoMMpass testing dataset (Fig. 5C) and GEO external verification 
dataset (all P < 0.05) (Fig. 5D). The ROC survival curves for the two datasets demonstrated the high predictive value of the constructed 
prognostic model (Fig. 5E and F). 

Fig. 3. Immune cell infiltration in the two mitophagy-related molecular subtypes of multiple myeloma (MM). A, ssGSEA analysis showing immune 
cell infiltration differences between the two subtypes. B, CIBERSORT results revealing the difference in immune cell infiltration between the two 
subtypes. C, ESTIMATE results revealing the difference in immune cell infiltration between the two subtypes. **, P < 0.05; ***, P < 0.01; ns, 
not significant. 
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3.6. Independent analysis of the prognostic model 

Univariate and multivariate Cox regression analyses revealed five independent prognostic factors: risk score, subtype, age, sex, and 
stage (Fig. 6A–B). Subsequently, a nomogram was constructed to predict the 1-, 3-, and 5-year survival probabilities of patients with 
MM (Fig. 6C). 

Based on the different risk groups determined from the median of the nomoscore, K–M survival analysis of the GDC MMRF- 
CoMMpass dataset showed that patients with a high nomoscore had a worse prognosis than those with a low nomoscore (Fig. 6D). 
The AUC at 1-, 3-, and 5-years were 0.751, 0.762, and 0.726, respectively (Fig. 6E). The DCA and calibration curve analysis of the 
nomogram indicated that the predicted survival rates at 1, 3, and 5 years were highly accurate (Fig. 6F–H). 

3.7. Drug sensitivity and subtype distribution in the two risk groups 

The sensitivity (IC50 values) of the two risk groups to 129 drugs was compared, revealing significant differences in the IC50 values of 
33 drugs (all P < 0.01). For example, the IC50 value of bleomycin was higher in the high-risk group (Fig. 7A), whereas that of bica-
lutamide was higher in the low-risk group (Fig. 7B). Moreover, the correlation analysis revealed that patients in the high-risk group 
tended to fall within Mitophagy_cluster_A, whereas those in the low-risk group mostly belonged to Mitophagy_cluster_B (Fig. 7C). 

4. Discussion 

MM is the second most common hematologic malignancy worldwide and generally has a poor prognosis [27]. Although autophagy 

Fig. 4. Differences in immune checkpoint and HLA gene expression between the two mitophagy-related molecular subtypes of multiple myeloma 
(MM). A, Difference in immune checkpoint gene expression between the two subtypes. B, Difference in HLA family gene expression between the two 
subtypes. **, P < 0.05; ***, P < 0.01; ns, not significant. 
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Fig. 5. Predictive value of the prognostic model. A, Kaplan–Meier (K–M) survival curves of samples stratified by the risk score model in the training 
dataset. B, Receiver operating characteristic (ROC) curves showing the value of the model in predicting 1-, 3-, and 5-year survival based on samples 
in the training dataset. C, K–M survival curves of samples stratified by the model in the testing dataset. D, ROC curves based on samples in the test 
dataset. E, K–M survival curves of samples stratified by the model in the external verification dataset. F, ROC curves based on the external veri-
fication dataset. 
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is essential in the development and prognosis of various cancers, including MM [28], the detailed molecular mechanisms of mitophagy 
in MM remain unclear. In this study, we investigated the mitophagy-related molecular subtypes of MM and constructed an MRG-based 
prognostic signature, providing a reference basis for future studies on the early diagnosis and treatment of the disease. 

Autophagy plays a vital role in inflammation, the immune response, and drug resistance in MM [29]. As an immune checkpoint 
gene, CD28 mediates pro-survival autophagy signaling, which induces chemotherapy resistance in patients with MM [30]. CD80, a 
ligand of CD28, is vital for immunotherapy of human cancers, including MM [31]. High levels of neutrophils in the bone marrow 
promote chemoresistance in patients with MM [32]. The antineoplastic drug bleomycin can induce lung injury, leading to the pro-
duction of a high number of neutrophils [33]. A study examining the neutrophil/lymphocyte ratio in patients with MM demonstrated a 
significant elevation in neutrophil count, indicating a correlation between high numbers of neutrophils and MM development [34]. 
These differences in immune response and inflammation are important indicators of different human cancer subtypes. It has been 
shown that the definition of autophagy-related gene expression can be used to define subtypes with different clinical and microen-
vironmental cell infiltration characteristics [35]. Zhang et al. indicated that molecular subtypes of MM are associated with prognostic 
significance, laying an important foundation for subsequent treatment [36]. In this study, two mitophagy-related subtypes of MM were 
identified on the basis of DE-MRGs between disease and control samples. Immune cells, including neutrophils, and immune checkpoint 

Fig. 6. Investigation of prognostic factors for multiple myeloma (MM). A, Univariate regression for clinical factors (risk score, subtype, age, sex, 
stage) and prognosis. B, Multivariate regression revealing the independent factors for MM. C, Constructed nomogram for predicting the overall 
survival (OS) of patients with MM. D, Kaplan–Meier survival analysis of samples stratified by the nomogram based on the whole GDC MMRF- 
CoMMpass dataset. E, Receiver operating characteristic curves based on samples in the whole GDC MMRF-CoMMpass dataset. F–H, Results of 1- 
, 3-, and 5-year decision curve analysis (DCA). 

Fig. 7. Drug sensitivity and mitophagy-related molecular subtype distribution of the two risk groups. A, Difference in the inhibitory concentration 
50 (IC50) of bleomycin between the two risk groups. B, Difference in the IC50 of bicalutamide between the two risk groups. C, Distribution of the 
subtypes in the two risk groups. 
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genes, such as CD28 and CD80, were significantly differentially expressed between the two subtypes. Correlation analysis of survival 
and clinical characteristics revealed a clear distinction between patients with different subtypes. Thus, we speculated that the MRG 
classification could be used to define MM subtypes. 

Owing to the interactions between regulators of mitochondrial phagocytosis, mitophagy has been implicated in innate immunity, 
inflammation, and tumor progression [37]. In this study, the prognostic model constructed using six DEGs (viz., TRIP13, KIF7, GPR63, 
CRIP2, DNTT, and HSPB8) demonstrated good predictive ability in MM. Thyroid hormone receptor interactor 13 (TRIP13), which is a 
critical regulator of mitosis, is commonly upregulated in human tumor cell lines and tissues and is closely linked to tumor progression 
and poor prognosis [38]. Kinesin family member 7 (KIF7) is a crucial molecular motor protein that participates in mitosis and cell cycle 
progression [39]. Differential expression of KIF7 contributes to prostate cancer development [40]. G-protein-coupled receptor 63 
(GPR63), a member of the transmembrane signaling molecule superfamily, is commonly upregulated in tumor cells [41]. A previous 
study showed that GPR63 is a promising biomarker overexpressed in proliferating cells [42]. DNA nucleotidylexotransferase (DNTT) is 
involved in DNA repair [43]. Heat shock protein family B [small] member 8 (HSPB8), a small chaperone that promotes the selective 
degradation of proteins [44], has been shown to participate in the development of drug resistance [45]. Hamouda et al. indicated that 
resistance to bortezomib in MM is mediated by the autophagic clearance of misfolded proteins induced by HSPB8 overexpression [46]. 

With regard to drug sensitivity, the high-risk patients in this study were associated with poor survival and high IC50 values for drugs 
such as bleomycin. It has been reported that the sensitivity to chemotherapy drugs can be used to determine the clinical outcomes of 
patients [47]. Bleomycin is a glycopeptide antibiotic that is used in combination with chemotherapy [48]. A previous study on colon 
cancer showed that the high-risk group identified by a ferroptosis-related long noncoding RNA signature exhibited lower IC50 values 
for certain chemotherapeutic drugs, such as bleomycin [49], suggesting that analyzing the drug sensitivity of different risk groups can 
guide the design of personalized treatment. The results of our study indicated that a mitophagy-related prognostic signature can 
predict the survival of patients with MM. Genes such as TRIP13, KIF7, GPR63, CRIP2, DNTT, and HSPB8 may be novel prognostic 
markers for this disease. 

Nomograms are widely used as predictive tools in oncology and medicine [50] and are also being commonly applied to explore the 
risk of human cancers [51]. A pleural effusion-based nomogram constructed by Hou et al. outperformed the Durie–Salmon and in-
ternational staging systems in accurately stratifying patients with MM into different risk groups [52]. In another study, a nomogram 
was successfully established to predict the OS of patients with newly diagnosed MM [53]. It has been proved that age, sex, and stage are 
independent predictors of survival for patients with MM [54]. Wang et al. indicated that age and risk score were independent 
prognostic predictors of MM in their constructed nomogram [55]. Our nomogram based on risk score, subtype, age, sex, and stage 
could accurately predict the 1-, 3-, and 5-year survival probabilities of patients with MM, as verified by the DCA and calibration curve. 
Thus, we conclude that this novel nomogram is valuable in predicting the survival of patients with this disease. 

This study has several limitations. First, the expression and regulatory mechanisms of key MRGs have not yet been experimentally 
validated. Second, the mitophagy-related prognostic signature was constructed and validated using publicly available data. Its 
prognostic value should be validated in a clinical setting. 

5. Conclusion 

In summary, we have developed a mitophagy-related prognostic signature that can independently predict the survival of patients 
with MM. The MRG classification may be used to define subtypes of MM with distinct clinical and microenvironmental cell infiltration 
characteristics. TRIP13, KIF7, GPR63, CRIP2, DNTT, and HSPB8 may serve as novel biomarkers of MM prognosis. 
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[13] M.J. Goldman, B. Craft, M. Hastie, K. Repečka, F. McDade, A. Kamath, A. Banerjee, Y. Luo, D. Rogers, A.N. Brooks, J. Zhu, D. Haussler, Visualizing and 

interpreting cancer genomics data via the Xena platform, Nat. Biotechnol. 38 (2020) 675–678. 
[14] R. Edgar, M. Domrachev, A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res. 30 (2002) 

207–210. 
[15] H. Huang, L. Zhou, J. Chen, T. Wei, ggcor: extended tools for correlation analysis and visualization, R package (2020). https://gitee.com/dr_yingli/ 

ggcor#citation. version 0.9.7. 
[16] M.D. Wilkerson, D.N. Hayes, ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking, Bioinformatics 26 (2010) 1572–1573. 
[17] S. Hänzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data, BMC Bioinf. 14 (2013) 7. 
[18] T.M. Therneau, T. Lumley, Package ‘survival’, R Top Doc 128 (10) (2015) 28–33, 6. 
[19] K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Treviño, H. Shen, P.W. Laird, D.A. Levine, S.L. Carter, G. Getz, 

K. Stemke-Hale, G.B. Mills, R.G. Verhaak, Inferring tumour purity and stromal and immune cell admixture from expression data, Nat. Commun. 4 (2013) 2612. 
[20] B. Chen, M.S. Khodadoust, C.L. Liu, A.M. Newman, A.A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol. 1711 (2018) 

243–259. 
[21] L. M, A. S, H. W, Differential analysis of count data–the DESeq2 package, Genome Biol. 15 (550) (2014) 10–1186. 
[22] J.A. Ferreira, S.O. Nyangoma, A multivariate version of the Benjamini–Hochberg method, J. Multivariate Anal. 99 (2008) 2108–2124. 
[23] P. Wang, Y. Wang, B. Hang, X. Zou, J.H. Mao, A novel gene expression-based prognostic scoring system to predict survival in gastric cancer, Oncotarget 7 (2016) 

55343–55351. 
[24] R. Tibshirani, The lasso method for variable selection in the Cox model, Stat. Med. 16 (1997) 385–395. 
[25] F.E. Harrell Jr., M.F.E. Harrell Jr., H. D, Package "rms, Vanderbilt University, 2017, p. 229. 
[26] P. Geeleher, N. Cox, R.S. Huang, pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels, PLoS One 9 

(2014) e107468. 
[27] D. Kazandjian, Multiple myeloma epidemiology and survival: a unique malignancy, Semin. Oncol. 43 (2016) 676–681. 
[28] B.Q. Yang, J.M. Chen, Z.Y. Zeng, [Research progress on regulating autophagy in the treatment of multiple myeloma –Review], Zhongguo Shi Yan Xue Ye Xue Za 

Zhi 28 (2020) 700–703. 
[29] Y. Lu, Y. Wang, H. Xu, C. Shi, F. Jin, W. Li, Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma, Cancer Sci. 

109 (2018) 2706–2716. 
[30] M.E. Murray, C.M. Gavile, J.R. Nair, C. Koorella, L.M. Carlson, D. Buac, A. Utley, M. Chesi, P.L. Bergsagel, L.H. Boise, K.P. Lee, CD28-mediated pro-survival 

signaling induces chemotherapeutic resistance in multiple myeloma, Blood 123 (2014) 3770–3779. 
[31] X.Y. Wen, S. Mandelbaum, Z.H. Li, M. Hitt, F.L. Graham, T.S. Hawley, R.G. Hawley, A.K. Stewart, Tricistronic viral vectors co-expressing interleukin-12 (1L-12) 

and CD80 (B7-1) for the immunotherapy of cancer: preclinical studies in myeloma, Cancer Gene Ther. 8 (2001) 361–370. 
[32] I.R. Ramachandran, T. Condamine, C. Lin, S.E. Herlihy, A. Garfall, D.T. Vogl, D.I. Gabrilovich, Y. Nefedova, Bone marrow PMN-MDSCs and neutrophils are 

functionally similar in protection of multiple myeloma from chemotherapy, Cancer Lett. 371 (2016) 117–124. 
[33] T. Hoshino, M. Okamoto, Y. Sakazaki, S. Kato, H.A. Young, H. Aizawa, Role of proinflammatory cytokines IL-18 and IL-1β in bleomycin-induced lung injury in 

humans and mice, Am. J. Respir. Cell Mol. Biol. 41 (2009) 661–670. 
[34] Y.Q. Sun, Q.F. Li, Q.K. Zhang, X.F. Wei, Y.F. Feng, [Significance of neutrophil/lymphocyte ratio in the prognosis of patients with multiple myeloma], Zhongguo 

Shi Yan Xue Ye Xue Za Zhi 27 (2019) 489–493. 
[35] S. Zhu, Q. Wu, B. Zhang, H. Wei, B. Li, W. Shi, M. Fang, S. Zhu, L. Wang, Y. Lang Zhou, Y. Dong, Autophagy-related gene expression classification defines three 

molecular subtypes with distinct clinical and microenvironment cell infiltration characteristics in colon cancer, Int Immunopharmacol 87 (2020) 106757. 
[36] L. Zhang, J.Y. Qi, P.J. Qi, Y.F. Wang, D.H. Zou, H.J. Yao, G. An, S.H. Yi, Q. Li, L.G. Qiu, Comparison among immunologically different subtypes of 595 untreated 

multiple myeloma patients in northern China, Clin Lymphoma Myeloma Leuk 10 (2010) 197–204. 
[37] R. Zhou, A.S. Yazdi, P. Menu, J. Tschopp, A role for mitochondria in NLRP3 inflammasome activation, Nature 469 (2011) 221–225. 
[38] R. Lu, Q. Zhou, L. Ju, L. Chen, F. Wang, J. Shao, Upregulation of TRIP13 promotes the malignant progression of lung cancer via the EMT pathway, Oncol. Rep. 

46 (2021). 
[39] D. Barakeh, E. Faqeih, S. Anazi, S.A.-D. M, A. Softah, F. Albadr, H. Hassan, A.M. Alazami, F.S. Alkuraya, The many faces of KIF7, Hum Genome Var 2 (2015) 

15006. 
[40] K.Y. Wong, J. Liu, K.W. Chan, KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition, Oncotarget 8 (2017) 54558–54571. 
[41] J.B. Regard, I.T. Sato, S.R. Coughlin, Anatomical profiling of G protein-coupled receptor expression, Cell 135 (2008) 561–571. 
[42] X. Huang, Y. Wang, X. Nan, S. He, X. Xu, X. Zhu, J. Tang, X. Yang, L. Yao, X. Wang, C. Cheng, The role of the orphan G protein-coupled receptor 37 (GPR37) in 

multiple myeloma cells, Leuk. Res. 38 (2014) 225–235. 

T. Lv and H. Zhang                                                                                                                                                                                                   

https://doi.org/10.1016/j.heliyon.2024.e24520
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref1
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref2
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref3
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref3
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref4
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref5
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref6
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref6
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref7
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref7
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref8
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref8
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref9
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref9
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref9
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref10
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref10
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref11
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref12
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref12
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref13
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref13
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref14
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref14
https://gitee.com/dr_yingli/ggcor#citation
https://gitee.com/dr_yingli/ggcor#citation
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref16
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref17
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref18
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref19
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref19
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref20
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref20
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref55
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref21
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref22
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref22
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref23
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref24
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref25
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref25
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref26
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref27
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref27
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref28
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref28
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref29
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref29
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref30
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref30
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref31
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref31
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref32
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref32
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref33
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref33
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref34
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref34
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref35
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref35
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref36
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref37
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref37
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref38
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref38
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref39
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref40
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref41
http://refhub.elsevier.com/S2405-8440(24)00551-6/sref41


Heliyon 10 (2024) e24520

13

[43] J. Loc’h, M. Delarue, Terminal deoxynucleotidyltransferase: the story of an untemplated DNA polymerase capable of DNA bridging and templated synthesis 
across strands, Curr. Opin. Struct. Biol. 53 (2018) 22–31. 

[44] R. Cristofani, M. Piccolella, V. Crippa, B. Tedesco, M. Montagnani Marelli, A. Poletti, R.M. Moretti, The Role of HSPB8, a Component of the Chaperone-Assisted 
Selective Autophagy Machinery, vol. 10, Cancer, 2021. Cells. 

[45] M. Piccolella, V. Crippa, R. Cristofani, P. Rusmini, M. Galbiati, M.E. Cicardi, M. Meroni, N. Ferri, F.F. Morelli, S. Carra, E. Messi, A. Poletti, The small heat shock 
protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells, Oncotarget 8 (2017) 10400–10415. 

[46] M.A. Hamouda, N. Belhacene, A. Puissant, P. Colosetti, G. Robert, A. Jacquel, B. Mari, P. Auberger, F. Luciano, The small heat shock protein B8 (HSPB8) confers 
resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells, Oncotarget 5 (2014) 6252–6266. 
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