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APAF1 is a key transcriptional target for p53 in the
regulation of neuronal cell death
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cated as a key regulator of neuronal cell death after

acute injury. We have shown previously that p53-
mediated neuronal cell death involves a Bax-dependent
activation of caspase 3; however, the transcriptional targets
involved in the regulation of this process have not been
identified. In the present study, we demonstrate that p53
directly upregulates Apaf1 transcription as a critical step in
the induction of neuronal cell death. Using DNA microarray
analysis of total RNA isolated from neurons undergoing
p53-induced apoptosis a 5-6-fold upregulation of Apafl
mRNA was detected. Induction of neuronal cell death
by camptothecin, a DNA-damaging agent that functions
through a p53-dependent mechanism, resulted in increased
Apafl mRNA in p53-positive, but not p53-deficient neurons.
In both in vitro and in vivo neuronal cell death processes of
p53-induced cell death, Apaf1 protein levels were increased.
We addressed whether p53 directly regulates Apaf1 tran-

p53 is a transcriptional activator which has been impli-

scription via the two p53 consensus binding sites in the
Apaf1 promoter. Electrophoretic mobility shift assays dem-
onstrated p53-DNA binding activity at both p53 consen-
sus binding sequences in extracts obtained from neurons
undergoing p53-induced cell death, but not in healthy
control cultures or when p53 or the p53 binding sites were
inactivated by mutation. In transient transfections in a
neuronal cell line with p53 and Apafl promoter-luciferase
constructs, p53 directly activated the Apafl promoter via
both p53 sites. The importance of Apafl as a p53 target
gene in neuronal cell death was evaluated by examining
p53-induced apoptotic pathways in primary cultures of
Apaf1-deficient neurons. Neurons treated with camptothecin
were significantly protected in the absence of Apaf1 relative
to those derived from wild-type littermates. Together, these
results demonstrate that Apaf1 is a key transcriptional target
for p53 that plays a pivotal role in the regulation of apoptosis
after neuronal injury.

Introduction

Apoptosis is a biological process that plays a crucial role in
nervous system development and injury. During develop-
ment, cell death is essendal for the regulation of neuronal
cell number as well as protection against the propagation of
aberrant cells (Henderson, 1996). In the mature nervous
system, inappropriate cell death is implicated as an underly-
ing defect in many types of neurodegeneration (Portera-
Cailliau et al., 1995; Smale et al., 1995), as well as in acute
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neurological insults (Li et al., 1995; Nitatori et al., 1995;
Rink et al., 1995). Therefore, understanding the molecular
events triggering apoptosis is an important step towards the
development of effective treatment strategies for such neuro-
logical diseases.

The p53 tumor suppressor gene is involved in the regula-
tion of apoptosis in several death paradigms. In oncogene-
sis, p53 plays an essential role in preventing the propagation
of DNA-damaged cells and controlling aberrant cell cycle
regulation (for review see Prives and Hall, 1999). In the
mature nervous system, p53 has been implicated as a key
regulatory molecule after neuronal injury (for review see
Hughes et al., 1997). Enhanced expression of p53 has been
observed in injured neurons before cell death induced by

focal ischemia (Li et al., 1994; McGahan et al., 1998), exci-
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Table I. Microarray analysis of gene induction during p53-mediated neuronal cell death

Symbol Accession No. Fold change D-call Description

APAF1 AF064071 5.2 | Apoptotic protease activating factor 1

Caspl L28095 1.0 NC Caspase 1, interleukin-1B converting enzyme
Casp2 NMO007610 -1.1 NC Caspase 2; apoptosis-related cysteine protease
Casp3 NMO009810 -1.1 NC Caspase 3; apoptosis-related cysteine protease
Caspb6 Y13087 1.0 NC Caspase 4; apoptosis-related cysteine protease
Casp7 U67321 1.0 NC Caspase 7; apoptosis-related cysteine protease
Casp8 AJO07749 1.0 NC Caspase 8; apoptosis-related cysteine protease
Casp9 AB019600 -1.2 NC Caspase 9; apoptosis-related cysteine protease
Casp11 Y13089 1.0 NC Caspase 11; apoptosis-related cysteine protease
Casp12 Y13090 1.0 NC Caspase 12; apoptosis-related cysteine protease
Casp14 AF092997 1.3 NC Caspase 14; apoptosis-related cysteine protease

Microarray analysis of RNA extracted from neurons 48 h after infection with either Ad-p53 or Ad-p53-173L. Fold induction represents the ratio of gene
expression in cells transduced with Ad-p53 versus Ad-p53-173L. Accession numbers indicate the sequence used as probes in the microarray analysis. Data

represents the average of two independent determinations.

totoxicity (Sakhi et al., 1996; Xiang et al., 1996), and hyp-
oxia (Banasiak and Haddad, 1998). Furthermore, we have
shown that p53 overexpression itself is sufficient to trigger
apoptosis in postmitotic neuronal cultures (Slack et al.,
1996; Cregan ct al., 1999). Although the mechanisms by
which p53 induces apoptosis in proliferating cells are be-
coming elucidated, those involved in the induction of p53-
mediated neuronal cell death appear to be distinct and are
poorly understood.

The signaling cascade induced by p53 is complex and
likely differs depending on the type of tissue examined (for
review see Prives and Hall, 1999). In postmitotic neurons,
we and others (Xiang et al., 1998; Cregan et al., 1999; Kera-
maris et al., 2000) have demonstrated that p53-induced cell
death involves a Bax-dependent caspase 3 activation, sug-
gesting that these molecules are important determinants in
neuronal cell death after injury. However, although Bax was
shown to play a crucial role in p53-induced apoptosis, there
was little or no induction of Bax protein during neuronal
cell death (Johnson et al., 1998; Xiang et al., 1998; Cregan
et al., 1999). Presently, little is known regarding the tran-
scriptional targets for p53 that are important in the regula-
tion of neuronal cell death.

Recent studies have demonstrated the involvement of
caspase activation in the regulation of neuronal cell death
both during development and after injury. For example,
the absence of Apafl, caspase 9, or caspase 3 results in se-
vere craniofacial malformations with dramatically en-
hanced neuronal cell numbers in developing mouse em-
bryos (Kuida et al., 1996, 1998; Cecconi et al., 1998; Yoshida
etal., 1998). These gross developmental defects were attrib-
uted to failed apoptosis in the developing nervous system.
Furthermore, caspases have been implicated in neuronal cell
death induced by acute injury (Gillardon et al., 1997; Hara
et al., 1997; Cheng et al., 1998; Endres et al., 1998; Ni et
al., 1998). Since our previous studies (Cregan et al., 1999;
Keramaris et al., 2000), as well as those of others, have
shown that caspase activation is a key determinant in the
molecular cascade by which p53 induces neuronal cell
death, we examined the role of Apafl in this pathway. In
this study, we show that Apafl is a direct target induced by
p53 and that Apafl plays a pivotal role in the regulation of
neuronal apoptosis after injury.

Results

Apaf1 is induced during p53-mediated neuronal
cell death

We have shown previously that adenoviral-mediated deliv-
ery of p53 can induce apoptosis in postmitotic neurons
(Slack et al., 1996) through a Bax-dependent mechanism
(Cregan et al., 1999). However, unlike with other cell types
(Miyashita and Reed, 1995), little upregulation of the puta-
tive transcriptional target, Bax, was observed (Johnson et al.,
1998; Xiang et al., 1998; Cregan et al., 1999). In the present
study, we used DNA microarray analysis to identify poten-
tial transcriptional targets for p53 involved in the regulation
of neuronal cell death. Cortical neurons were infected at a
multiplicity of infection (MOI) of 20 with recombinant
adenovirus vectors carrying an expression cassette for either
full length human p53 (Ad-p53) or a DNA-binding mutant
(Ad-p53-173L), which was shown previously to be tran-
scriptionally inactive (Rowan et al., 1996) and ineffective at
inducing neuronal cell death (unpublished data). Microarray
analysis of RNA extracted at 48 h postinfection revealed a
5—6-fold increase in Apafl transcript levels in cells express-
ing wild-type p53 relative to controls (Table I). In contrast,
transcript levels of various members of the caspase family did
not change (Table I).

To confirm the microarray data, we analyzed Apafl
mRNA levels by reverse transcription (RT)*-PCR. As shown
in Fig. 1 A, neurons transduced with Ad-p53 exhibited a sig-
nificant increase in Apafl mRNA levels in comparison with
uninfected cells or cells infected with the inactive DNA-
binding mutant, Ad-p53-173L. This increase in Apafl
mRNA levels was evident within 36 h of Ad-p53 infection
and remained elevated at 48 h. To determine whether Apafl
could be upregulated in response to endogenous p53 activ-
ity, we treated neurons with the DNA-damaging agent
camptothecin, which has been shown previously to induce
p53-dependent neuronal cell death (Xiang et al., 1998). As
shown in Fig. 1 B, camptothecin induced a time-dependent
increase in Apafl mRNA levels beginning ~8 h after treat-
ment. To confirm that the induction of Apafl expression

*Abbreviations used in this paper: EMSA, electrophoretic mobility shift
assay; MOI, multiplicity of infection; RT, reverse transcription.
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Figure 1. p53-mediated induction of Apaf1 mRNA in neurons.

(A) RNA was extracted from neurons 36 or 48 h after infection with
Ad-p53 or Ad-p53-173L and analyzed for Apafl or GAPDH expres-
sion using semiquantitative RT-PCR. (B) RNA was extracted from
wild-type or p53-deficient neurons at the indicated times after treat-
ment with 10 M camptothecin and analyzed for Apaf1 or GAPDH
expression using semiquantitative RT-PCR.

was due to p53, the levels of Apafl mRNA were examined
in p53-deficient neurons treated with camptothecin. Unlike
samples derived from wild-type littermates, Apafl mRNA
levels did not increase in p53-deficient neurons, thereby
confirming the requirement of p53 for Apafl induction.

To determine whether the increase in Apafl mRNA levels
was accompanied by an increase in protein expression, we
conducted Western analysis on neurons undergoing p53-
induced apoptosis. Cell extracts were obtained from neurons
infected at 20 MOI with Ad-p53 or the control vector Ad-
LacZ and Apafl protein expression was examined. A signifi-
cant increase in Apafl protein levels was evident at 48 and
60 h after infection with Ad-p53 relative to control (Fig. 2
A). We next examined Apafl protein levels in camptothe-
cin-induced apoptosis that activates endogenous p53 using
wild-type and p53-deficient cortical neurons. A time-depen-
dent increase in Apafl protein levels was found in wild-type
neurons treated with camptothecin, whereas Apafl protein
levels did not increase in p53-deficient neurons treated un-
der identical conditions (Fig. 2 B).

To determine whether Apafl induction occurs in neu-
ronal injury, models in which the involvement of p53 has
been demonstrated previously, we examined mice subjected
to ischemia via middle cerebral artery occlusion (McGahan
et al., 1998; Watanabe et al., 1999). Mice were subjected to
2 h of focal ischemia followed by reperfusion for 24 h. This
procedure generates an infarct in the striatum and cortex on
the side of the brain ipsilateral to the occluded middle cere-
bral artery. Immunohistochemical staining of ischemic mice
brain demonstrated increased Apafl immunoreactivity in
the infarct region relative to the respective contralateral
hemisphere (Fig. 3 A). To corroborate immunohistochemi-
cal results, Western analysis was performed to measure
Apafl protein levels from brain tissue after ischemia. The
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Figure 2. p53-mediated induction of Apaf1 protein in neurons.

(A) Protein was extracted from neurons 48 or 60 h after infection
with Ad-p53 or Ad-p53-173L and assayed for Apaf1 levels by
Western blot analysis. (B) Protein was extracted from wild-type or
p53-deficient neurons at the indicated times after treatment with
10 wM camptothecin and assayed for Apaf1 levels by Western blot
analysis. Specificity of the Apaf1 antibody is demonstrated by lack
of immunoreactivity in extracts derived from Apaf1 knockout brain
and loading is standardized with actin.

cortex and striatum were removed at 24 h posttreatment,
protein was extracted, and Apafl protein levels were exam-
ined. In support of our immunohistochemical results, a sig-
nificant increase in the level of Apafl expression was evident
in the ipsilateral cortex and striatum (Fig. 3 B). Consistent
with our in vitro results, p53-mediated neuronal injury in
vivo also results in the induction of Apafl protein.

Apaf1 is a direct transcriptional target of p53

in neurons

To determine whether Apafl is a direct transcriptional tar-
get for p53 in neuronal apoptosis, we examined the Apafl
promoter recently characterized in the Helin laboratory
(Moroni et al., 2001). Analysis of the Apafl promoter se-
quence revealed the existence of two putative p53 consensus
binding sites located at —572 to —604 (p53 BS1) and
—739 to =765 (p53 BS2) relative to the transcription initi-
ation site (Fig. 4 A). To determine whether p53 can interact
with these consensus elements, oligonucleotides derived
from these proposed binding sites were synthesized and used
in electrophoretic mobility shift assays (EMSAs). Protein ex-
tracts were examined from neurons undergoing p53-induced
apoptosis, including: (a) treatment with camptothecin and
(b) direct adenovirus-mediated p53 gene delivery. 48 h after
infection with an adenovirus vector carrying wild-type p53
or the DNA-binding mutant p53-173L, protein was ex-
tracted and examined by EMSA. EMSA demonstrates that
neuronal extracts exhibit p53—-DNA binding activity at both
putative binding sites, although greater activity was found
on BS1 relative to the BS2 (Fig. 4 B). Furthermore, specific
DNA binding activity to BS1 was observed with cell extracts
prepared from camptothecin-treated neurons, suggesting
that endogenous p53 can also interact with these binding

sites (Fig. 4 C). The specificity of p53 binding from neu-
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Figure 3. Induction of Apaf1 in neurons after focal ischemia in

mice. Mice were subjected to 2 h of middle cerebral artery occlu-
sion followed by 24 h of reperfusion. (A) Sections from ipsilateral
and contralateral forebrain were prepared and immunostained for
Apafl. (B) Western blot analysis of ApafT expression in contralateral
(C) versus ipsilateral (1) cortex and striatum after focal ischemia.

ronal extracts is supported by several control experiments:
(a) the p53 DNA binding mutant (p53-173L) did not ex-
hibit binding to either recognition site; (b) mutation of four
key residues within each proposed p53 binding sites on the
Apafl promoter (Fig. 4 A) abolished p53 binding activity;
(c) DNA binding activity could be competed out by incuba-
tion with excess unlabeled probes; (d) the bands were super-
shifted by the addition of two different p53-specific anti-
bodies (Fig. 4 D); and (¢) no DNA binding activity was seen
in extracts obtained from p53-deficient neurons treated un-
der identical conditions (Fig. 4 D).

The ability of p53 to activate the Apafl promoter in neu-
rons was further examined by using a luciferase reporter as-
say regulated by the Apafl promoter. Three different Apafl-
luc reporter constructs were tested, including the full length
Apafl promoter (—871 to +208), a truncated promoter
missing one p53 recognition sequence (—715 to +208),
and a truncated Apafl promoter deleted for both proposed
p53 recognition sequences (—396 to +208; Fig. 5 A). Cul-
tured neuronal cell lines cotransfected with the intact Apafl
promoter construct and wild-type p53 exhibited a fourfold
increase in luciferase activity (Fig. 5 B). In contrast, no in-
duction of luciferase activity occurred upon cotransfection
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Figure 4.  Specific binding of p53 to Apaf1 promoter elements in
neuronal extracts. (A) Comparison of p53 consensus binding sequence
(p53 CBS; el-Deiry et al., 1992), with two putative p53 recognition
sequences located in the Apaf1 promoter (Apaf1 BS1 and BS2). The
sequence of the corresponding mutated versions of these oligo-
nucleotides (Apaf1 BS1-mut and BS2-mut) used in the electrophoretic
mobility shift assays are also indicated. (B) Protein was extracted from
neurons 48 h after infection with Ad-p53 or Ad-p53-173L and p53
binding activity to the Apaf1 promoter elements was assayed by electro-
phoretic mobility shift assay. Binding reactions were carried out with
neuronal extracts (10 wg protein) and the indicated oligonucleotides in
the presence of p53 antibody (pAb1). (C) Cell extracts (20 g protein)
obtained from untreated neurons or neurons exposed to camptothecin
(10 uM) for 12 h were tested for p53 binding activity to the Apafl
promoter elements as described above. (D) Specificity of p53 binding
activity to the Apaf1 promoter was examined in p53+/+ and p53—/—
neurons treated with camptothecin. Supershifts with two antibodies
directed against p53 were carried out on p53+/+ neurons to further
confirm the presence of p53 binding to the Apaf1 promoter.

with the DNA binding mutant p53-173L. Deletion of BS2
from the Apafl promoter resulted in an ~25% decrease in
p53-induced luciferase activity, and deletion of both p53
recognition sites essentially abolished all p53-induced pro-
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Figure 5. Activation of the Apaf1 promoter by p53 in a neuronal
cell line. (A) p53 responsiveness of the Apaf1 promoter was tested
using luciferase reporter constructs (pGL3b; Promega) consisting of
the luciferase gene fused to an Apaf1 promoter fragment containing
both p53 binding sites (BS1 and BS2), or truncated promoter frag-
ments deleted for one or both p53 recognition sequences. (B) SN48
cells were cotransfected with the indicated luciferase reporter con-
struct, a CMV-B-gal reporter construct, and an expression plasmid
for either wild-type p53, DNA binding—defective p53-173L, or
empty vector as control. Luciferase activity was measured in

cell lysates obtained 48 h after transfection and normalized to
B-galactosidase activity. Fold increase indicates the ratio of normalized
luciferase activity of each Apaf1 promoter construct in the presence
of p53 expression vector versus empty vector control. Data repre-
sent the mean and standard error of triplicate samples from three
independent experiments.

moter activity. Together, our EMSA results demonstrating
DNA binding activity at p53 consensus sites in extracts de-
rived from neurons undergoing p53-induced apoptosis, as
well as the direct activation of the Apafl promoter by p53
show that Apafl is a direct target for p53 in the regulation of
neuronal cell death.

Apaf1 plays an important role in the regulation of
p53-mediated neuronal cell death

To determine whether Apafl plays an important role in
the regulation of neuronal cell death, we treated wild-type
and Apafl-deficient neurons with camptothecin, a DNA-
damaging agent known to induce neuronal cell death
through a p53-dependent mechanism (Xiang et al., 1998).
Primary cortical neurons were cultured from E14.5 Apafl-
deficient embryos in parallel to their corresponding wild-
type litctermates. After 24 h in vitro, neurons were treated
with camptothecin and cell survival was examined after 0,
12, 18, and 24 h. In Apafl +/+ neurons, loss of cell viabil-
ity became apparent at ~12 h after camptothecin treat-
ment and by 24 h only ~25% of neurons survived (Fig. 6).
In contrast, Apafl —/— neurons treated with camptothecin
remained viable throughout this time frame, such that by
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Figure 6. Apaf1-deficient neurons exhibit increased resistance to
p53-mediated cell death. (A) Cortical neurons obtained from Apaf1-
deficient mice or wild-type littermates were treated with 10 uM
camptothecin and cell survival was determined by LIVE/DEAD
assay (Molecular Probes) at the indicated times. Survival is reported
as a percentage of corresponding untreated control cultures. Data
represents the mean values obtained from independent cultures
involving three separate Apaf1 knockout mice and matching wild-
type littermates, and error bars indicate standard deviation of the
mean. (B) Cortical neurons from Apaf1+/+ and Apaf1—/— litter-
mates were treated with camptothecin and after 24 h neurons were
stained in a LIVE/DEAD assay. Live cells exhibit positive staining for
calcein AM activity (green fluorescence), whereas dead cells stain
positive for ethidium homodimer (red fluorescence). Bar, 100 pm.

24 h there was little difference in cell survival relative to
untreated controls.

To determine whether this enhanced survival of Apafl-
deficient neurons was associated with a decrease in apoptotic
cell death, Apafl+/+ and Apafl —/— neurons were treated
with camptothecin and the frequency of TUNEL-positive
cells was determined after 24 h. In wild-type neurons, camp-
tothecin treatment resulted in a significant increase in the
number of TUNEL-positive cells (~70%) relative to un-
treated controls (Fig. 7 A). Immunofluorescence revealed
that TUNEL-positive cells exhibited the typical pyknotic
nuclear morphology (Fig. 7 B). In contrast, camptothecin
treatment of Apafl null neurons did not reveal a significant
increase in TUNEL-positive cells. This suggests that within
the 24 h time frame examined, in which the majority of
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Figure 7. Apaf1 deficiency decreases p53-mediated apoptosis in
neurons. (A) Cortical neurons obtained from Apaf1-deficient mice
or wild-type littermates were treated with 10 uM camptothecin and
the extent of apoptotic cell death was determined by Tunel assay.
Data represents the mean and standard deviation of three indepen-
dent experiments. (B) Cortical neurons from Apaf1+/+ and
Apaf1—/— littermates were treated with camptothecin and after

24 h cells were fixed, stained for Tunel, and counterstained with
Hoechst. Bar, 100 pm.

wild-type cells have undergone apoptosis, Apafl-deficient
neurons were resistant to DNA damage—induced cell death.

In summary, the results of our studies demonstrate that
Apafl is a direct transcriptional target regulated by p53 and
that it plays a prominent role in the execution of p53-medi-
ated neuronal cell death.

Discussion

In postmitotic neurons, the mechanisms by which p53 in-
duces apoptosis are not well understood and appear to be
distinct from those in proliferating cells. We and others have
shown that p53-mediated cell death in mature neurons
works through a Bax-dependent mechanism (Johnson et al.,
1998; Xiang et al., 1998; Cregan et al., 1999). It has been
shown previously that p53-mediated cell death can function
through transcriptional induction of the Bax gene (Miya-
shita and Reed, 1995); however, we and others (Johnson et al.,
1998; Xiang et al., 1998; Cregan et al., 1999) have shown
that neurons undergoing p53-induced apoptosis require Bax
without significant upregulation of Bax protein levels. The

question as to the transcriptional targets for p53 in neuronal
cell death remains unknown. Therefore, we set out to con-
duct a DNA microarray analysis in search of p53-responsive
genes important in the regulation of neuronal cell death and
have identified Apafl as a potential target. In the present
study, we examined the role of Apafl in the regulation of
p53-induced neuronal cell death. Apafl is a molecule
thought to link the mitochondrial death—signaling events to
the initiation of the caspase cascade by forming, along with
cytochrome ¢ and dATP, an apoptosomal complex that re-
cruits and activates caspase 9 (Li et al., 1997; Hu et al.,
1999). Caspase 9, in turn, goes on to activate other effector
caspases such as caspase 3. Accordingly, in the present study
we have shown: (a) that Apafl is a direct regulatory target
for p53 in neuronal cell death and (2) that the upregulation
of Apafl by p53 plays an important role in the apoptosis-
signaling cascade after neuronal injury.

Several lines of evidence suggest that p53 is a key player in
the regulation of neuronal cell death in acute neurological
disease (for review see Hughes et al., 1997). Studies have
demonstrated that p53 protein levels are upregulated after
excitotoxicity, hypoxia, and ischemia (Xiang et al., 1996;
Banasiak and Haddad, 1998; McGahan et al., 1998). Mice
carrying a p53 null mutation exhibited almost complete pro-
tection against glutamate or kainic acid—induced excitotoxic
injury (Morrison et al., 1996; Johnson et al., 1998). Simi-
larly, ischemic brain damage was reduced in the absence of
functional p53 (Crumrine et al., 1994). Furthermore, we
and others (Slack et al., 1996; Xiang et al., 1998; Cregan et
al., 1999) have shown that enforced expression of p53 alone
is sufficient to trigger the apoptotic cascade in postmitotic
neurons. Taken together, the observations that: (a) p53 is
upregulated after acute neuronal injury, (b) p53 overexpres-
sion is sufficient to induce apoptosis in neurons, and (c) the
loss of functional p53 reduces neuronal cell death after isch-
emia and excitotoxicity, strongly implicate this molecule as a
key regulator of the death cascade in injured neurons.

The mechanism by which p53 regulates transcription is
complex and varies depending on the cell type and can lead
to either growth arrest or apoptosis (for review see Prives and
Hall, 1999). Although many of the transcriptional targets
involved in p53-mediated cell cycle arrest have been identi-
fied (for review see el-Deiry, 1998) those involved in the reg-
ulation of apoptosis have not been well defined. Several p53
target genes capable of inducing cell death have been identi-
fied, including BAX (Miyashita and Reed, 1995), NOXA
(Oda et al., 2000a), AIP-1a (Oda et al., 2000b), and PUMA
(Nakano and Vousden, 2001; Yu et al., 2001); however,
their role in p53-mediated cell death appears to be cell type—
dependent. For example, although Bax appears to be impor-
tant for p53-induced cell death in neurons (Xiang et al.,
1998; Cregan et al., 1999) and certain tumor cell lines (Mi-
yashita and Reed, 1995), it does not appear to be required in
p53-mediated thymocyte cell death (Brady et al., 1996).
Likewise, although the induction of AIP-1 appears to play a
role in p53-mediated cell death of Saos-2 osteosarcoma cells
(Oda et al., 2000b) it does not seem to function in p53-
mediated cell death of several colorectal cancer cell lines (Yu et
al., 2001). The proteins encoded by these genes have all
been reported to target the mitochondria and initiate caspase



activation, suggesting that they may all function through
Apaf-1, which has been identified as a critical cofactor in the
mitochondrial caspase activation pathway (Li et al., 1997;
Cecconi et al.,, 1998; Hu et al., 1999). Indeed, we have
shown here that Apaf-1 plays an important functional role
in p53-mediated cell death in neurons.

Our studies using DNA microarray analysis have idend-
fied Apafl as a target for p53 in the regulation of neuronal
cell death. The Apafl promoter contains two p53 consensus
sites, and p53 DNA binding activity is dramatically en-
hanced when neurons are induced to undergo apoptosis.
p53-mediated Apafl promoter activation is robust in neu-
ronal cell lines and Apafl transcripts are induced in wild-
type, but not p53 null, neurons undergoing DNA damage—
induced apoptosis. Indeed, Apafl protein is enhanced after
cerebral ischemia, an injury model previously shown to in-
volve p53 (Li et al., 1994; McGahan et al., 1998; Watanabe
et al., 1999). Furthermore, the present studies demonstrate
that, not only is Apafl a direct transcriptional target for p53
in neurons, but that Apafl upregulation is an important
event leading to the demise of injured neurons.

Recently, transcriptional regulation of the APAF1 gene
was reported by Moroni et al. (2001). APAF1 was identified
as an E2F1 target gene using DNA microarray analysis and
characterization of the APAF1 promoter revealed the exist-
ence of both E2F1 and p53 response elements. Both E2F1
and p53 are known to cooperate in certain neuronal death
paradigms; for example, pRB-deficient mouse embryos ex-
hibit widespread apoptosis within the central nervous system
and this cell death is suppressed in the absence of p53 (Mac-
leod et al.,, 1996) or E2F1 (Tsai et al., 1998). Although
E2F1 is known to induce p53 stabilization (Bates et al.,
1998) the Helin laboratory has demonstrated that E2F1 can
also activate the apoptotic machinery directly. Furthermore,
we have shown previously that E2F1 can induce cell death
in postmitotic neurons in the absence of p53 (O’Hare et al.,
2000). Thus, it appears that E2F1 and p53 can also induce
caspase activation and cell death independent of one an-
other, with one possible mechanism being through APAF1
induction.

The studies of Moroni et al. (2001) also identified poten-
tial p53 response elements within the APAF1 promoter and
demonstrated APAF1 promoter activation in tumor cell
lines overexpressing p53. Our studies extend this work by
demonstrating that endogenous p53 is capable of activating
the APAF1 promoter in models of neuronal injury. Our re-
sults reveal that primary neurons induced to die by DNA
damage or after ischemia in vivo exhibit a robust upregula-
tion of APAF1. Furthermore, we demonstrate using EMSAs
from neuronal extracts that endogenous p53 is capable of
binding wild-type but not mutated p53 response elements
on the APAF1 promoter. Parallel studies with p53-deficient
neurons confirmed that this binding activity is due to p53
and not other p53 family genes such as p73. Finally, we have
demonstrated that APAF1 plays an important functional
role in p53-mediated neuronal cell death. Thus, the results
of our study establish a novel mechanism by which p53 in-
duces neuronal cell death.

The importance of the caspase-signaling cascade has been
demonstrated in many models of neuronal injury as well as
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neurodegeneration. For example, caspase 3 activation has
been demonstrated in traumatic brain injury and inhibition
of caspase activity was shown to reduce posttraumatic apop-
tosis and improve neurological function (Yakovlev et al.,
1997). Induction of caspase 3 levels and activity has been
demonstrated in the hippocampus after transient global
forebrain ischemia (Gillardon et al., 1997; Ni et al., 1998),
and, caspase inhibitory peptides have been reported to block
neuronal cell death in several models of ischemia (Hara et
al., 1997; Cheng et al., 1998; Endres et al., 1998). Indeed
the IAPs (the inhibitor of apoptosis protein family) that have
been shown previously to be potent inhibitors of caspase ac-
tivity, exert neuroprotective effects when expressed in neu-
rons induced to die by ischemia (for review see Robertson et
al., 2000). Thus, the caspase family of cysteine proteases ap-
pears to play an important role in the execution of neuronal
cell death, and identification of upstream targets of this cas-
cade is critical for the development of therapeutic strategies
for the treatment of acute neuronal injury. In this regard, fu-
ture studies will be conducted to investigate the role of
APAF]1 as an upstream regulator of the caspase cascade in in
vivo models of neuronal injury using APAF1 conditional
knockout mice.

In summary, the results of these studies identify a key
mechanism of p53 action in the regulation of neuronal cell
death. First, we show that Apafl mRNA is upregulated in
response to exogenous and endogenous p53 after neuronal
injury. Second, we show that Apafl protein is upregulated
in neurons undergoing p53-induced apoptosis. Third, we
demonstrate through EMSA and luciferase reporter assays
that p53 directly transactivates the Apafl promoter in neu-
ronal cells. Finally, our results show that Apafl is an impor-
tant target for p53 that plays a pivotal role in the regulation
of neuronal apoptosis.

Materials and methods

Transgenic mice

Apafl-deficient transgenic mice have been described previously (Cecconi
et al., 1998) and were maintained on a C57BL6 background to maintain
genetic uniformity. Apaf1 null mice were genotyped by PCR as described
previously. The primers for the wild-type and knockout Apaf1 alleles were
5'-AGATAGCCTAGGGGGTGCAT-3" (sense) and 5'-ATCAGTTTCCA-
ATCGCTGCT-3’ (antisense). Conditions were set as follows: 94°C, 5 min
(1 cycle); 94°C, 1.5 min, 66°C, 1 min, 72°C, 1.5 min (30 cycles); 72°C, 10
min (1 cycle). p53-deficient transgenic mice were obtained from The Jack-
son Laboratory and were maintained on a C57BL6 background to maintain
genetic uniformity. p53-deficient mice were genotyped by PCR. The prim-
ers for the wild-type were 5'-GTATCTGGAAGACAGGCAGAC-3' (sense)
and 5-TGTACTTGTAGTGGATGGTGG-3' (antisense) and for the knock-
out p53 alleles were 5'-TTCCTCGTGCTTTACGGTATC-3' (sense) and 5'-
TATACTCAGAGCCGGCCT-3’ (antisense). Conditions were set as follows:
94°C, 5 min (1 cycle); 94°C, 1 min, 55°C, 1 min (30 cycles); 72°C, 1 min,
72°C, 10 min (1 cycle).

Primary cortical neuron cultures

Cortical neurons were cultured from dissociated cortices of E14.5 mice as
described previously (Xiang et al., 1996) with certain modifications. Corti-
ces from individual embryos were dissected and incubated for 25 min at
37°C in 1X Hank’s balanced salt solution (GIBCO BRL) containing 0.50
mg/ml trypsin. Trypsinization was stopped by incubating with 0.2 mg/ml
trypsin inhibitor (Boehringer) and 0.2 mg/ml DNase | (Boehringer) for 2
min at 25°C. Cells were pelleted and triturated in Neurobasal medium
(GIBCO BRL) containing 0.2 mg/ml trypsin inhibitor and 0.25 mg/ml
DNasel. The cell suspension was centrifuged and the pellet was resus-
pended in Neurobasal medium containing B-27 supplement, N-2 supple-
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ment, 0.5 mM glutamine, and 0.05 U/ml 0.05 mg/ml penicillin-streptomy-
cin (GIBCO BRL). Cells were plated in either Nunc 4-wells (3 X 10° cells/
well) or 35 X 10 mm (1.5 X 10° cells) dishes (GIBCO BRL) coated with
poly-p-lysine (Sigma-Aldrich). Cortices from each embryo were cultured
individually and remaining tissue was used for genotyping, after which the
appropriate cultures were selected for experimentation.

Murine SN48 cells, which were derived by fusing septal cells from post-
natal day 21 mice to N18TG2 neuroblastoma cells (Lee et al., 1990), were
maintained in DME supplemented with 10% fetal calf serum at 37°C in 5%
CO,. Cells were grown to 50-60% confluence, and the media was re-
placed 12 h before transfection by calcium phosphate coprecipitation as
described previously (Storring et al., 1999).

Semiquantitative RT-PCR analysis

Total RNA was isolated from cells using Tripure isolation reagent according
to the manufacturer’s instructions (Boehringer). Pilot experiments were done
to determine the linear range of amplification with respect to amount of
starting template and PCR cycles. 2 ng of total RNA was used for cDNA syn-
thesis and targeted gene amplification using the SuperScript One-Step RT-
PCR kit (GIBCO BRL). cDNA synthesis was carried out at 48°C for 45 min
followed by a 2 min initial denaturation step at 94°C. This was followed by
35 cycles (Apaf1) or 25 cycles (GAPDH) at 94°C for 30 s, 56-58°C for 30 s,
and 72°C for 1 min. Primers were designed to amplify nucleotides 582-1352
of the Apaf1 transcript and 139-740 of the GAPDH transcript.

Recombinant adenovirus infection

Recombinant adenoviral vectors carrying the human p53, DNA binding
mutant p53-173L, or LacZ expression cassettes were constructed, purified,
and titered as described previously (Cregan et al., 2000). All experiments
were performed at a MOI of 20 pfu/cell. Recombinant adenivoral vectors
were added to cell suspensions immediately before plating.

Surgical procedures

All animal procedures conformed to guidelines endorsed by the Medical
Research Council of Canada and were approved by the Animal Care
Committee of the University of Ottawa. Male C57BL/6 mice weighing 20—
22 g were subjected to 2 h of middle cerebral artery occlusion as de-
scribed (Nagasawa and Kogure, 1989). Mice were anesthetized with a
mixture of 30% oxygen, 70% nitrous oxide containing 1.5% halothane.
The left common carotid artery was exposed through a ventral midline in-
cision in the neck and permanent ligature placed around the external ca-
rotid artery. A temporary ligature was placed around the left common ca-
rotid artery and a microaneurysm clip was placed across the internal
carotid artery. A silicon-coated -8-0 nylon suture was inserted into the ex-
ternal carotid artery through an incision in the arterial wall, the microan-
eurysm clip was removed, and the suture was advanced ~9 mm to the or-
igin of the middle cerebral artery. The suture was left in place for 2 h, then
withdrawn and the ligature around the common carotid artery was re-
moved. The wound was then sutured with topical application of bupivi-
caine HCL (0.5 mg/ml).

Cell viability assays

Cell survival was measured by two methods, LIVE/DEAD staining and
TUNEL assay. At the times indicated, neuronal viability was determined
using the LIVE/DEAD viability/cytotoxicity kit (Molecular Probes) following
manufacturer’s instructions. Representative samples were photographed
using a ZEISS Axiovert 100 with a Northern Eclipse Sony power HAD
3CCD color video camera. TUNEL labeling was used to visualize cells
with fragmented DNA. Cells were harvested 24 h after camptothecin treat-
ment and fixed in 4% paraformaldehyde for 20 min, washed in three
changes of PBS, and then incubated for 1 h at 37°C with 75 .l of a cocktail
(Boehringer) consisting of 0.5 wl terminal transferase, 0.95 pl biotin-16-
dUTP, 6.0 pl CoCly, 15.0 pl 5X TdT buffer, and 52.55 pl distilled water.
The reaction was stopped by incubation in 4X SSC buffer followed by
three washes in PBS. Cells were then labeled with a streptavidin Cy2 sec-
ondary antibody (Jackson ImmunoResearch Laboratories) for 45 min at
room temperature and counterstained with Hoechst 33258 (1 ug/pl) for 5
min. The fraction of TUNEL-positive cells as a percentage of total cell
number was determined. A minimum of 500 cells was scored for each
treatment and the data represents the mean and SD from three indepen-
dent experiments.

Western blot analysis

Tissue was extracted in lysis buffer (50 mM Hepes, pH 7.8, 250 mM KCl,
0.1 M EDTA, 0.1 M EGTA, 10% glycerol, 0.1% NP-40, 1.0 mM DTT, 0.5
mM PMSF, 5 ug/mL aprotinin, 2 ug/mL leupeptin, 0.4 mM sodium vana-

date) and aliquots containing 40 pg protein were separated on a 10%
acrylamide gel and transferred to a nitrocellulose membrane. After block-
ing for 2 h with 5% skim milk, membranes were incubated for 1 h with ei-
ther a rat monoclonal antibody directed against Apaf1 (1:500; Chemicon
International, Inc.) or a goat polyclonal antibody directed against actin for
standardization (Santa Cruz Biotechnology, Inc.). After three washes with
TPBS (25 mM Na,HPO,, 5 mM NaH,PO,, 0.9% NaCl, 0.1% Tween-20),
membranes were incubated for 1 h at 25°C with the appropriate secondary
antibody, washed five times for 5 min each in TPBS, and then developed
by an enhanced chemiluminescence system according to the manufac-
turer’s instructions (PerkinElmer).

Immunohistochemistry

Mice were anesthetized by an intraperitoneal injection of sodium pento-
barbital and transcardially perfused with 5 ml of saline followed by 5 ml of
4% paraformaldehyde in phosphate buffer. Brains were removed and post-
fixed overnight in 4% paraformaldehyde followed by 48 h in 10% sucrose
in 0.01 M phosphate-buffered saline. 20-pum thick cryostat sections were
cut and processed as free-floating sections as described (Shu et al., 1988).
The anti-Apafl antibody (MAB3505) was obtained from Chemicon Inter-
national, Inc.

EMSAs

EMSAs were performed on total protein extracts as described (Macleod et
al., 1996), with certain modifications. In brief, cells were harvested, centri-
fuged, and extracted in lysis buffer (100 mM Hepes, pH 7.4, 5 mM MgCl,,
2.5 mM EDTA, 20% glycerol, 0.5 M KCl, 0.5 mM PMSF, 0.1% NP-40, 5
wg/mL aprotinin, 2 pg/mL leupeptin, and 20 uM sodium orthovanadate)
and assayed by the method of Bradford (Bio-Rad Laboratories protein assay
reagent). 10-20 ng of total cell lysate was incubated with an excess of indi-
cated **P-labeled double-stranded DNA probes (60,000 cpm/0.2 ng of
DNA). Oligonucleotides used included 5'-ATGGAGACATGTCTGGAGAC-
CCTAGGACGACAAGCCC-3' (BS2) and 5'-ATGGAGGCACGTCCCCAGC-
GACAGCAGGCTC-3' (BS1) corresponding to the p53 binding consensus
sequences located between —739 to —765 and —572 to —604, respec-
tively, of the Apafl promoter. Oligonucleotides 5'-ATGGAGAAATTTCTG-
GAGACCCTAGGACGAAAATCCC-3’ (BS2-MUT) and 5'-ATGGAGGA-
ACTTCCCCAGCGACAGAAGTCTC-3" (BST1-MUT) containing mutations
within the corresponding p53 consensus sequences were also used as indi-
cated. The binding reaction (25 l) was carried out at room temperature for
20 min in binding buffer (50% glycerol, 250 mM KCI, 100 mM Hepes, pH
7.4, 5 mM DTT, 5 mg/mL BSA, and 0.5% Triton X-100) with 0.1 pg soni-
cated herring sperm DNA and 1 uL of p53 Pab421 monoclonal antibody
(Ab-1; Oncogene Research Products). To control for binding specificity, a
100-fold excess of unlabeled oligonucleotide for BS1 and BS2 was added
to the binding reaction and incubated for 20 min before the addition of la-
beled probe. Furthermore, supershifts were performed with two different
p53-specific antibodies, including FL393 and Pab243 (Santa Cruz Biotech-
nology, Inc.). Complexes were resolved on a 5% polyacrylamide, 1X Tris-
Glycine gel, dried, and visualized by autoradiography.

Apaf1 promoter luciferase reporter assays

The Apafl luciferase reporter construct (pGL3b-Apafl) was generated by
subcloning the Apafl promoter (=871 to +208) into the Hindlll site of
pGL-3 basic (Promega). Promoter deletion constructs were generated by
deleting from the 5’ end with Erase-a-Base nucleotide kit (Promega) (Mo-
roni et al., 2001). The truncated construct pGL3b- Apaf1ABS2, missing the
most 5’ p53 consensus binding site, contains sequence —715 to +208,
and pGL3b-Apafl ABS1/ABS2, missing both putative sites, contains se-
quence —396 to +208. SN48 cells were transfected by calcium phosphate
precipitation (Storring et al., 1999) using 15 pg of luciferase construct, 5
ug/plate of either the pCMV p53, the DNA binding mutant pCMV p53-
173L, or the empty pCMV vectors, and 5 pg/plate of pPCMV LacZ vector as
an internal standard. After 14-16 h, cells were passaged into three wells of
a 6-well dish/10-cm plate, and incubated for 36 h with fresh medium be-
fore assaying for luciferase activity. All plasmids used for transfection were
purified using Maxiprep columns (QIAGEN) and quantified by spectropho-
tometric analysis. Luciferase assays were performed after 36 h, at which
time cells were washed once with PBS and lysed in the wells with 200 L/
well of reporter lysis buffer (Promega). Cells were collected by scraping
and were subjected to one freeze-thaw cycle followed by centrifugation.
Supernatants were collected and assayed for luciferase activity using a
BioOrbit 11250 luminometer. A portion of the harvested cell extract (10%)
was assayed for B-galactosidase activity based on the conversion of 4-meth-
ylumbelliferyl-D-galactoside (MUG) (Sigma-Aldrich) to the highly fluores-
cent molecule methylumbelliferone. In brief, 30 pl of cell extract was in-



cubated in the dark with 30 pl of 0.3 mM MUG, 15 mM Tris-HCI, pH 8.8,
for 30 min after which time a stop solution was added (300 mM glycine,
15 mM EDTA, pH 11.2). After addition of 2 ml of Z-buffer (60 mM
Na,HPO,4, 40 mM NaH,PO,;, 10 mM KCI, T mM MgSOy), fluorescence
was quantified using a PerkinElmer LS50 luminescence spectrofluorometer
at 350-nm excitation and 450-nm emission settings. The ratio of luciferase
to B-galactosidase activity was determined in triplicate samples and nor-
malized to vector-transfected extracts. All data are presented as the mean =
SD of at least three independent experiments.
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