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ABSTRACT

The exploration of the non-protein-coding RNA
(ncRNA) transcriptome is currently focused on
profiling of microRNA expression and detection of
novel ncRNA transcription units. However, recent
studies suggest that RNA processing can be a
multi-layer process leading to the generation of
ncRNAs of diverse functions from a single primary
transcript. Up to date no methodology has been pre-
sented to distinguish stable functional RNA species
from rapidly degraded side products of nucleases.
Thus the correct assessment of widespread RNA
processing events is one of the major obstacles in
transcriptome research. Here, we present a novel
automated computational pipeline, named APART,
providing a complete workflow for the reliable
detection of RNA processing products from next-
generation-sequencing data. The major features
include efficient handling of non-unique reads,
detection of novel stable ncRNA transcripts and
processing products and annotation of known tran-
scripts based on multiple sources of information.
To disclose the potential of APART, we have
analyzed a cDNA library derived from small
ribosome-associated RNAs in Saccharomyces
cerevisiae. By employing the APART pipeline, we
were able to detect and confirm by independent
experimental methods multiple novel stable RNA
molecules differentially processed from well
known ncRNAs, like rRNAs, tRNAs or snoRNAs, in
a stress-dependent manner.

INTRODUCTION

The exploding repertoire of recently identified functional
non-protein-coding RNAs (ncRNAs) in all three domains
of life suggests their fundamental role in the regulation of
gene expression (1). The major difficulties for estimating
the complete ncRNA catalog of an organism relate to the
complex biogenesis of ncRNA, which include multiple pro-
cessing steps. Recent finding suggest that a single RNA
molecule can function in distinct ways depending on differ-
ent post-transcriptional ncRNA processing events. It has
been shown that some functional snoRNAs which are ini-
tially processed from mRNA introns can give rise to
microRNAs after further processing events took place
(2,3). It is assumed that such alternative ncRNA processing
can provide genome complexity comparable to the alterna-
tive splicing phenomena of pre-mRNA transcripts. Since
several years the rising interest in revealing such hidden
layers of the transcriptome can be observed (4,5).
One of the most straightforward experimental

methods for studying ncRNA processing is the use of
deep-sequencing techniques. In these approaches the
RNA content of a cell, a tissue or an organism is con-
verted into cDNA and subsequently subjected to deep-
sequencing analysis. Although preparations of cDNA
libraries enriched in functional small ncRNA species
have been already well documented (6–9), the recent de-
velopment of bioinformatic tools for deep-sequencing
data analysis was focused on the estimation of expression
profiles of known genes (10–14), the detection of novel
splicing variants (15–16) or the identification of novel
microRNA genes (17,18). Some of the methods are
indeed able to detect novel ncRNA transcripts; however
the potential of differential RNA processing has not been
adequately addressed.
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Here we address this challenge of ncRNA genome
research by providing a complete workflow allowing for
detection of stable ncRNA species, including novel
ncRNA transcripts and RNA processing products. It is
based on a novel computational pipeline, named APART
(forAutomated Pipeline forAnalysis ofRNA Transcripts).
This bioinformatic tool provides an automated assembly
and annotation of deep-sequencing data including the iden-
tification of novel stable ncRNA species. As proof of prin-
ciple we have applied APART on a specialized cDNA
library derived from the yeast Saccharomyces cerevisiae.
In our experimental system, we have used one of the key
cellular macromolecular complexes, namely the ribosome,
as bait for the selection of a potentially functional small
RNA interactome. Predicted processing of several
ncRNA candidates was experimentally verified, thus high-
lighting the potential of APART for correctly revealing the
so far enigmatic processing of ncRNA transcriptomes.

MATERIALS AND METHODS

Strain and growth conditions

Saccharomyces cerevisiae strain BY4741 (MATa; his3� 1;
leu2� 0; met15� 0; ura3� 0) was grown in synthetic
complete (SC) yeast medium supplemented with 2%
carbon source at 30�C, as described (19). The strain was
transformed with pGAL1-RPL25-FH (BIT757) carrying
the gene for a full-length C-terminal FH-tagged form of
RPL25 (20).
Cells were grown in 12 different growth conditions as

described (21–23). Stress treatments were performed as
follows: cells were grown to mid-log phase (optical
density at 600 nm 0.7), the stress was applied for 15min,
the cells were harvested by centrifugation, frozen in liquid
nitrogen and stored at �80�C. The temperature shifts to
37�C (heat shock) or to 15�C (cold shock) were carried out
by the addition of an equal volume of SC pre-warmed to
49�C or chilled to 4�C, respectively. The cultures were
either supplemented with 1M NaCl (high salt conditions),
with 0.1M Tris–HCl pH 8.3 resulting in a final pH of 7.9
(high pH conditions) or with 1M citric acid (low pH con-
ditions of pH 4.0). In the UV stress, the cell suspension
was irradiated with a UV dose of 120 J/m2. To induce
hyper-osmotic shock the medium was supplemented with
1M sorbitol. For hypo-osmotic conditions the cells were
grown to mid-log phase in SC supplemented with 1M
sorbitol, then collected by centrifugation and resuspended
in SC without sorbitol. For amino acid and sugar starva-
tion stresses, cells were collected by centrifugation at
mid-log phase and further grown in medium lacking
amino acids or sugar, respectively. In parallel, anaerobic
and normal growth of S. cerevisiae was performed.

Generation of a S. cerevisiae cDNA library

Saccharomyces cerevisiae ribosomes of unstressed and
stressed cells were isolated as described (20). In short,
cells were lysed in the presence of glass beads and the lys-
ates were affinity-purified with anti-FLAG M2-agarose
resin. Ribosome-associated RNA was extracted with
phenol and precipitated with ethanol. Subsequently,

equal amounts of ribosome-associated RNAs were
size-fractionated by denaturing 8% PAGE. RNAs in the
size range between 15 and 500 nt were excised from the gel,
passively eluted into 0.3M NaOAc and ethanol
precipitated. RNAs were subsequently C-tailed at their
30-ends using poly(A) polymerase and ligated to a 50-
adaptor (GTCAGCAATCCCTAACGAG) by T4 RNA
ligase as described (6). RNAs from the library were sub-
sequently converted into cDNAs by RT–PCR, employing
primers complementary to the linkers (6) and subjected to
454 pyrosequencing (GATC Biotech AG). Original
sequencing data have been submitted to NCBI SRA
archive with the accession number SRP008250.1.

Northern blot analysis

Total RNA from S. cerevisiae grown under selected condi-
tions (optimal, UV radiation, anaerobic, high pH, low pH,
amino acid starvation or sugar starvation) was isolated
using the Master PureTM Yeast Purification kit
(Epicentre), separated on 8% denaturing polyacrylamide
gel, transferred onto nylon membranes and probed
with 50-[32P]-end-labeled antisense DNA probes as
described (24).

Semi-quantitative stem–loop RT–PCR assays

Stem–loop reverse transcription (RT) was followed by
PCR as described (25) with minor modifications. The
stem–loop RT primer used to initiate RT (50-GTTGGC
TCTGGTGCAGGGTCCGAGGTATTCGCACCAGAG
CCAACTACTCCTACC-30) was designed to be comple-
mentary to the last 6 nt of the target RNA. Subsequently,
the RT product was amplified during 15 PCR cycles using
an RNA-specific forward primer (50-GCGGCGGTTGAC
CTCAAATCA-30) and the stem–loop reverse primer. The
template for this RT–PCR was size-selected (10–50 nt)
total RNA.

Pre-processing and cleaning by APART

The APART pipeline supports data obtained with the vast
majority of next-generation sequencing platforms available
on the market, including 454, solexa, illumina, ion torrent
and SOLID. Prior to cleaning, large datasets are divided
into subsections according to available memory limits and
read names are changed to follow the pipeline scheme. First
step is the search for the used adaptor sequences within the
reads using the patmatch (26) program. By default two
changes (mismatches, insertions or deletions) are allowed
for the 50-adaptor and three changes for the 30-adaptor (due
to the usually lower quality of 30-end of the reads), however
values can be adjusted to meet specific needs. Estimated
adaptor positions are used next for trimming of the reads.
The trimming procedure includes the possibility of add-
itional removal of the homopolymeric tract (poly-C tails)
from the 30-end of the reads. Due to sequencing length
limitations, it is possible that the 30-adaptor is not fully
represented in the reads, thus reads, lacking a full length
30-adaptor according to patmatch, are subjected for
trimming of the partial 30-adaptors using the perl regular
expressions. This is followed by quality filtering, including
the rejection of reads with mean quality values below the
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limit provided by the user (default is 25 in phred scale) and
trimming of low-quality 30-ends. If the length of the reads
after the above steps is higher or equal to the minimal read
lengths defined by the user (default is 18 bases), reads are
retained and classified to one of the classes: trimmed at
both ends, trimmed at 50-end only, trimmed at 30-end
only or untrimmed. All rejected reads are grouped into a
separate file allowing for further investigation of the library
quality issues.

Genome mapping and contig assembly

For the genome mapping the bowtie (27) aligner is used.
By default APART uses the ‘-n’ alignment strategy and
allows for one mismatch. The reported alignments are
limited to those within the best ‘stratum’. Results are
obtained in SAM format. Contig assembly is fulfilled sep-
arately for plus and minus genomic strands. First, SAM
alignments are sorted and converted to pileup format
using the samtools (28) software. Next, during the pileup
output parsing APART identify the contigs with their
genomic positions writing them in a BED format, create
the contig coverage plots and writing them in a WIG
format and calculates the read counts and maximal
coverage for every contig. Additionally the uniqueness
of the contig is estimated as the mean number of
genomic hits observed for the reads within the contig.
APART calls also a consensus for every base of the
contig and calculates a consensus quality value which cor-
responds to the frequency of the most abundant base in a
defined position which is also selected as the consensus
letter.

Identification of the RNA processing products

The identification of the RNA processing products is per-
formed as part of the contig assembly process. During the
parsing of the pileup output, the changes in coverage
between the neighboring bases are stored. Once the
contig is completed, the coverage shifts are inspected
and those which are higher than one-third of the
maximal contig coverage are assigned as putative process-
ing sites. The assignment of the putative RNA processing
product requires two of such processing sites (charac-
terized by rise and drop of the coverage) to be in a
distance equal or higher than a minimal length of the
reads used for genome mapping. Single, ‘orphan’ process-
ing sites are discarded. Additionally the expression levels
for the RNA processing products are assigned. They are
calculated as the maximal coverage detected within a par-
ticular product subtracted by the background coverage
(the coverage observed next to 30- or 50-end of the pre-
dicted processing product—the higher value is used).

Clustering of the contigs

The name-based clustering is fulfilled by comparison of
the lists of reads mapped within the contigs characterized
by genomic uniqueness value >1. First, contigs are sorted
by decreasing read number, and then by length. Clustering
is realized in two runs. First the fast scanning for contigs
of identical read composition is performed by regular
expression search. The contig of highest read number is

designated as a representative and the contigs of the same
or lower read content are compared to it. In the second
run, representative contigs are compared in a detailed way
to estimate the ratio of shared reads. In order to reduce
the search space, the contigs association matrix is created
during the assembly. In this way only the contigs which
share at least one read are compared.
The sequence-based clustering is fulfilled using the

cd-hit (29) software. In this approach, the consensus se-
quences of the contigs are clustered with a threshold of
95% of identity. The representative contig is the longest
one within the cluster.

Annotation and output generation

The annotation process is divided into three steps. First,
the genomic repeats overlapping the contigs are identified.
This is fulfilled using the repeat bed files obtained from
UCSC genome browser (30) and bedtools (31) package.
The minimal requirement is that at least 10% of the contig
overlap the repeat. Based on the results extensive statistics
of identified repeat types are created. Next, known genes
mapped to the reference genome overlapping the contigs
are identified. For this purpose, annotation tables of
internal format are used. The genome annotations are
based on Ensemble gene predictions (32), including
‘known’ and ‘novel’ subdivisions. The annotation
process includes the recognition of the intron/exon
features and relative orientation (sense/antisense). In
case when contigs span multiple structural features (e.g.
only part of the contig maps to a gene or exon) the struc-
tural feature ‘junction’ is introduced. If the contig spans
over multiple genes, all of them are recognized and listed
in an annotation file and final table. In the last annotation
step the intergenic, intronic and antisense to known genes
contigs are used. It is based on the NCBI blast+(33) com-
parison of the contigs consensus sequences to sequences
within the Functional RNA Database (34). The require-
ments for annotation in this case are 80% of identity and
gap content <10% of the alignment length. At the final
step all the information gathered during the analysis are
combined into a series of the static html files.

Availability

The APART pipeline can be obtained from http://apart.sf
.net.

RESULTS

Construction of the cDNA library containing stable
ncRNA species

The major assumption behind the construction of a cDNA
library aiming at identifying stable ncRNA species is that
merely functional RNAs are expected to be protected
from degradation. In order to enrich for functional
ncRNAs, it has previously been shown that construction
of libraries from ribonucleoprotein (RNP) particles rather
than from purified total RNA is beneficial (7). Following
the same logic, we have generated a cDNA library
enriched for small RNAs (sized 20–500 nt) that co-purified
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with S. cerevisiae ribosomes under 12 different growth
conditions. The rationale for choosing yeast was the lack
of the miRNA pathway, since miRNAs are very abundant
in other organisms and often mask other small RNAs in
transcriptomic data (4). The employed procedure did not
include a random RNA fragmentation step, resulting in
cDNAs with ends correspond to the natural ends of the
RNA species. Moreover, we have used amplification
adaptors attached to both the 50- and 30-ends of the
cDNA (see ‘Materials and Methods’ section for details)
in order to validate if sequencing spans the full length of
the cDNAs (Figure 1). Before addition of the 50-adaptor,
we have treated the RNAs with tobacco acid
pyrophosphatase in order to enable the adaptor ligation
to both, processed and primary transcripts. However, by
omitting this step, it would be possible to select exclusively
for processed RNAs, as it is commonly used for micro
RNA identification (35).

APART workflow

Our computational pipeline is based on reference genomes
as a guide for assembly and annotation of the high-
throughput cDNA sequences. In contrast to existing
methods, the analysis is based on contigs composed
from overlapping reads, instead of genes. Thus, all the
characteristics which usually are assigned to genes, like
read number or expression level, are not summarized
among the gene, but are calculated for individual contigs
within the gene. Such an approach enables the detection of

abundant fragments of known primary transcripts as well
as novel intergenic RNAs.

The first step in analysis of the raw data set is a
pre-processing and cleaning procedure (for a summary
of the workflow see Supplementary Figure S1). The
major filters used include assessment of read quality and
length. During the cleaning, it is also possible to remove
any adaptors and polynucleotide tails that have been
added during the library preparation. Next, reads are
mapped to the reference genome using the bowtie
aligner (27). The assembly of the contigs is based on
overlapping positions of the reads. During this process,
the pipeline is calling a read-based consensus sequence
for every contig. Additionally, for every base a score
describing the ambiguity of the consensus letter is
calculated. Next, contigs are annotated by overlap with
known genes and repeat units. Additionally all intergenic,
intronic and antisense contigs are subjected to a sequence
search for similarity with known ncRNAs deposited in the
Functional RNA database [fRNAdb (36)]. As the output of
the analysis, APART is generating a number of html files
containing all the gathered information about the contigs
and number of files allowing for an interactive investiga-
tion of the results in the genome browsers (for an overview
see Supplementary Figure S2).

Handling of non-unique reads

In order to support the identification of highly repeated
ncRNAs, like snoRNAs or tRNAs, one of the priorities in

Figure 1. Schematic representation of the key steps of the experimental workflow leading to identification of RNA processing products. (A)
Experimental preparation of the cDNA library. In order to select for functional RNAs, yeast ribosomes have been used here as bait. The next
important step is the size selection of ribosome-associated RNAs and the subsequent attachment of 50- and 30-adaptors which are marking the
natural ends of the RNAs. After deep-sequencing of the library, adaptor sequences are used to select for the reads covering the full length of the
original RNA molecule (both adaptors are observed). (B) Computational analysis of the data with the APART pipeline. First, reads are aligned to
the reference genome and contigs together with respective coverage plots are created. Next, contigs derived from the same read sets are clustered and
only non-representative contigs (marked by lighter colors) are removed from the main results list. Processing products are predicted by scanning of
the coverage plots and their abundance is estimated by subtraction of the background coverage from the maximal coverage within the predicted
product (abundance correspond to the area of coverage plot marked with color).
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the design of APART was to implement an efficient
handling of non-unique reads. In most of the so far avail-
able approaches for expression profiling, only minor re-
dundancy is allowed in order not to interfere with
statistical testing for differential expression of the genes.
Such a procedure is amenable for cDNA libraries derived
from mRNAs or microRNAs, genes which are typically
present only in low copy number in eukaryotic genomes.
However, in case of libraries containing highly repeated
ncRNAs, exclusion of repeat-derived reads would result in
removal of those transcripts from the data set. By default,
the parameters of the bowtie aligner are set to identify up
to 100 locations for every read restricted to hits within best
‘stratum’. To identify contigs composed of the reads which
map to more than one location on the reference genome
the pipeline estimates the ‘genomic uniqueness’, calculated
as the average number of hits obtained for every read.
Thus, a value of 1 means that a contig is unique. Any
higher value suggests that at least some portion of the
reads forming a contig can align to multiple genomic loci.

The second reason for multiple mapping of the reads to
the reference genome is the random similarity of short
sequence blocks across the genome. The shorter a particu-
lar read is, the higher is the probability of a random match
outside of the loci of origin of the transcript. Such
spurious matching could influence the calculation of the
genomic uniqueness. To prevent such random alignments,
the minimum length of the reads used for analysis is set by
default to 18. The analysis of our yeast ribosome-derived
library shows that at such a read length cut-off there is no
strict dependence between the read length and the number
of genomic matches (Figure 2A). Similarly, there is no
correlation between genomic uniqueness values and
contigs length (Figure 2B). Higher variability observed
in the lower length range seems to be rather caused by
higher number of reads/contigs of such length originating
from various types of genes than increased spurious
matching (shortest are not the most variable).

As a consequence of including non-unique reads in the
analysis, multiple identical contigs are generated. This is
caused by the manifold mappings of the same read sets
across the genome. In order to remove such a redundancy,
APART performs clustering using one of two distinct
methods. The first is based on the comparison of the
lists of read names between the contigs. In this approach
all contigs that share at least 95% reads are joined into
groups and next the representative contig is selected based
on the highest read number. The benefit of this method is
that all the distinguishable loci will be displayed separately
based on even minor divergence between the duplicated
genes. For the opposite behavior, we have implemented
the clustering of the contigs based on sequence compari-
son using the cd-hit software (29). In this case, all the
contigs with consensus sequence identity of 95% or
higher will be clustered. This includes the contigs which
are derived from different sets of reads but with high
similarity.

The clustering of the contigs not only clarifies the result
list but also solves the problem of normalization of the
read count. In existing pipelines for annotation of ncRNA
deep-sequencing data, like DARIO (37), the multiple

matching reads are normalized by number of mappings.
By employing the read name-based contig clustering the
spurious read mappings are removed, thus such artificial
normalization is no longer necessary. This results in more
accurate read counts which is not affected by the unique-
ness of the reads.

Detection of stable RNA species

The major emphasis in the APART pipeline is the identi-
fication of stable RNA species. Detection is achieved by
scanning of the contig coverage plot in search for signifi-
cant changes (Figure 1B). APART is considering a
position as a putative processing site when the coverage
shift between 2 nt is larger than one-third of the maximum
coverage of the contig. For assigning a region as a poten-
tially processed RNA fragment, APART requires the
presence of a clear 50-processing site (indicated by a
sharp increase of sequence read coverage at a particular
nucleotide position), a 30- processing site (sharp decrease
of the sequence read stack at a particular genomic
location) and a minimum distance between them which
is larger or equal to the minimum length of the mapped
reads. In case of single ‘orphan’ processing sites followed
by progressive coverage changes, it is not possible to
estimate the real length of the RNA product, since it
can be located even outside of the read span. Thus,
contigs harboring such ‘orphan’ processing sites are not
taken into account. Additionally, for every putative pro-
cessing product APART is assigning the expression value
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Figure 2. The length dependence of multiple mapping events on the
level of reads and contigs observed in the ribosome-associated cDNA
library. (A) Distribution of the average genomic hit numbers for reads
of different lengths. No significant increase of hit numbers is observed
for shorter reads. (B) Distribution of genomic uniqueness values for
contigs identified in the study. Although for shorter contigs (<150 nt)
higher variability of uniqness is observed, there is no strict dependence
on the contig length.
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corresponding to the maximal coverage observed within
the processing product after subtraction of surrounding
precursor-derived background coverage.

Read number versus maximal coverage

The ample processing of RNA transcripts let us also re-
considering the use of read counts for the estimation of
RNA abundance. RNA transcripts, especially ncRNAs,
are frequently post-transcriptionally processed, thus the
use of read counts in next-generation-sequencing
projects for the estimation of the RNA abundance is prob-
lematic. Read count works well as a starting point for
analyses focused on expression profiling of known genes.
In this case, after proper normalization [for review see
(38)], such number correspond to the number of the
observed transcripts of a particular gene. However char-
acteristics of cDNA libraries aimed for the identification
of RNA processing products differ from those used for
either mRNA or miRNA profiling. The main divergence
is that the library preparation procedure does not involve
a random fragmentation step (unlike mRNA profiling
projects do) and no strict length separation is performed
(unlike in the miRNA profiling approaches) resulting in a
collection of transcript of various lengths. Thus, the same
read count can be obtained for long contigs with random
read distribution and for a short one with clear processing
pattern. In this case, the analysis of the read distribution
among the contig is crucial. Assuming that two
non-overlapping reads mapped within a single contig
can be derived from a single primary transcript by a pro-
cessing event, the ultimate measure for RNA level will be
the maximum coverage observed within the transcript.
This measure corresponds to the number of overlapping
reads observed for the assembled contig and reflects the
minimal number of separate transcript copies in the cell.
The use of the maximal coverage value is even more im-
portant when differential processing patterns of similar
RNAs are taken into consideration, like in the case of
tRNA-His and tRNA-Ser (Figure 5A and B). In this par-
ticular case, the use of read count for tRNA-His doubles
the expression value comparing to tRNA-Ser. Thus, add-
itionally to the raw count of reads, APART also calculates
the maximal coverage values for contigs and identified
stable RNA species.

Presentation of the results

At the final stage, APART is generating a number of html
files containing all the gathered information about the
contigs and number of files allowing for an interactive
investigation of the results in the genome browsers. It is
accompanied with extensive statistics of the analyzed
library including contig and read length distributions,
annotated gene numbers and others (Supplementary
Figure S2). The main table contains all the representative
contigs derived from clustering together with description
including read count, maximal coverage values, positions
of detected processing products and overlapping annota-
tion features. Moreover, for every contig a detail page is
generated, complementing the information with the con-
sensus sequence with the quality values and the alignment

to the genomic reference sequence. Furthermore, the se-
quences of the putative RNA processing products are
shown as well as a list of contigs is given which has been
clustered together and was not presented in the main table.
Additionally, it delivers links to the fasta file of reads cor-
responding to the contig and a detailed sequence align-
ment in the SAM format (28).

Performance

The APART pipeline has been optimized for low memory
usage. APART can be successfully run on a machine with
memory of only 2GB; however, this causes an extension
of the running time. The computationally most demand-
ing and memory-intensive procedure is the name-based
clustering of the contigs. The memory consumption and
running time at this step depends on read numbers, contig
numbers and repetitiveness of the reads, thus cannot be
estimated before the contig assembly. However, on
low-end machines there is still the possibility of perform-
ing the sequence-based clustering utilizing the cd-hit
software, which is memory and time-efficient. The
running time for the described S. cerevisiae cDNA
library analysis on a four-core 2.40GHz 64-bit Linux
workstation with 16GB of RAM was 20 s (1.47 s CPU
time). By using cDNA library reads from Haloferax
volcanii (our unpublished data), we have measured the
dependence of the APART running time versus read
numbers. For this purpose, we have used the whole set
of 72 million reads as well as subsets of 36 million, 18
million, 9 million and 4.5 million reads. We have used
default APART settings including removal of the
30-adaptors and the C-tails. The APART running time
of the smallest data set was <10min (100.86 s CPU
time), and of the largest 4.5 h (5323.61 s CPU time),
showing a linear correlation between analyzed read
numbers and required time (Supplementary Figure S3).

Ribosome-associated ncRNAs

To highlight all the above mentioned features, we have
applied APART to deep-sequencing data of a specialized
S. cerevisiae cDNA library. We have generated a cDNA
library from small RNAs (sized 20–500 nt) that co-purify
with ribosomes under different environmental conditions.
After sequencing, we have obtained a pool of 125 868 raw
reads containing amplification adapters on both the 50-
and 30-ends and an additional poly-C-tail at the 30-end
which has been used for initial RT [‘Materials and
Methods’ section and (6)]. During the cleaning procedure,
81 790 reads were discarded due to length exclusions
(<18 nt) or due to the read quality filters. For downstream
analysis, we have used 18 679 reads for which adapters on
both ends could be detected to ensure that all the reads are
derived from full-length cellular RNAs. In total, 12 494
reads (66.89%) were mapped to the reference yeast
genome with a maximum of 100 genomic hits. These
reads were assembled into 716 contigs each containing at
least two reads. After read name-based clustering, we have
obtained 174 representative contigs. For 131 of those, the
APART pipeline has detected at least one possible stable
RNA species. Most of them were processing products
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derived predominantly from rRNAs, tRNAs and
snoRNAs (Figure 3).

To substantiate these bioinformatically predicted RNA
processing events, we have experimentally verified the
presence of selected RNA fragments. For the most
abundant class of ribosomal RNAs, we have selected a
23-nt long piece derived from the 50-part of 25S rRNA
found in 3901 copies that showed almost exactly identical
ends (Figure 4). Experimental investigations confirmed the
presence of this particular rRNA fragment under all
investigated growth conditions (Figure 4C). Similar
rRNA cleavage (however, primarily from the 30-end of
the 25S rRNA) has been already observed in S. cerevisiae
during oxidative stress as well as during entry into station-
ary phase (39).

The second most abundant class of processed RNAs
identified in our screen were tRNAs. In addition to previ-
ously reported cleavage in the anticodon loop in yeast
tRNAs (5), we detected also other breakage points (e.g.
in the D- and T-loop regions), reminiscent to those
observed previously in higher eukaryotes (40).
Moreover, we have noticed an obvious differential stabil-
ity of tRNA halves. Northern blot analysis confirmed the
presence of two stable processing products derived from
tRNA-His and revealed that cleavage is stress-dependent
(Figure 5A). Similar to previous findings tRNA processing
occurs mainly during amino acid and sugar starvation
conditions. On the contrary, experimental results
obtained for tRNA-Ser suggest that only the 30-part of
this tRNA is stable (Figure 5B). Probes directed against
the 50-end of the tRNA-Ser revealed a series of products
likely deriving from degradation rather than processing.
Moreover, the band observed for 30-probe on the northern
blot is less defined than in the case of tRNA-His. This is in
agreement with the APART results, which show a rather
dispersed coverage at the tRNA-Ser 30-end suggesting the
processed fragment to be less well preserved and stable.

The APART analysis of our cDNA library revealed also
a number of snoRNA fragments to be associated with

ribosomes. Since snoRNAs are supposed to be specifically
localized within the nucleolus, we have confirmed their
cytoplasmic localization with northern blot analysis. To
exclude a possible nuclear contamination, we have used
probes against nuclear-specific snRNAs. While we could
detect the snRNAs solely in the nuclear fraction, the tested
snoRNAs were indeed also present in the cytoplasm and
moreover also in the mono- and polysomal fractions
(Figure 5C). The presence of snoRNA processing
products predicted by APART could be experimentally
verified (Figure 5C). The results confirmed the presence
of the shortened version of the snoRNA under most
growth conditions. Similar processing of snoRNAs into
smaller functional RNAs has been described before in
mammalian cells (3) as well as in the primitive eukaryote
Giardia lamblia (41), but this is to our knowledge the first
report of a putative snoRNA processing event in a
microorganism.

DISCUSSION

APART represents a user-friendly bioinformatic tool for
obtaining a full overview on the global transcriptome of a
cell or an entire organism. Due to the contig-based
analysis instead of profiling of the known genes,
APART can be used for the identification of novel
stable RNA species, including both intergenic transcripts
and RNA processing products. Other benefits over
existing pipelines include efficient handling of non-unique
reads, a novel measure for transcript abundance assigned
to the contigs and putative processing products and a con-
venient presentation of the results. These features are es-
pecially important for genome-wide ncRNA studies in
higher eukaryotes since the recent past clearly revealed
the ncRNA transcriptomes to be far more complex than
initially anticipated (1,42).
The proposed workflow for detection of stable RNA

species consist of two steps. First is the appropriate ex-
perimental preparation of the cDNA library enriched in
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Figure 3. A summary of the genomic features identified in the ribosome-derived cDNA library. As indicated, for most of the contigs putative
processing products were observed.
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functional stable RNAs. The enrichment methodology has
been already well documented (6–7,43), thus the major
challenge was the development of a novel computational
tool for analysis of the deep-sequencing data. The key
feature of the APART pipeline is detection of novel
stable RNA molecules. Although the employed method
is very simple, it follows the idea that stable RNA tran-
scripts and processing products should be protected
against endo- and exo-nucleases. Thus, the strict limita-
tion of the exact 50- and 30-ends has been introduced. This
is opposite to the method used in the blockbuster algo-
rithm (44), where reads with non-identical ends are joined
into ‘blocks’. The blockbuster approach was however ini-
tially developed for separation of microRNA and
microRNA* blocks of reads in order to enable the assign-
ment of separate expression values. The major difference
between our approach and microRNA profiling experi-
ments is that read data obtained from microRNA
profiling experiments contain almost no background

reads derived from precursor hairpins (due to specific
amplification of exclusively RNA processing products).
In our dataset the amount of background reads was in
many cases substantial, thus read distribution analysis
proposed in blockbuster failed to separate the putative
processing products.

The predominant limitations of the APART pipeline
are related to the mapping procedure. Some classes of
ncRNAs, like tRNAs, contain a number of
post-transcriptional modifications, including modified nu-
cleotides and non-encoded nucleotides, e.g. CCA at the
30-ends. Especially nucleobase modifications can poten-
tially lead to incorrect cDNA synthesis during RT.
These putative cDNA errors would subsequently lead to
additional mismatches during the alignment process to the
reference genome. To address this issue, we have
compared the number of the reads aligning to the most
intensely modified RNA species—rRNA and tRNA
allowing one, two, or three mismatches. It turned out

Figure 4. Processing of a 23-mer from 50-end of 25S ribosomal RNA. (A) The location of the detected processing product on the secondary structure
diagram of large ribosomal subunit rRNA is depicted. (B) UCSC Genome Browser visualization of the APART tracks (green) within the region of
contig loc.XII-464072_3929 containing the 23-mer. (C) Semi-quantitative RT–PCR with primers specific for the 23-mer using size-selected (10–50 nt)
total RNA as template results in a 69-nt long PCR product. By using 10- to 50-nt long RNAs as template amplification of this 23-mer from the
unprocessed full-length 25S rRNA is avoided.
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that only a minor portion of the reads can be additionally
aligned when the number of allowed mismatches is
increased (Supplementary Figure S4). Moreover, the
observed difference is similar when hyper-modified RNA
species (rRNA and tRNA) or total reads from the library
are considered. Thus, we decided to allow only one
mismatch as the default parameter for APART.
However in higher eukaryotes, where the ratio of RNA
modification is higher, the value should be adjusted ac-
cordingly. In cases of libraries composed predominantly

from tRNAs or other hyper-modified RNA species, we
suggest to use other alignment tools, like segemehl (45)
which allow also for insertions and deletions. This
feature will allow not only more efficient handling of
modified nucleotides, but also non-encoded CCA tails of
tRNAs. In such cases, the work with APART would start
from read alignment file in SAM format.
Also detection of the stable RNA can be potentially

hampered by the experimental procedure employed for
generation of the cDNA library. The main step causing

Figure 5. Experimental validation of the APART-predicted putative processing products. (A) Processing of the tRNA-His(GUG). On the left, UCSC
Genome Browser visualization of the APART tracks (green) showing two possible processing products (processing sites marked with arrows). On the
right, results of the northern blot experiment using total RNA isolated from S. cerevisiae grown in different environmental conditions (lanes: 1-UV
radiation, 2-anaerobic, 3-optimal, 4-high pH, 5-low pH, 6-amino acid starvation, 7-sugar starvation) with probes against 50- and 30-halves of the
tRNA-His. Full length tRNA is marked with open arrows, processing products are indicated by filled arrows. Differential stability of both parts can
be observed. (B) Processing of the tRNA-Ser(AGA) (labeling as above). The inexact ends of the contig displayed on UCSC Genome Browser
visualization suggest decreased stability of the 30-derived processing product, comparing to tRNA-His, which is reflected by the northern blot results
(right). (C) Cytoplasmic localization and processing of snoRNAs. On the left, northern blot presenting subcellular localization of snoRNA 128
(identified in this study) and snoRNA13 (not found in our cDNA library). The localization of the small nuclear RNAs sn7, sn14 and sn6 in the
particular cellular fractions is also shown. For the northern analysis, total RNAs prepared either from the nuclear fraction, the cytoplasmic fraction,
or from the mono- or polysomal fraction were blotted. The observed northern blot signals in the polysomal samples suggest that snoRNAs are
associated with translating ribosomes in yeast. On the right, identification of the processing products derived from snoRNA 128 by northern blot
using total RNA isolated from yeast grown under different environmental conditions. In all panels 5S rRNA served as internal loading control.
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potential bias is the amplification of the cDNA. During
this procedure, a preference for short molecules is
observed (46). The unequal amplification can lead to
multiplication of single cDNA molecules, resulting in a
false sharp increase of the coverage of some genomic
regions. Such cases can lead to false predictions of pro-
cessing events. However, our experimental data suggest
that such events are very rare, since the presence of all
of the tested processing products has been experimentally
confirmed.
One also has to keep in mind that not every sharp shift

in read coverage is related to an RNA processing event.
It could also be caused by an RNA structure-dependent
drop-off of the reverse transcriptase (47) or by preferential
amplification of some of the short cDNA sequences
during library generation. However, such cases cannot
be distinguished based on the sole analysis of cDNA
sequences.
In order to estimate the performance of the APART

pipeline, we have used it for the analysis of a previously
published dataset. For this purpose we have used the small
RNA library generated by Kawaji et al. (4) in which
numerous types of RNA processing products were
observed. APART was able to detect and annotate the
processing products using a fully automated mode in a
similar way (Table 1). The only remarkable exceptions
were miRNAs. In Kawaji et al., 821 contigs corresponding
to miRNAs have been identified, whereas the
default APART analysis resulted in annotation of only
230 miRNAs. Such a high difference could arise from
the different approach for analysis. The authors of the
original work used a hierarchical mapping of the reads
to different ncRNA classes, using the threshold of 80%
sequence identity. During such an approach, reads are
aligned to different classes of transcripts not simultan-
eously, but in a specified order. Reads mapped to the
first category are not considered for downstream
categories. As a result, reads which could map to down-
stream transcript types with higher identity can be
assigned to a false category and lead to overestimation
of the categories placed in the beginning of the list. In
contrast, APART by using the reference genome for

read mapping always picks the best aligning genomic
loci, resulting in a more unbiased analysis. Additionally,
implemented in APART clustering of the redundant
contigs derived from multiple alignments of the same
stets of reads lead also to a reduction of the final
number of the reported contigs.

A high number of novel processing products and novel
intergenic ncRNAs suggested by the analysis of cDNA
library constructed from ribosome-associated small
RNAs reveal the potential of the presented methodology.
Due to the APART features we were able to predict and
experimentally verify the differential and stress-dependent
processing of tRNAs, rRNAs and snoRNAs.
Furthermore, our data suggest that these ncRNA process-
ing products are associated with yeast ribosomes under
different environmental growth conditions. Beside the pre-
sented yeast cDNA library, APART has also been success-
fully applied on archaeal, mouse and human ncRNA
libraries (M.Z., N.P., unpublished data), as well as on
libraries generated by genomic SELEX or CLIP (M.Z.,
Renee Schroeder, Andrea Barta, unpublished data)
approaches employing complex eukaryal model organisms
(M.Z., Alexander Hüttenhofer, unpublished data). This
emphasizes the general potential of APART for efficient
de novo assembly and annotation of short read libraries.
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