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Abstract

Full national coverage below the state level is difficult to attain through survey-based data 

collection. Even the largest survey-based data collections, such as the CDC’s Behavioral Risk 

Factor Surveillance System or the Gallup-Healthways Well-being Index (both with more than 

300,000 responses p.a.) only allow for the estimation of annual averages for about 260 out of 

roughly U.S. 3,000 counties when a threshold of 300 responses per county is used. Using a 

relatively high threshold of 300 responses gives substantially higher convergent validity–higher 

correlations with health variables–than lower thresholds but covers a reduced and biased sample 

of the population. We present principled methods to interpolate spatial estimates and show that 

including large-scale geotagged social media data can increase interpolation accuracy. In this 

work, we focus on Gallup-reported life satisfaction, a widely-used measure of subjective well-

being. We use Gaussian Processes (GP), a formal Bayesian model, to interpolate life satisfaction, 

which we optimally combine with estimates from low-count data. We interpolate over several 

spaces (geographic and socioeconomic) and extend these evaluations to the space created by 

variables encoding language frequencies of approximately 6 million geotagged Twitter users. We 

find that Twitter language use can serve as a rough aggregate measure of socioeconomic and 

cultural similarity, and improves upon estimates derived from a wide variety of socioeconomic, 

demographic, and geographic similarity measures. We show that applying Gaussian Processes to 

the limited Gallup data allows us to generate estimates for a much larger number of counties 

while maintaining the same level of convergent validity with external criteria (i.e., N = 1,133 

vs. 2,954 counties). This work suggests that spatial coverage of psychological variables can 

be reliably extended through Bayesian techniques while maintaining out-of-sample prediction 

accuracy and that Twitter language adds important information about cultural similarity over and 
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above traditional socio-demographic and geographic similarity measures. Finally, to facilitate the 

adoption of these methods, we have also open-sourced an online tool that researchers can freely 

use to interpolate their data across geographies.
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1. Introduction

Large geolocated data sets derived from psychological surveys or, recently, social media are 

an important tool for social scientific and public health research (Rentfrow, 2020; Hoover 

and Dehghani, 2020; Edo-Osagie et al., 2020). Such data sets have given further insight into 

personality, implicit racial attitudes, and subjective well-being, for example, by examining 

both their geographic variation and their relationships to other real-world outcomes (such 

as voting or policing) (Ebert et al., 2019; Hehman et al., 2019; Ward et al., 2021). In the 

case of geolocated social media data sets, community-level Twitter language has been used 

to predict health (Eichstaedt et al., 2015), behavior (Curtis et al., 2018), and psychological 

constructs (Giorgi et al., 2022b), in addition to standard socio-demographic and political 

outcomes (Culotta, 2014; Miranda Filho et al., 2015). The magnitude of these data sets 

(often containing millions of survey responses or billions of social media posts) allows 

researchers to study populations at multiple temporal and spatial levels, including both 

cross-national and sub-national levels (e.g., counties, cities, and neighborhoods) (Thomson 

et al., 2018; Cui et al., 2022; Bleidorn et al., 2016; Gibbons et al., 2019). These data sets 

are often less expensive and easier to collect (via online surveys or publicly available data 

streams) than those built from standard national polling techniques.

Despite the promise of large data sets that can be aggregated geographically, there are 

several methodological issues when doing fine-grained regional analyses, such as selection 

biases (i.e., non-representative samples of the underlying population (Giorgi et al., 2022a)) 

and limited geographic coverage due to data sparsity (Hoover and Dehghani, 2020). These 

sparsity issues are especially problematic when attempting to build stable estimates at (1) 

fine-grained spatial or temporal intervals (such as sub-state or sub-annual levels) and (2) 

low-population areas. Data sparsity issues can affect traditional survey and social media data 

sets alike. For example, the Centers for Disease Control (CDC) does not release mortality 

data for a U.S. county if the number of deaths is less than 10 (since a death record in 

this situation could reveal potentially private information). As a result of this, for example, 

when predicting maternal mortality with Twitter data, Abebe et al. (2020) were only able to 

work with outcome data from 197 out of roughly 3,000 U.S. counties, despite aggregating 

mortality over multiple years.

One standard approach when aggregating individual-level survey responses is to set a 

minimum threshold on the number of responses per spatial unit and ignore spatial units 

that do not meet this minimum. This approach is problematic in several ways, in addition to 

the fact that potentially useful data is discarded. First, there are no standards as to how to 
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pick this minimum, and, thus, several minimums have been used across the literature (e.g., 

50, 100, or 300) (Ebert et al., 2023; Matz and Gladstone, 2020; Stelter et al., 2022; Giorgi et 

al., 2018; Jaidka et al., 2020). As this threshold increases, the number of spatial units used in 

the final analysis decreases. Different choices of threshold can lead to coverage and results 

that are hard to compare between studies; for example, a 50 response minimum yielded 

2,281 counties in one study (Ebert et al., 2023), while 1,208 counties met a 300 response 

minimum in another (Jaidka et al., 2020). Not only does the sample size decrease, but this 

decrease is non-random, typically removing rural counties, biasing the final sample towards 

urban areas with high population densities.

On the other hand, low minimum thresholds can produce unreliable spatial estimates. Giorgi 

et al. (2022b) showed that low minimum thresholds (< 500) resulted in low convergent 

validity between county-level language-based estimates of personality and self-reports. 

Similarly, Ward et al. (2021) showed low test-retest reliability for both county-level life 

satisfaction and happiness when using low minimum thresholds (< 200), with reliability 

stabilizing after 300 minimum responses. Thus, high minimum thresholds are needed to 

ensure the reliability of the spatial aggregates.

One possible solution to this trade-off between low thresholds (which retain data and 

help with representativeness) and high thresholds (needed for reliability) is to set a 

higher threshold and then interpolate across space using the more reliable estimates 

to “fill in the whitespace.” Several multivariate interpolation methods have been used 

successfully throughout geostatistics, such as inverse distance weighting and nearest 

neighbor interpolation (Sibson, 1981). Despite their success, many of these methods suffer 

from the fact that model parameters need to be manually selected and evaluated (e.g., 

in the nearest neighbor algorithm, one must select the number of neighbors a priori). 

Compounding this problem is the fact that neighbors may also be missing.

To address this problem, we propose Gaussian Processes (GP) to interpolate measures of 

interest from high-dimensional spatial, sociodemographic, and social media data. These 

methods are referred to as both kriging (Cressie, 1990), in spatial statistics, or Gaussian 

Process regression (Williams and Rasmussen, 2006), in machine learning. Gaussian 

Processes are uniquely equipped to deal with this problem by directly modeling the 

covariances between outcomes using a kernel function (also called a covariance function), 

which calculates the similarity or closeness between points. The kernel parameters, called 

length scales, model the extent to which a change in the inputs reflects changes in output. 

The length scales are learned (as opposed to being chosen a priori) from training data, which 

allows one to automatically identify the most predictive length scales for each feature (e.g., 

demographics or word topics). Additionally, the GP interpolations are probabilistic and, 

thus, produce empirical confidence intervals. These confidence intervals can then be used to 

optimally combine the interpolations with data that does not meet minimum thresholds, thus 

allowing researchers to maximize data use.

In this paper, we propose to address three research questions:

RQ1: What categories of community features are useful for interpolation?
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RQ2: What is the minimum amount of data required for effective interpolation?

RQ3: Can supplemental data be used to improve interpolation accuracy?

For all three questions, we interpolate life satisfaction across U.S. counties, though we note 

that all methods are independent of the data used here. For RQ1, we note that traditional 

interpolation techniques (i.e., kriging) consider points close in 2- or 3-dimensional 

physical space. Here, we propose using higher-dimensional community characteristics such 

as demographics, socioeconomics, and social media language, in addition to standard 

geographic space. For RQ3, we propose to combine “missing” life satisfaction data (i.e., 

data from counties that do not meet our minimum count threshold) with the interpolated 

GP estimates to increase predictive performance. These estimates are optimally combined 

via inverse-variance weighting, using the uncertainty of the interpolations from the GP. 

Finally, we investigate the robustness of the interpolations by examining validity with 

external criteria. In order to make these methods available to the research community, we 

open-source a web interface for running interpolation over other data sources.1

2. Data

Our data falls into three classes: outcomes (measures which we want to interpolate), features 

(measures which we interpolate over, i.e., use to train a Gaussian process model), and 

external criteria (measures which we use to validate our interpolations). A total of 1,133 U.S 

counties had data available for all of the measures listed below. From this, we create train 

and test data sets using an 80%/20% split, which results in 905 counties for training and 228 

for testing. The training data set is used to train the Gaussian Process model, whereas the 

test data set is used to evaluate the out-of-sample performance of the GP.2

2.1. Outcomes

Life satisfaction.—Life Satisfaction, an evaluative dimension of subjective well-being, 

is measured via psychometric self-reports using the Gallup-Sharecare Well-Being Index, 

a large national longitudinal survey. Participants are asked to respond to Cantril’s ladder 

(Diener et al., 1999), which asks survey participants to evaluate their life as a whole: “Please 

imagine a ladder with steps numbered from zero at the bottom to 10 at the top. The top of 

the ladder represents the best possible life for you and the bottom of the ladder represents 

the worst possible life for you. On which step of the ladder would you say you personally 

feel you stand at this time?” We aggregate 2,035,511 responses from 2009 to 2016. To be 

included in the analysis, counties must have a minimum of 300 responses, an established 

minimum threshold (Ward et al., 2021; Jaidka et al., 2020).

2.2. Features

Categories of features are chosen in order to answer RQ1: which types of features are useful 

for interpolation above standard geography or location information (which are typically used 

when interpolating via Gaussian Processes). Features within each category are chosen to be 

1https://county-interpolation.wwbp.org.
2Data and code available at https://osf.io/edjak/.
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representative of the category, and no single feature should be thought of as more important 

than another. In general, non-social media features are chosen for three reasons: (1) data is 

publicly available, (2) data is available for the majority of counties, (3) data is measured via 

the U.S. Census. Together, these three points allow these same variables to be used across 

similar interpolation problems, maximize spatial coverage, and limit biases.3 The categories 

and features included here are by no means exhaustive and were intentionally selected to be 

general use in order to emphasize the utility of the methods, as opposed to optimizing on 

predicting life satisfaction.

Geography.—In order to compare counties close in physical space, we include latitude and 

longitude coordinates corresponding to the centroid of each county.

Demographics.—We include seven demographic variables, each collected from the U.S. 

Census American Community Survey (5-year estimates from 2010 to 2014): the percentage 

of the population living in a rural area, percentage of the population of Hispanic origin, 

population (logged to prevent skewness), median age, percentage of the population who 

identify as female, percentage married, and the percentage of African Americans living in 

the county.

Socioeconomics.—We include four socioeconomic variables which were, again, 

collected from the U.S. Census American Community Survey (5-year estimates from 

2010 to 2014): median household income (logged to prevent skewness), percentage of the 

population with at least a Bachelor’s degree, unemployment rate, and high school graduation 

rate.

Social media data.—We use the County Tweet Lexical Bank (Giorgi et al., 2018), a 

large open-source data set of U.S. county aggregated Twitter features. This data set is 

derived from a sample of 1.53 billion tweets from approximately 6 million Twitter users 

from 2009 to 2015. Each Twitter user is mapped to a U.S. county through self-reported 

location information available in the user’s profile (e.g., “New York City native”) or latitude/

longitude coordinates associated with their tweets. Full details of the county mapping 

process can be found in Schwartz et al. (2013a). Each Twitter user must have at least 

30 tweets in the data set, and each U.S. county needs at least 100 such users. In the end, 

a total of 2,041 counties met these thresholds. A set of 2,000 topics are extracted for 

each user and then averaged to the county level (across all users mapped to the county). 

Topics are automatically clustered groups of semantically related words and are created 

using Latent Dirichlet Allocation (LDA) (Blei et al., 2003), a generative Bayesian topic 

model that assumes text documents are characterized by distributions over topics and topics 

are characterized by distributions over words. The specific set of 2,000 topics used in the 

current study was developed in previous work across a data set of 19 million Facebook posts 

(Schwartz et al., 2013b) and has been successfully used across several U.S. county-level 

studies (Jaidka et al., 2020; Giorgi et al., 2022b; Curtis et al., 2018). We ran Principal 

Component Analysis (PCA) across the 2,041 U.S. counties and created reduced feature sets 

3While U.S. Census data may suffer from biases, such as non-response bias, it is typically considered a gold standard when doing 
spatial analysis.
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of size 10, 15, 25, 50, and 100 principal components. This was done since the total number 

of topics (2,000) is larger than the number of observations (906 counties in the training data 

set). The difference in sizes between the observations and features could lead to overfitting, 

where the Gaussian Process model learns the training data too closely and, thus, will not 

generalize well to the unseen counties in the test data.

2.3. External criteria

These measures are chosen due to known associations with life satisfaction at both the 

individual level (Lee and Singh, 2020; Kahneman and Deaton, 2010; Wadsworth and 

Pendergast, 2014) and regional level (Arora et al., 2016; Lawless and Lucas, 2011). Similar 

to the feature variables, external criteria are chosen due to the fact that they can be robustly 

measured across most U.S. counties and, thus, there is ample data to compare against the 

interpolations. The external criteria are available for a total of 2,954 counties. Notably, this 

includes 1,821 counties not present in the train/test data since here we are interpolating life 

satisfaction across counties that do not have a gold standard. Finally, we note that this does 

not result in spatial coverage across 100% of the U.S., as some counties do not have publicly 

available data for all measures.

Life expectancy.—Life Expectancy is defined as the average number of years from birth 

that a person can be expected to live and is calculated using age-adjusted death rates from 

the population. Life expectancy is measured by the National Center for Health Statistics - 

Mortality Files from 2016–2018 and is obtained using the 2020 County Health Rankings 

(CHR) data.

Obesity.—Obesity is defined as the percentage of adults within a county that report a body 

mass index (BMI) of 30 or more. Data is reported from the 2013 Centers for Disease Control 

and Prevention (CDC) Diabetes Interactive Atlas and obtained from the 2017 County Health 

Rankings (Remington et al., 2015).

Income and education.—For both income and education, we use the measures listed 

above in the socioeconomic features: median household income (logged to prevent 

skewness) and percentage of the population with at least a Bachelor’s degree. Both are 

collected from the U.S. Census American Community Survey (5-year estimates from 2010 

to 2014). We note that both income and education are also used as features for interpolation. 

It may be the case (shown below) that interpolated outcomes correlate more with features 

than non-interpolated outcomes. Thus, using variables as both features and external criteria 

will artificially inflate associations. Therefore, we remove income and education from the 

feature data when comparing interpolations to external criteria.

3. Methods

3.1. Gaussian process regression

Gaussian Process (GP) regression is a machine learning algorithm, which is both supervised 

(i.e., learns a mapping between features x, such as sociodemographics, and labels y, such as 

life satisfaction) and probabilistic (i.e., model outputs can be used to determine uncertainty). 
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The full mathematical details are outside of the scope of the current study. However, the 

interested reader can consult Appendix A for more details on the kernel function or Schulz 

et al. (2018) for a full exposition on Gaussian Processes for psychology and social sciences.

At a high level, a Gaussian Process is defined by a mean and covariance function, also 

known as a kernel. This function induces similarity between pairs of data points. That is, 

given two data points xi and xj, if they are similar via the kernel, then their corresponding 

labels yi and yj will also be similar. For example, if the feature vectors xi and xj (e.g., socio-

demographics and Twitter topics for counties i and j) are similar, then their corresponding 

life satisfaction values yi and yj will also be similar. Given the kernel function and training 

data set, we can fully specify the Gaussian Process model. Then, given a feature vector x* 

from an unseen county (i.e., a county not included in the training data), we can estimate 

a life satisfaction score y* by measuring the similarity between x* and all points in the 

training data via the kernel.

Traditionally, Gaussian Processes are known as kriging in the field of geostatistics and have 

been used for decades to interpolate two- or three-dimensional spatial data, with applications 

in mining and environmental sciences (Chilès and Desassis, 2018). More recently, Gaussian 

Processes have been used in the field of Machine Learning (Williams and Rasmussen, 2006), 

incorporating methods and practices from deep learning. Using GPytorch (Gardner et al., 

2018), a modern Python-based implementation of Gaussian Processes, we are able to learn 
the model hyperparameters (parameters which control the model learning) from the training 

data. Hyperparameters are typically chosen by searching over several potential values and 

evaluating the trained model at each value, which can be time-consuming and expensive. 

Learning hyperparameters allows non-specialists to train models using formal methods, thus 

extending these methods to a larger audience.

3.2. Inverse variance weighting

Inverse variance weighting is an optimal method for combining random variables via a 

weighted sum, such that the weighted average has the minimum variance across all possible 

weighted sums (Hartung et al., 2008). More formally, given a sequence of observations yi 

with respective variances σi
2, the weighted average is computed as:

y =
∑i

1
σi

2 yi

∑i
1
σi

2

. (1)

We use inverse variance weighting to optimally combine the GP interpolations with the 

life satisfaction estimates (i.e., average of the person-level responses for each county) from 

counties that do not meet our minimum data threshold. We compute each county’s c life 

satisfaction estimate yc as

yc = yGP, c

σGP, c
2 + yLC, c

σLC, c
2 / 1

σGP, c
2 + 1

σLC, c
2 , (2)
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where yGP and σGP
2  are the GP’s life satisfaction estimate and variance, respectively, and yLC 

and σLC
2  are the life satisfaction estimate and variance from the low-count data, respectively. 

Specifically, inverse variance weighting is used to answer RQ3 and is not used in either 

RQ1 or RQ2.

3.3. Evaluation

We begin (RQ1) by considering which community features are useful for interpolation. 

Here, we abstract the standard notion of space (i.e., physical location) and consider counties 

neighbors if they are close across several non-geographic community characteristics: 

demographics, socioeconomics, and social media language use. We approachethis evaluation 

in two stages, by first considering non-language features (geography, demographics, and 

socioeconomics) and then adding social media language features on top of those. This was 

done for practical reasons: language data is not always available, while socio-demographics 

via the U.S. Census are readily available for most counties. Thus, we would like first to see 

how accurate our model is given available data and then how much of a boost we can get if 

we add in other data sources.

Next, for RQ2, we evaluate the minimum amount of data needed for effective interpolation. 

To do this, we randomly sample subsets of our training data. Specifically, we (1) randomly 

sample 10, 20, 40, 80, 160, 320, 640, and 905 counties from our training data set, (2) train a 

GP regression model, and (3) interpolate life satisfaction on our held-out test data set. This 

is repeated 50 times, and we report the average product-moment correlation across the 50 

repetitions. We note that in Step (1), our complete training data set consists of 905 counties. 

Thus, we do not randomly sample at this stage, and this model is only evaluated once (as 

opposed to 50 times when randomly downsampling counties). We use the GPytorch package 

to implement the GP models (Gardner et al., 2018)2, set a learning rate of 0.1, and iterate 

over the training data 500 times. Again, we first consider non-language features (spatial and 

socio-demographics features) and then add language on top of those.

For RQ3 (can supplemental data be used to improve interpolation accuracy), we combine 

the GP interpolations with averages from data that does not meet our minimum count 

thresholds. We use the best-performing models from RQ1 and considered the complete 

training data set (N = 905). This model is then used to both interpolate life satisfaction 

values yGP,c for each county c in our test data set, as well as estimate the variance σGP, c
2

for each county’s interpolation. Next, using subsamples of the participant-level data (i.e., 

low-count data), we create life satisfaction estimates yLC,c for each county in the test data 

set. This is done by randomly sampling the participant-level life satisfaction responses and 

averaging these responses to the county level. Given that our minimum response threshold 

is 300 in the training data, we randomly sample sets of n ∈ (25, 50, 100, 200) participants 

to produce the county averages. We then create new life satisfaction estimates yc for county 

c using Equation (2), i.e., by optimally combining the GP interpolations with the low-count 

averages. We then correlate the final life satisfaction estimates y with the test data (gold 

standard life satisfaction values). This process was repeated 50 times, and the average 

product-moment correlation is reported.
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Finally, we examine the external validity of the interpolated life satisfaction estimates from 

RQ3. First, we combine the training and test data (N=1133) above to train a GP model to 

interpolate life satisfaction from our non-language features. We do not use Twitter features 

in this analysis since they are unavailable for all counties and, thus, interpolations would 

have limited spatial coverage. We then interpolate life satisfaction across all counties that 

do not meet our minimum 300-participant response threshold (N=1,821). Next, we combine 

the GP interpolations with the low-count life satisfaction data. Finally, we correlate the 

combined estimates with external criteria: life expectancy, obesity, income, and education. 

We correlated gold standard life satisfaction with the external variables as a baseline. 

Here we show that the correlations using the complete data set (i.e., gold standard and 

interpolated life satisfaction across a larger sample of counties) are at least as accurate as the 

correlations using only gold standard life satisfaction (across a smaller sample of counties 

where all life satisfaction values are well-estimated). We note that two of the external criteria 

(income and education) are both used as features for interpolation. For these evaluations, we 

train the GP on all features except the variable used for external criteria so as to not bias the 

correlations.

4. Results

Table 1 shows the results for RQ1: which features are useful for interpolation. All GPs 

use a radial basis function (RBF) kernel function with a single length parameter for all 

features. See Table D.7 for other kernels functions (linear and multi-length RBF). Here 

we see that the geographic features (latitude and longitude) have the lowest out-of-sample 

accuracy. Despite this, adding geographic features to either socioeconomics or demographics 

gives a substantial boost (r = 0.57 and 0.57, respectively) over either socioeconomics or 

demographics alone (r = 0.46 and 0.49, respectively). Similarly, a GP trained on all non-

language features out performs all subsets (r = 0.65). Finally, when combining Twitter with 

the non-language variables we see a boost in performance above all non-language alone, 

which is maximal when using 25 Twitter PCA components (r = 0.70).

Results for RQ2 (what is the minimum amount of data required for effective interpolation) 

are in Fig. 2. Again, all GPs used a RBF kernel with a single length parameter learned across 

all features. Results show a mostly monotonic increase (i.e., within the confidence intervals) 

in accuracy as the training size increases.

In Fig. 2(b) we see the results of combining the language features (i.e., PCA reductions of 

the LDA topic space) with the non-language features (i.e., latitude/longitude, demographics, 

and socioeconomics). Here we see a slight improvement when adding in language, with the 

final predictive accuracy using the entire training data with 25 PCA components resulting 

in a product moment correlation of 0.70. These models (25 Twitter PCA components + all 

non-language variables) are then used in all subsequent analyses, except comparing against 

external criteria, where Twitter language is dropped to maximize spatial coverage. We also 

see that the smallest PCA components set (10 and 15) results in the highest accuracy when 

training on smaller sample sizes, outperforming the non-language variables at 320 samples.
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Table 2 shows the results of combining the GP interpolation values with the average life 

satisfaction scores as calculated from random samples and combined via inverse variance 

weighting (RQ3). The first row GP Interpolation is the results from the model shown in 

Table 1 using all non-language features. The GP Interpolation row remains constant since 

it does not depend on maximum number of samples used in averaging life satisfaction 

scores (i.e., this ignores the low-count data). The Average Life Sat. row is simply the county 

average life satisfaction score using random samples of 25, 50, 100, and 200 participants. 

The Combined row optimally combines (via inverse variance weighting) the data from the 

previous two rows: the GP interpolation and the average low-count estimate.

Finally, we validate the interpolated life satisfaction against external criteria: life expectancy, 

obesity, income, and education. Here our baseline is the correlation with the non-

interpolated gold standard average life satisfaction (i.e., at least 300 participant responses per 

county). We also consider a simple “state average” interpolation baseline, where we assign 

the state-average life satisfaction score to all counties which do not meet the minimum 

data threshold. Results are in Table 3. The state average and average life satisfaction have 

the lowest correlation across all four external variables. We see that the combined model 

shows similar effect sizes as baseline but includes roughly 3,000 observations, as opposed 

to the 1,133 observations in the baseline model. We ran a bootstrapping test, to assess 

statistically significant differences between the correlation across the high-count counties 

and the combined model (interpolations plus low-count data). Here we randomly sample 

(with replacement) 1,133 counties and correlate the life satisfaction measure with the 

external criteria, subtracting the two correlations. This process is repeated 10,000 times, 

and no significance is found if the number 0 is within the 95% confidence interval on the 

difference in correlations. Across all four external criteria we found no difference in effect 

size between the gold standard and the interpolated correlations. Fig. 1 shows the geographic 

distribution of the 1,133 gold standard counties as compared to the 2,954 counties with 

either gold standard or interpolated life satisfaction.

5. Discussion

This study found that Gaussian Processes, formal Baysian models, can be used to 

empirically interpolate life satisfaction across U.S. counties using high-dimensional 

community characteristics, including social media language. Furthermore, GPs provide 

confidence intervals for the interpolations, which allows us to optimally combine the 

interpolations with estimates from noisy data, data typically discarded using standard 

thresholding methods. Finally, these methods allow us to estimate life satisfaction across 

most of the U.S., as seen in Fig. 1.

The results for RQ1 (which community characteristics make an accurate interpolation 

space), as seen in Table 1, show that each set of variables contributes uniquely to the 

overall accuracy of the model. That is, when combining sets of feature (e.g., geographic 

and socioeconomic), we see an increase in accuracy above each feature set alone. Across 

all models, we see that including geographic features increases predictive accuracy despite 

geography alone being the least accurate model. While this is not surprising, since adjacent 

counties are often similar, it suggests that both (1) geographic proximity should not be 
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ignored when considering high-dimensional interpolation spaces and (2) adjacency alone 

does not fully capture the geographic variation of life satisfaction.

For the Twitter experiments in Table 1, we see similar performance across each set of PCA 

components. We also see a boost in performance when combining both the Twitter and 

non-language feature sets, with an accuracy of 0.70 (product-moment correlation) for the 

best performing model (25 PCA components + All non-language). This is a statistically 

significant 7.69% increase over “All non-language” alone, suggesting that language from 

social media is capturing predictive signal not presents in standard geographic or socio-

demographic indicators.

While all Twitter experiments produced equivalent predictive accuracies in Table 1, we see a 

different story when examining how much data is needed to create an accurate interpolation 

space (RQ2). In Fig. 2, we see smaller feature spaces (10 and 15 PCA components) 

resulting in higher predictive accuracy at smaller training sizes. This is most likely due to the 

GP over-fitting on the training data and not generalizing on unseen data since the size of the 

feature spaces (25, 50, and 100 plus the 13 non-language features) is larger than the number 

of training observations (e.g., 10, 20, and 40 counties). Thus, while accurate interpolations 

are attainable from a small number of observations, one must consider the dimensionality of 

the interpolation space in reference to the number of observations.

For both the language and non-language feature spaces in Fig. 2, predictive accuracy tends 

to stabilize around 320 observations (except for the 100 Twitter PCA components). This 

suggests that data from 300–400 counties may be sufficient to accurately interpolate life 

satisfaction across the U.S. and, thus, may be used as a minimum sample size in future data 

collection efforts (RQ2). Previous studies have shown that effect sizes tend to vary (in both 

direction and magnitude) according to the construct at both the individual and regional level 

(Elleman et al., 2020; Giorgi et al., 2022b; Eichstaedt et al., 2021) and, thus, we do not wish 

to over-generalize the claim.

Finally, we answer RQ3 in the affirmative: we can use data from counties that do not meet 

the minimum thresholds. Table 2 shows that the optimal combination of GP interpolations 

and estimates from low-count data provides more accurate estimates than from the GP 

interpolations alone, thus lowering the minimum data thresholds. In Table 3, we also see that 

we can interpolate life satisfaction across the entire U.S. without a considerable reduction in 

correlation with external variables. While we see a reduction in effect sizes, the sample size 

increases from 1,113 to 2,954 counties. Leveraging the low-count data allows us to represent 

more of the U.S. population and, importantly, a section of the population that tends to be 

discarded due to data quality issues (i.e., sparsely populated rural areas).

Importantly, the methods introduced here estimate missing data at the spatial level and are 

agnostic to how those spatial level values are aggregated from person-level responses. The 

U.S. county-level life satisfaction values used throughout the paper are simple averages of 

person-level data. However, one could use more sophisticated aggregation methods such 

as multilevel regression with poststratification, which could help mitigate selection and non-
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response biases common when dealing with spatially aggregated person-level data (Hoover 

and Dehghani, 2020).

As seen by the small number of white counties in Fig. 1(b), it is not always possible to 

interpolate over the entirety of the U.S. This is due to the fact that secondary data must 

be available to interpolate over. Such data is not always available and is highly dependent 

on the type of data and the spatial level. For example, mortality data from the CDC is not 

always available (for privacy reasons) and can become even more sparse at the sub-county 

level (e.g., Census tracts or Census blocks). Thus, using mortality data as a feature to 

interpolate over may be limiting. Alternatively, demographic variables from the U.S. Census 

are generally available at smaller spatial resolutions and may be useful across many types of 

interpolation tasks.

Before using these methods, one should consider why data is missing. On the one hand, 

these methods allow researchers to estimate measures across populations that are typically 

ignored or excluded. At the same time, these methods have ethical and privacy concerns. For 

example, as discussed above, the CDC does not release mortality data for spatial units with 

less than ten deaths due to privacy reasons. Therefore, interpolating such measures could 

open up the risk of exposing individuals. Similarly, governments and private companies 

could use such methods to track protected or private measures across communities without 

their consent. In addition to these privacy concerns, data may be missing for other non-

random reasons. For example, in the current study, the data used to train the Gaussian 

Process are collected from mostly urban areas and then used to interpolate across rural areas. 

This may bias the interpolations in that the Gaussian Process can only learn the relationship 

between the features and Life Satisfaction in the context of urban areas. We have attempted 

to mitigate this bias by using the percentage of the population living in a rural area as a 

feature, though there is no reason to believe the trained model can fully generalize from 

urban to rural contexts without including more rural areas in the training process.

This study is limited in several ways. First, the methods were evaluated using a single 

construct: life satisfaction. While the proposed methods are more general and not tied to 

particular data sources or outcome measures, there may be varying performance depending 

on the construct to be interpolated. Second, each county’s linguistic representation is 

measured via LDA topics. While LDA is used extensively throughout natural language 

processing and computational social science (as well as in other geographic studies), there 

exist many other ways to measure language, including other topic models (such as Latent 

Semantic Analysis (Landauer et al., 1998) and BERTopic (Grootendorst, 2022)) as well 

as more modern contextual embeddings, such as BERT (Devlin et al., 2019) and GPT-3 

(Brown et al., 2020). While contextual embeddings have become standard across many 

computational tasks (Rogers et al., 2021), they have yet to be evaluated in the context of 

spatial language or community-level prediction tasks. We also note that this paper’s social 

media data set consists of over 1.5 billion tweets. Running models such as BERT over 

such a large data set is computationally expensive (i.e., must be run over each tweet) when 

compared to extracting LDA topics, which is linear and can thus be done on aggregated 

county representations. Finally, there are better ways to measure spatial proximity in the 

U.S. than the geographic features (latitude and longitude coordinates of county centroids). 
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For example, the average distance between two adjacent counties on the East Coast (where 

counties are smaller on average) is smaller than the average two adjacent counties on the 

West Coast (where counties are much larger). Thus, the GP kernel’s length parameter will 

perform differently across the entire U.S. To properly handle this issue, one could define a 

GP over a graph, where adjacent counties are connected nodes within the graph (Ng et al., 

2018), thus circumventing the need for an invariant distance measure.

One must also consider the downstream applications of the interpolations. For example, 

Table B.4 shows the correlations between the socio-demographic features used to create 

the interpolation space and life satisfaction, both the gold standard estimates (i.e., the test 

data set) and the interpolations. Here, the interpolated life satisfaction correlates more 

with the socio-demographic features than the gold standard. Thus, one may want to avoid 

using the socio-demographic features in any downstream applications as the results may be 

confounded. Similarly, these increases in association with features could amplify biases in 

the data set. For example, Table B.4 shows an increase in the association between population 

density and life satisfaction. Given that low population areas were mostly excluded from 

the data set, this increase may not reflect the true relationship between well-being and 

population density and, furthermore, may have changed in the wrong direction.

Recommendations.

Choosing a feature set to interpolate over should be done on a case-by-case basis with an 

end task in mind: What will the interpolated values be used for? Using life satisfaction as 

an example, one could make a case for interpolating over income since income and life 

satisfaction are highly correlated and, thus, income could be considered a proxy for life 

satisfaction. On the other hand, the resulting interpolated life satisfaction values may be 

indistinguishable from income. If this end task is to study relationships between income 

and (interpolated) life satisfaction, then the results will be highly confounded. At the other 

extreme, one must select features that correlate with the outcome of interest for the Gaussian 

Process to learn how to interpolate. Thus, confounds may be unavoidable. One may also 

consider selecting features on which the missing spatial units are biased. In the present 

study, we selected the percentage of the population living in a rural area since the counties 

where no life satisfaction data was available were highly rural. This was done under the 

assumption that the Gaussian Process could learn the relationship between life satisfaction 

and urban/rural counties and thus model this when interpolating over the highly rural areas. 

Due to data constraints, we were unable to fully explore this. In the end, we recommend 

three rules when choosing a feature set. First, a feature should be excluded if the interpolated 

values will be used to study this feature (i.e., the end task). Second, while not highly 

accurate on their own, simple latitude and longitude coordinates increase accuracy when 

combined with other features and are not immediately confounding. Third, if there is reason 

to believe a feature is confounding downstream results, one should remove that feature 

from the interpolation space and see if downstream results still hold. Finally, we highly 

recommend transparency when reporting interpolated results: feature sets should be reported 

and possible confounds highlighted.
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6. Conclusions

Gaussian Process regressions can accurately interpolate U.S. county-level life satisfaction 

using spatial proximity, socio-demographics, and social media language. Importantly, these 

methods allow for principled estimation, where model parameters are empirically learned 

from training data, as opposed to chosen a priori. The interpolations can be optimally 

combined with sparse data from under-sampled counties to produce accurate and valid 

life satisfaction estimates for the majority of counties in the U.S. By utilizing data from 

under-sampled counties, larger sections of the population are present in the final data set, 

leading to potentially less biased and more representative spatial aggregates.

Acknowledgements

This work was supported in part by NIH Grant Number R01 MH125702-03 (Smart and Connected Health: 
Improving the Robustness of Monitoring Mental Health of Populations from Social Media) and by Stanford’s 
Institute for Human-Centered AI (to JCE).

Data availability

Data is available on OSF: https://osf.io/edjak/.

Appendix

Appendix A. Details on Gaussian process regression kernels

The kernel κ induces similarity between pairs of data points evaluated at f: given any two 

vectors xi, xj, if these vectors are similar via κ then f(xi) and f(xj) will also be similar. We 

use a squared exponential or Radial Basis Function as our kernel, which defines a smooth 

function between neighboring points:

κ xi, xj = exp − xi − xj
T xi − xj

2l2 . (A.1)

Here l is the lengthscale parameter which measures the rate of change for each feature in 

the training data (e.g., a larger lengthscale corresponds to smaller change). One can either 

use a single lengthscale for each feature in the training data or use different lengthscales for 

each feature. The lengthscale is traditionally a tuning parameter (e.g., selected through a grid 

search). Using GPytorch (Gardner et al., 2018), we are able to learn the lengthscale l from 

the training data.

Appendix B.: Correlations with socio-demographics

In Table B.4 we show the correlations between both the known life satisfaction estimates 

and the interpolated values and the sociodemographics variables used to create the 

interpolation space. Across all socio-demographics variables we see a larger correlation 

with the life satisfaction interpolations than the gold standard life satisfaction.
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Table B.4

Product moment correlations between socio-demographics and life satisfaction (228 

counties in the test data set), using both the average life satisfaction from high-count 

counties and the interpolated estimates. Here we use the best performing model from Fig. 

2(b): 25 Twitter PCA components + all non-language features.

Variable Average life satisfaction (high-
count counties) Interpolated life satisfaction

Demographics % Rural −0.31 [−0.42, −0.18] −0.45 [−0.55, −0.34]

% Hispanic 0.07 [−0.06, 0.20] 0.18 [0.05, 0.30]

Population 0.17 [0.04, 0.29] 0.31 [0.18, 0.42]

Median Age −0.14 [−0.26, −0.01] −0.29 [−0.40, −0.16]

% Female 0.11 [−0.02, 0.24] 0.12 [−0.01, 0.25]

% Married 0.17 [0.04, 0.30] 0.10 [−0.03, 0.23]

% Africa American 0.11 [−0.02, 0.24] 0.17 [0.04, 0.29]

Socioeconomics Median Household Income 0.41 [0.30, 0.51] 0.61 [0.53, 0.69]

% Bachelor’s degree 0.31 [0.19, 0.42] 0.53 [0.43, 0.61]

Unemployment Rate −0.41 [−0.51, −0.30] −0.47 [−0.57, −0.37]

High School Graduation Rate 0.13 [−0.00, 0.25] 0.06 [−0.07, 0.19]

Appendix C.: Spatial autocorrelation

Here we calculate the spatial autocorrelation of all of the non-language features used to train 

the Gaussian Process. Spatial autocorrelation measures the degree to which counties closer 

in space have more similar feature patterns than more distant counties. We use Moran’s 

I to measure spatial autocorrelation (Moran, 1950), which ranges from −1 (dispersion 

or clustering of dissimilar values) to 1 (clustering of similar values), where 0 represents 

randomness. This is done to examine if the Gaussian Process can learn better interpolations 

from features which have more spatial autocorrelation (i.e., situations where adjacency 

better captures geographic variation).

Results are in Table C.5. Here we see higher Moran’s I, on average, across the 

socioeconomic features (Moran’s I = 0.44) versus the demographics (Moran’s I = 0.40). 

This may support the hypothesis that Gaussian Processes can learn better interpolations 

when the adjacency in features captures geographic variation, since the socioeconomic 

features had higher prediction accuracy than demographics for small training sizes (see Fig. 

2). We also see that Percent Hispanic has the highest spatial autocorrelation and Percent 

Married has the lowest.

One hypothesis is that the degree of spatial autocorrelation could be driving the change in 

correlations found in Table B.4. To test this, we correlate the percentage increase with the 

Moran’s I values, but see no significant relationship (product-moment correlation of −0.50, p 
= 0.12).
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Similarly, we calculate Moran’s I for the interpolated life satisfaction values to see how 

interpolation effects spatial autocorrelation. We note that this is done on the test data set 

features, unlike the analysis above which considers the features across the training data 

set. Results are shown in Table C.6. Moran’s I in the test data set is 0.04, showing that 

the life satisfaction scores (from the high-count counties) have little spatial autocorrelation. 

The results show that life satisfaction interpolations (regardless of the feature set) have 

higher spatial autocorrelation than the non-interpolated life satisfaction. Looking across 

specific feature sets, we see the geography features producing interpolations with the highest 

Moran’s I (0.82). This is expected since spatial autocorrelation is measured via adjacency 

and the geography features are the only features which measure physical space. Notably, 

adding the geography features to other feature sets (socioeconomics or demographics) 

decreases Moran’s I. We also see increases in Moran’s I as we increase the number of 

Twitter PCA components.

Table C.5

Moran’s I (a measure of spatial autocorrelation) for each feature in the test data set (905 

counties). All results significant at p < 0.01.

Variable Moran’s I

Demographics % Rural 0.39

% Hispanic 0.78

Population 0.41

Median Age 0.35

% Female 0.23

% Married 0.10

% Africa American 0.55

Socioeconomics Median Household Income 0.55

% Bachelor’s degree 0.35

Unemployment Rate 0.48

High School Graduation Rate 0.40

Table C.6

Spatial autocorrelation (Moran’s I) of interpolated life satisfaction values across the test set 

data (228 counties). Moran’s I for the true values (average life satisfaction from high-count 

counties) in the test set 0.04.

Moran’s I

Geography 0.82**

Socioeconomics 0.32**

Socioeconomics+ Geography 0.24*

Demographics 0.34**

Demographics+ Geography 0.24*

All non-language 0.24*

Twitter, 10 PCA components 0.18
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Moran’s I

 + All non-language 0.29**

Twitter, 15 PCA components 0.27**

 + All non-language 0.27**

Twitter, 25 PCA components 0.33**

 + All non-language 0.28*

Twitter, 50 PCA components 0.34**

 + All non-language 0.29**

Twitter, 100 PCA components 0.37**

 + All non-language 0.30**

**
p < 0.01,

*
p < 0.05.

Appendix D.: Kernels

In Table D.7 we investigate the effect of using both linear and RBF kernels. As opposed 

to the results in Table 1, the RBF kernel here learns a separate length parameter for all 

variables in the model (e.g., it learns 13 length parameters for the “All non-language” 

model) as opposed to learning a single length parameter used across each of the 13 variables.

Table D.7

Out-of-sample prediction accuracy (product moment correlations with 95% confidence 

intervals).

Number of Features Linear RBF with separate lengths

Geography 2 0.15 [0.02, 0.28] 0.41 [0.29, 0.51]

Socioeconomics 4 0.46 [0.35, 0.56] 0.47 [0.36, 0.56]

Socioeconomics + Geography 6 0.57 [0.48, 0.65] 0.60 [0.51, 0.68]

Demographics 7 0.41 [0.29, 0.51] 0.49 [0.39, 0.59]

Demographics + Geography 9 0.42 [0.31, 0.52] 0.56 [0.46, 0.64]

All non-language 13 0.61 [0.52, 0.68] 0.65 [0.57, 0.72]

Twitter, 10 PCA dimensions 10 0.28 [0.16, 0.40] 0.46 [0.35, 0.55]

 + All non-language 23 0.61 [0.52, 0.69] 0.66 [0.58, 0.73]

Twitter, 15 PCA dimensions 15 0.42 [0.31, 0.52] 0.53 [0.43, 0.62]

 + All non-language 28 0.64 [0.55, 0.71] 0.68 [0.60, 0.74]

Twitter, 25 PCA dimensions 25 0.51 [0.41, 0.60] 0.61 [0.52, 0.68]

 + All non-language 38 0.68 [0.61, 0.75] 0.68 [0.61, 0.75]

Twitter, 50 PCA dimensions 50 0.55 [0.45, 0.63] 0.62 [0.54, 0.70]

 + All non-language 63 0.67 [0.59, 0.74] 0.68 [0.60, 0.74]

Twitter, 100 PCA dimensions 100 0.56 [0.46, 0.64] 0.62 [0.53, 0.69]

 + All non-language 113 0.67 [0.59, 0.74] 0.67 [0.59, 0.74]
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Appendix E.: Twitter interpolations

In Fig. E.3, we show the results of using reduced PCA dimensions from Twitter language, as 

opposed to Fig. 2(b) which combines Twitter and all non-language variables.

Fig. E.3. 
Average out-of-sample prediction accuracy (product moment correlation) using only PCA 

reduced Twitter language. Unlike 2, where the models contain both language and non-

language features, these models only contain Twitter features. Accuracies are average 

product moment correlation across 50 random training samples. Error bars are standard 

errors calculated across the 50 correlations.
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Fig. 1. 
U.S. county map of Gallup life satisfaction (seven quantiles) using (a) 1,133 counties 

with at least 300 individual-level responses and (b) 2,954 counties that include both the 

counties that meet the minimum response threshold plus counties with interpolated life 

satisfaction. Higher quantile number indicates greater life satisfaction. White cells contain 

no data as several counties did not have data available for all measures (features) and, thus, 

interpolation was not possible.
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Fig. 2. 
Life satisfaction prediction accuracies as a function of varying training sample sizes (x-

axis) and feature spaces (lines): (a) non-language variables and (b) language combined 

with non-language variables. Accuracies are average product moment correlation across 50 

random training samples. Error bars are standard errors calculated across the 50 correlations. 

*** significant difference (paired t-test; p < 0.001) between model accuracies: (a) all non-

language features vs. socioeconomics + geography and (b) 25 PCA Twitter components + all 

non-language features (the top performing Twitter model) vs. all non-language features.
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Table 1

Out-of-sample prediction accuracy (product moment correlations with 95% confidence intervals). All 

correlations significant at p < 0.001.

Number of Features Test Set Correlation

Geography 2 0.40 [0.29, 0.50]

Socioeconomics 4 0.46 [0.35, 0.56]

Socioeconomics + Geography 6 0.57 [0.48, 0.66]

Demographics 7 0.49 [0.39, 0.58]

Demographics + Geography 9 0.57 [0.47, 0.65]

All non-language 13 0.65 [0.57, 0.72]

Twitter, 10 PCA components 10 0.44 [0.33, 0.54]

 + All non-language 23 0.68 [0.60, 0.74]

Twitter, 15 PCA components 15 0.54 [0.44, 0.63]

 + All non-language 28 0.69 [0.62, 0.76]

Twitter, 25 PCA components 25 0.62 [0.53, 0.69]

 + All non-language 38 0.70 [0.63, 0.76]

Twitter, 50 PCA components 50 0.62 [0.53, 0.69]

 + All non-language 63 0.69 [0.62, 0.75]

Twitter, 100 PCA components 100 0.61 [0.52, 0.68]

 + All non-language 113 0.68 [0.61, 0.75]
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