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Utilization of machine learning to test the
impact of cognitive processing and
emotion recognition on the development
of PTSD following trauma exposure
Mareike Augsburger1* and Isaac R. Galatzer-Levy2,3

Abstract

Background: Though lifetime exposure to traumatic events is significant, only a minority of individuals develops
symptoms of posttraumatic stress disorder (PTSD). Post-trauma alterations in neurocognitive and affective
functioning are likely to reflect changes in underlying brain networks that are predictive of PTSD. These constructs
are assumed to interact in a highly complex way. The aim of this exploratory study was to apply machine learning
models to investigate the contribution of these interactions on PTSD symptom development and identify measures
indicative of circuit related dysfunction.

Methods: N = 94 participants admitted to the emergency room of an inner-city hospital after trauma exposure
completed a battery of neurocognitive and emotional tests 1 month after the incident. Different machine learning
algorithms were applied to predict PTSD symptom severity and clusters after 3 months based.

Results: Overall, model accuracy did not differ between PTSD clusters, though the importance of cognitive and
emotional domains demonstrated both key differences and overlap. Alterations in higher-order executive functioning,
speed of information processing, and processing of emotionally incongruent cues were the most important predictors.

Conclusions: Data-driven approaches are a powerful tool to investigate complex interactions and can enhance the
mechanistic understanding of PTSD. The study identifies important relationships between cognitive processing and
emotion recognition that may be valuable to predict and understand mechanisms of risk and resilience responses to
trauma prospectively.
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Background
The majority of individuals will experience a life-
threatening or potentially traumatic event across their
life course that puts them at risk for post-traumatic
psychopathology [1]. According to the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5),

posttraumatic stress disorder (PTSD) is characterized by
four symptom clusters: Constant re-experiencing (cluster
B), avoidance of stimuli associated with the traumatic
event (cluster C), increased physiological arousal (cluster
E), along with negative alterations in mood and cogni-
tion (cluster D), thus resulting in a significant impair-
ment in daily life [2]. However, proportions of those
suffering from chronic PTSD symptoms are relatively
small compared to the high incidence of trauma expos-
ure (c.f [3].). Yet, the early identification of individuals at

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: m.augsburger@psychologie.uzh.ch
1Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050
New York, USA
Full list of author information is available at the end of the article

Augsburger and Galatzer-Levy BMC Psychiatry          (2020) 20:325 
https://doi.org/10.1186/s12888-020-02728-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12888-020-02728-4&domain=pdf
http://orcid.org/0000-0002-6564-0717
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:m.augsburger@psychologie.uzh.ch


risk for later pathologic development has remained chal-
lenging [4, 5].
The relationship between cognitive and emotional

information-processing of stimuli in the brain presents a
hallmark characteristic of PTSD and is reflected in cog-
nitive and affective dysregulations [6–8]. In their review,
Aupperle et al. point to the importance of executive dys-
function, attention, working memory disturbances, sus-
tained attention, inhibition, and flexibility in and
switching of attention. In contrast, dimensions of plan-
ning and strategy seem to be less affected [9]. Consist-
ently, information processing speed, verbal learning,
verbal memory, attention, and working memory have
demonstrated the strongest effects in differentiating indi-
viduals with PTSD from their healthy counterparts in a
meta-analysis [10].
Emotional information processing has also been shown

to be reduced in PTSD. More specifically, patients with
PTSD consistently demonstrate deficits in recognition of
correct emotions in facial stimuli compared to healthy
controls [11]. Researchers argue that an increased re-
activity to body sensations after trauma exposure along
with increased aversion may lead to avoidance [12].
Taken together, understanding the impact and relation
between dysregulations in cognitive and emotion infor-
mation processing following trauma can inform progno-
sis, diagnosis, and treatment selection as it relates to
PTSD. However, these dysregulations cannot be consid-
ered as distinct processes but might reflect overlapping
constructs of underlying neural mechanisms [13, 14].
For instance, it has been shown that impaired inhibition
affects the controllability of emotional cues [8, 15], and
thus might lead to symptoms of re-experiencing [9].
Moreover, a study with veterans demonstrated that only
interactions between emotional reactivity and impair-
ment in executive functioning were associated with more
severe PTSD symptoms, but none of the variables alone
[6]. Finally. treatment response in PTSD has been shown
to be associated with distinct predictors of cognitive and
emotional processes [7]. This indicates that the nature of
the relationship as it predicts distinct domains is neces-
sary to identify risk and understand the underlying
mechanisms.
In light of these findings combining information from

cognitive and emotion processing might provide a better
understanding of how PTSD develops after trauma ex-
posure. Since studies suggest that interactions between
specific facets on various stages facilitate the exacerba-
tion of PTSD symptoms, (c.f [6, 9, 13, 15].), an analysis
approach is required that can accommodate complex in-
teractions of highly-dimensional data. Hereby, classical
statistical testing methods quickly reach their limits due
to problems associated with inflated error probability in
light of multiple testing and reduced power.

Furthermore, only a limited number of predictors can be
included in traditional models at the same time. A
promising approach is offered by machine learning algo-
rithms. Such models can be utilized to determine shared
predictive accuracy of a variable set and can be used to
gain insights into interactions between variables. They
can accommodate relatively large variable-to-sample ra-
tios to identify interactions across multiple variables [16,
17]. For instance, unbiased predictions could be derived
even with a small sample of N = 40 [18] and sample size
does not affect model robustness when applying nested
cross-validation procedures [19]. Finally, machine learn-
ing models have been increasingly applied for investigat-
ing predictors for outcomes of health-related behavior
(e.g. [16, 20]), and particularly in the area of traumatic
stress (e.g., [21, 22]). In light of the evidence that cogni-
tive and emotional information processing are important
in the exacerbation of PTSD, the aim of the current
study was to characterize and test the relationship and
predictive accuracy of multiple relevant domains of cog-
nitive processing and emotion recognition as they im-
pact PTSD and distinct symptom cluster severity. More
specifically, the study sought to investigate the potential
of different machine learning models and its predictive
capabilities with respect to identify individuals with ele-
vated PTSD symptom severity by simultaneously com-
bining a number of variables that might have altered
post-exposure. Thus, we deliberately focused on predic-
tors from cognitive processing and emotion recognition
domains irrespective of other variables that are known
to serve as a risk factor for PTSD. The selection of spe-
cific variables was based on most significant associations
and cognitive tests reported in the review from Aupperle
et al. [9] and Scott et al. [10]. More specifically, tests as-
sociated with attention/working memory, sustained at-
tention and inhibition, flexibility, verbal memory and
processing speed were chosen. Regarding emotional pro-
cessing, recognition of emotions in facial stimuli were
investigated, thus following previous investigations [11].
Since this study was of exploratory nature to test the ap-
plicability of machine learning models within this set-
ting, no further hypotheses were specified.

Methods
This study was part of a larger research project assessing
trajectories of mental health after exposure to a trau-
matic event (NYU/Bellevue Stress and Resilience longi-
tudinal study).

Participants
English-speaking adults between 18 and 70 who were
admitted to the General Emergency Department (ED) of
the Bellevue Hospital Center, New York City after ex-
posure to a potentially traumatic event were asked for
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study participation. An event was considered traumatic
as defined in the diagnostic classification for PTSD in
DSM-IV (criterion A) [23]. Cases of domestic violence
were not included. Further inclusion criteria were: no
symptoms of past or present psychosis; no admission to
the Psychiatric ED; and not currently being in custody of
the police or the Department of Corrections. In order to
increase risk for pathologic development following trau-
matic experiences, at the initial screening in the ED indi-
viduals were asked about their current level of a distress
on a Subjective Units of Distress Scale (SUDS) ranging
0–100. A score ≥ 60 or an intense emotional reaction
during the interview was considered eligible for study
participation.
Out of all persons admitted to the ED due to a trau-

matic event, n = 338 individuals were eligible for study
participation. Reasons for admission were falls (21%),
bike accidents (16%), hits as a pedestrian (19%), motor-
vehicle accidents (17%), assaults (10%) and other event
types (17%) such as gun-shots, lacerations or seizures.
N = 111 individuals took part in the 1-month follow-up,
and n = 105 completed 3-month follow-up, respectively.
In the current analyses, all participants with complete
neuro-cognitive and emotional assessment were in-
cluded (N = 94). Of these, n = 58 were men and n = 36
were women. Mean age of the final sample was 36.95
years (SD = 13.83, 19–67 years) at baseline and partici-
pants had in average 14.99 years of education (SD = 3.35,
4–18). The majority (50%) were Caucasians, followed by
African Americans (19%), Asians or Hispanics (both
3%). 9% preferred not to specify, and 16% indicated an-
other other ethnic group. There was no significant dif-
ference between those having completed the assessment
and non-completers regarding initial SUDS rating, age,
ethnic group, level of education. However, completers
reported significantly more bike accidents and fewer as-
saults than expected (both p < .05).

Procedures
All new admissions to the hospital after trauma expos-
ure were checked for study eligibility, starting in fall
2014. If eligible and after having provided informed con-
sent, participants were initially assessed within the emer-
gency room setting and followed-up within the first
week after discharge from the hospital for a phone
screening of 30-min mean duration (not further reported
here).
Participants were again invited after 1-month for an

in-visit. After 3-months post-incident a follow-up ap-
pointment was scheduled, lasting about 20 min. The
current analyses include this 1 and 3months follow-up
information. Data collection for later follow-ups was still
in progress. For the 1-month assessment, participants

got reimbursed with $100, and $30 for the 3-months
follow-up, respectively.
The research team was composed of an experienced

research coordinator and several research assistants
(Master or PhD students) working under close supervi-
sion. They had received intense training in handling
trauma populations.

Measures
Predictors at 1-month follow-up: Neuro-cognitive
functioning and emotion recognition
The computer-assisted and widely applied test battery
“WebNeuro” provides neuropsychological tests for cog-
nitive performance. Conformity to touch-screen equiva-
lent (IntegNeuro) has been demonstrated [24], and the
latter presents comparable validity and reliability in
comparison to paper-and-pencil test versions [25, 26].
Relevant constructs and tests were selected according to
the previously reported findings with the exception of
the Choice Reaction Time Test. Outcome measures
within each test were selected according to the Web-
Neuro manual [27]. In addition, variables with high col-
linearity (> .80) were removed by inspecting pair-wise
correlations and removing the variable with largest mean
absolute correlation. The labeling of constructs for tests
also follows the WebNeuro manual [27] and can differ
from classifications of domains used by other authors.
Speed of information processing was measured with the

Choice Reaction Time test. Participants had to identify
the correct position of a green illuminated target appear-
ing at one of four target positions (black-filled circles) by
pressing the matching button as quickly as possible. In
total, there were 20 trials and targets appeared in a
pseudo-random order at one of the four positions. Reac-
tion time (RT) was used. This test was chosen because it
is less affected by mild traumatic brain injury [28].

Sustained attention In the Continuous Performance
Task, a series with one of four letters (D, B, G, or C) was
presented. Participants pressed a button when two iden-
tical letters consecutively appeared. In total, 125 letters
were presented (85 non-target and 20 target letters). Er-
rors of commission (false identification of non-targets),
errors of omission (non-identification of targets) and RT
were used.

Attentional flexibility Similar to the Trail Making Test
Version B [29], 13 digits (1–13) and 12 letters (A-L)
were presented. Participants were asked to touch digits
and letters in an alternating and ascending sequence
(1A2B, …). Time to completion was used.

Executive functioning/inhibition These domains were
measured with a Go/No-Go and a Verbal Interference
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Task. For the Go/No-Go task participants were asked to
hit the space bar as quickly as possible if the word
“press” was shown in green letters and inhibit the move-
ment accordingly, if the word was shown in red letters.
Errors of commission, errors of omission and RT were
chosen as relevant variables. The Verbal Inference Task
is similar to the Word-Color-Stroop task [30]. Partici-
pants were asked to identify name and color of words
presented with congruent or incongruent color-word
combinations. Errors during incongruent trials was used.

Attention and working memory In the Digit Span test,
a series of digits, gradually increasing from 3 to 9 digits,
was recalled. Maximum recall span was measured.

Verbal learning capacity Equivalent to the California
Verbal Learning Test, a list comprised of 12 words was
presented in 3 consecutive trials. Participants were asked
for immediate recall after each trial. Mean number of
correctly recalled words was chosen.

Implicit emotion recognition The standardized stimuli
set [31] includes faces of 12 persons (both 6 women and
men) with a total of 72 facial expressions. In the first
part of the task (explicit emotion recognition), a pseudo-
random order of 48 faces from 8 different persons was
presented. Participants were asked to select emotion la-
bels corresponding to six facial expressions (happiness,
fear, sadness, anger, disgust, and neutral). After a series
of filter tasks of about 20 min, the implicit emotion rec-
ognition task was applied. A random selection of 24 fa-
cial expressions with six emotions (two male and two
female sets of emotions each) from the first task were
presented in a pseudo-random order together with 24
completely new stimuli with otherwise identical proper-
ties. In each trial, participants had to select the previ-
ously presented face.
Since, the study aim was to measure an emotional bias

by influence of a previous exposition towards emotions
on later emotion recognition capabilities and thus the
tendency to avoid particular emotions automatically,
only the implicit emotion recognition task was included
in the analyses. Due to negligible differences in recog-
nition of specific emotions, scores were averaged
across all emotions. Accuracy for both incongruent
(different primer and distracting emotions) trials and
congruent (same primer and distracting emotions) tri-
als was used as variables. For further information
about the task, see [32].

Outcome at 3-months: PTSD overall symptom severity and
cluster-specific symptoms
The Posttraumatic Symptom Checklist for DSM-5 (PCL-
5) was used [33]. It is comprised of 20 items and each

corresponds to a DSM-5 diagnostic criterion for PTSD.
Participants indicate the severity of symptoms during
the past month on a 5-point Likert scale ranging from 0
(not at all) to 4 (extremely), resulting in total sum score
range from 0 to 80 reflecting overall symptom severity.
Additionally, severity of diagnostic clusters of PTSD can
be computed. Intrusion symptoms (cluster B) can range
from 0 to 20, symptoms of avoidance (cluster C) be-
tween 0 and 8, negative alterations in cognition and
mood (cluster D) between 0 and 28, and alterations in
arousal and activity (cluster E) between 0 and 24, re-
spectively. The PCL-5 shows excellent psychometric
properties and is one of the most-used self-report mea-
sures for PTSD [34]. A cut-off value > 33 was considered
indicative of a provisional diagnosis for PTSD. For the
analysis, sum scores were used to be able to include as
much information as possible for learning associations.
Cronbach alpha was .95 in the current sample for the
total sum score.

Data analysis
Missing values and data pre-processing
In total, 10% of the dataset had missing values. These
were imputed using a recursive partitioning approach by
means of random forest, which is suitable for mixed-
data. Due to its non-parametric fashion, random forests
do not require a-priori specification of variable distribu-
tions. The algorithm outperforms other common imple-
mentation techniques in terms of imputation error such
as k-nearest neighbor or multiple imputation by chained
equations [35, 36]. Regarding data pre-processing, vari-
ables were scaled and centered if required for a specific
algorithm (e.g. for Support Vector Machines or Neural
Networks).
In order to explore dysfunctions, all test scores were

compared to a normative cohort using peer regression
modeling for age, gender and education [27]. For emo-
tion recognition, only norms for emotion identification
were reported. Z-scores within 1SD were considered
average, and ≤ − 1 but ≥ − 2 were considered borderline
below average performance [37].

Machine learning algorithms
The implementation followed recommended procedures
(see [38]). Since predictive performance within a given
dataset is unknown in advance, it is recommended to
test a range of models (c.f [38].). In the current studies,
supervised algorithms that have been frequently applied
in mental health studies were compared. More specific-
ally, support vector machines (SVMs), random forests,
boosted models and neural networks were tested (c.f
[39, 40].). In addition, two other models (basic decision
trees and bagged trees) were applied that have been
shown to be robust towards noisy data and applicable in
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a broad range of settings whilst being somewhat inter-
pretable (c.f [38].).
SVMs are characterized by finding a linear separation

(hyperplane) that best differentiates the outcome based
on the predictor values [41]. Furthermore, basic classifi-
cation and regression trees (CART), random forests
(RF), boosted and bagged models all belong to the cat-
egory of decision trees. In these models, the outcome is
predicted by partitioning each predictor based on a
series of if-then statements. During model bagging sev-
eral decision trees are averaged by repeated resampling
of the data [42]. Furthermore, RF is also a tree-based en-
semble learning technique. It works similar to bagged
trees, but at each step of the tree-building procedure
only random subset of the predictors is included (see
[43]). Boosted regression trees are also a tree-ensemble
method but in contrast to other techniques, each step
during model building is based on the residuals that
could not be explained in the step before (see [44]). Fi-
nally, neural networks combine predictors into multiple
hidden units. In a second step, the outcome is modeled
by these hidden units (see [45]). Model specification de-
tails are reported in the online supplementary material.
As stated above, machine learning models are charac-

terized by model-inherent parameters that are systemat-
ically tuned to receive best prediction performance. In
order to avoid over-fitting (models perform well in the
current sample but can be poorly generalized), more
complex models are penalized during the model building
process. Furthermore, at each step during tuning, only a
small portion of data is used. A left-out set is subse-
quently used for evaluating predictive performance. In
the current study, 10-fold cross-validation with five repe-
titions was applied with model building at each step of
the cross-validation process. This nested procedure was
chosen instead of a separate training and test set in light
of the limited sample size [38]. It has shown to result in
robust estimates in small samples [18, 19].
In order to evaluate predictive performance, two indi-

ces were used for quantifying prediction error. Root
means squared error (RMSE) indicates the magnitude of
residuals left in the model derived from observed minus
predicted values [38]. Thus, lower values of RMSE were
preferred. Since this measure is scale-depended, it can-
not be used to compare model performance across dif-
ferent outcomes. For this reason, R-squared (squared
observed versus fitted values) was used. R-squared is
interpreted as the proportion of variation in the outcome
that can be explained by the predictors. Thus, higher
values were preferred. Both RMSE and R-squared are
recommended when testing the predictive capability of
machine learning models with continuous outcome [38].
Indices derived from each step were averaged to derive
one single final estimate. Since there is no recommended

cutoff for optimal values of RMSE and R-squared, differ-
ences in model performance were compared based on
pairwise t-tests with Bonferroni adjustment for multiple
testing. In addition, variable importance scores were
computed. Values were scaled from 0 to 100 with larger
values indicating higher contribution in the model.
Whilst no statistical test is available for drawing conclu-
sions about the relevance of specific predictors, we chose
to explore patterns. For this reason, the three most im-
portant predictors for each model were considered. Fi-
nally, in order to quantify interactions between features,
Friedman’s H was calculated (see [46]). Friedman’s H
can be interpreted as the portion of variance that is ex-
plained by the interaction when controlling for other ef-
fects. The index can take values between 0 and 1.
Currently there is no statistical significance test available
so again we described patterns of the five most fre-
quently occurring two-way interactions across models.
R [47] with packages missForest [48] and caret [49] as

well as respective dependencies were used for statistical
analyses.

Results
Descriptive statistics
Table 1 displays descriptive statistics of all predictor var-
iables at the 1-month assessment. A comparison with
the normative cohort revealed only minor deviations (z-
scores < |.5|). Only in the continuous performance test,
participants’ mean reaction time was in a borderline
range (for details see Table 1A in the online supplemen-
tary material). Thus, there is no evidence for severe neu-
rocognitive impairment in this sample.
Regarding the outcome, mean PTSD symptom severity

as measured by the PCL-5 was 23.38 (SD = 15.74), range
0–62. Of these, 24% met the cut-off above33 indicative
of a provisional diagnosis. For disorder-specific sub-
clusters, mean scores were 5.11 (SD = 4.12) for cluster
intrusion symptoms, 2.68 (SD = 2.10) for avoidance, 8.29
(SD = 6.29) for changes in mood and cognition, and 7.45
(SD = 5.04) for hyperarousal, respectively.

Data-driven predictions within outcomes
Final model parameters and associated fit values are re-
ported in Tables 2A-6A in the online supportive mater-
ial. Comparing accuracy within the same outcome for
overall PTSD symptom severity, values for RMSE were
between 14.32 (boosted tress) and 15.53 (CART model).
Pairwise t-tests indicated that SVM and CART models
were significantly worse than the bagged tree and ran-
dom forest model (all p < .001). In addition, the random
forest model was also superior to the neural network
model (p = .04). No other significant differences emerged
(all p > .05). Thus, the random forest model was
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considered the optimal model for overall PTSD scores
(see Figure S1 in the online supportive material for
details).
For symptoms of re-experiencing (PTSD cluster B),

RMSE values of the tree-based ensemble methods
(bagged tree, boosted tree and random forest; RMSE be-
tween 3.53–3.58) were significantly lower compared to
the SVM (RMSE = 3.87, all p < .004) and CART models
(RMSE = 3.88, all p < .05), but not to the neural network
model (RMSE = 3.82, p = .51 for bagged trees and p = .18
for random forests). The boosted tree model came close
to significance (p = .08) and was therefore chosen as best
model (see Figure S2 in the online supportive material
for details).
Concerning symptoms of avoidance (PTSD cluster C),

random forest (RMSE = 1.92) and boosted tree (RMSE =
1.958) models had significantly lower values than the
SVM (RMSE = 3.87, both p < .001), CART (RMSE = 2.03,
both p < .04) and the neural network model (RMSE =
2.11, both p < .009). Random forest and boosted models
did not differ from each other (p = .46) and the
bagged tree model (RMSE = 1.963, both p > .5). Yet,
the bagged tree model was only superior to the SVM
model (p <. 001), but not the CART and neural net-
work model (p = > .17). Consequently, random forest
and boosted tree models were chosen as final models
for PTSD cluster C (see Figure S3 in the online sup-
portive material for details).
For alterations in cognition and mood (PTSD cluster

D), a very similar pattern occurred. Both the random
forest (RMSE = 5.82) and the boosted tree (RMSE = 5.81)
model were significantly lower than the SVM (RMSE =
6.08), CART (RMSE = 6.46) and neural network
(RMSE = 6.63) model (all p < .05) but did not differ from
the bagged tree model (RMSE = 5.88, p > .9). The bagged
tree model was superior to the CART and neural

network (both p < .001), but not the SVM (p = .06)
model. Again, random forest and boosted models were
considered optimal for PTSD cluster D (see Figure S4 in
the online supportive material for details).
For symptoms of hyper-arousal (PTSD cluster E), the

two models with lowest scores, that is the CART
(RMSE = 4.64) and boosted tree model (RMSE = 4.62),
were significantly better than the SVM (RMSE = 4.99,
both p < .001) and neural network (RMSE = 5.10, both
p < .05) models. Only the boosted tree model was also
superior to the bagged tree (RMSE = 4.76, p = .03) and
close to significance for the random forest model
(RMSE = 4.75, p = .08). Accordingly, it was chosen as the
optimal model for the prediction of PTSD cluster E (see
Figure S5 in the online supportive material for details).

Model performance across outcomes
In a next step, best performing models per outcome
were compared based on maximized R-squared, That is,
the random forest model was chosen for overall PTSD
symptom severity (Rsquared = .28), cluster C
(Rsquared = .25) and cluster D (Rsquared = .20). Further-
more, boosted models were selected for PTSD cluster B
(Rsquared = .36), cluster C (Rsquared = .22), cluster D
(Rsquared = .20) and cluster E (Rsquared = .23). Despite
these descriptive differences, no model performed
exclusively better (all p > .19). There was only a non-
significant trend for the boosted model for cluster B out-
performing the random forest model for cluster C
(p = .06) as well as the boosted model for cluster D
(p = .05). See Fig. 1 for details.

Importance of predictor variables
Figure 2 visualizes variable importance for all selected
models. Of note, some variables had almost equal scores
and were therefore all considered, thus including four

Table 1 Mean and standard deviation (SD) of predictor variables

Test Variable [unit] Mean (SD)

Choice Reaction Time RT [ms] 451.73 (177.66)

Continuous Performance # of Errors 7.49 (18.19)

RT [ms] 593.05 (122.55)

Go/No-Go RT [ms] 321.64 (64.04)

# of Errors 6.00 (6.03)

Verbal Interference # of Errors 1.85 (3.91)

Digit span # of Maximum Digits 6.52 (1.77)

Verbal learning # of Errors 4.46 (7.61)

Digit-Letter-test Completion Time [ms] 62,241.62 (54,964.60)

# of Errors 1.80 (3.78)

Face recognition Accuracy Incongruent [%] 85.61% (19.90)

Accuracy Congruent [%] 95.04% (9.16)

RT Reaction Time, ms milliseconds, # number
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predictors for overall symptom severity and the boosted
model for cluster C.
Accuracy during incongruent trials in the Face Recog-

nition task was the most or second most important pre-
dictor in all models. This was followed by errors in the
Verbal Interference task for PTSD symptom severity (to-
gether with RT in the Go/No-Go task), cluster B and E,
and errors of commission in the Continuous

Performance test for overall PTSD, cluster B, C (together
with RT in the Choice Reaction Time test) and E. Fur-
thermore, regarding the prediction of cluster D, RTs in
the Go/No-Go and Continuous Performance tests were
relevant. The latter test was also the second most im-
portant predictor for the boosted cluster C model.
In addition, accuracy in the Verbal Learning memory

task (for overall PTSD symptoms, boosted model cluster

Fig. 1 Differences in mean R-squared and associated confidence intervals for pairwise comparisons of random forest (RF) and boosted models.
The letters refer to the PTSD cluster B-E, “Total” refers to the model with overall symptom severity

Choice Reaction Time: RT

Continuous Performance: errors of commission

Continuous Performance: errors of omission

Continuous Performance: RT

Digit Span: digits

Digit−Letter: time

Face Recognition C: accuracy

Face Recognition I: accuracy

Go/No−Go: errors of commission

Go/No−Go: errors of omission

Go/No−Go: RT

Verbal Interference: errors

Verbal Learning: accuracy

0 25 50 75 100

RF Total

0 25 50 75 100

BM Cluster B

0 25 50 75 100

BM Cluster C

0 25 50 75 100
Importance

RF Cluster C

0 25 50 75 100

BM Cluster D

0 25 50 75 100

RF Cluster D

0 25 50 75 100

BM Cluster E

Fig. 2 Variable Importance of predictors for all final models scaled from 0 to 100
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B and E as well as the random forest model cluster C),
errors of commission in the Go/No-Go task (random for-
est model for cluster D), number of digits in the Digit
Span test and errors of omission in the Continuous Per-
formance test (boosted model for cluster E) all had zero
importance.

Interactions
Figure 3 plots the five most important two-way interac-
tions for each model based on Friedman’s H. The most
important interaction was between accuracy during in-
congruent trials in the Face Recognition test and RT in
the Choice Reaction Time test, which were present in all
models except in the boosted model for cluster D. This
pattern was followed by interactions between RT in the
Continuous Performance test and accuracy during incon-
gruent trials in the Face Recognition test as well as RT in
the Choice Reaction Time test (present in all models ex-
cept for random forest models cluster C and D). All
other interactions were present in only half or less of the
models. Yet, regarding the two different models for
PTSD cluster C and D, these were the same within each
outcome. Furthermore, there was a unique interaction
for predicting PTSD cluster D between accuracy during
congruent trials in the Face Recognition test and RT in
the Go/No-Go task This was followed by an interaction
between the latter and RT in the Continuous Perform-
ance test (this was also present in the model for overall
PTSD severity). Finally, interactions with time to com-
pletion in the Digit Letter test were unique for predicting
PTSD cluster C by means of the random forest model,
whereas interactions including errors in the Verbal
Interference test were only occurring in the random for-
est model for PTSD cluster D.

Discussion
The aim of the current study was to characterize the
prospective nature and predictive accuracy of cognitive

processing and emotion recognition on the course of
shared and distinct PTSD dimensions by comparing the
stability and accuracy of distinct machine learning algo-
rithms. Altogether, decision tree ensemble learners were
more effective than single-tree models as well as SVMs
and Neural Networks. Further, we found that the vari-
able set was equally predictive of all symptom clusters,
accounting for moderate variance across all clusters.
High variability in fit indices as indicated by large confi-
dence intervals might have prevented tests from reach-
ing statistical significance.
Sustained attention and emotion recognition bias dur-

ing incongruent stimuli demonstrated the greatest pre-
dictive impact across symptom clusters. In contrast, the
domains of working memory/attention and verbal learn-
ing, cognitive flexibility and emotion recognition during
congruent stimuli were ranked among the least import-
ant predictors. Specifically discriminating between PTSD
symptom clusters, alterations in inhibitory performance
as well as an interaction between emotion recognition
and processing speed were visible for symptoms re-
experiencing, alterations in cognition and mood and
hyper-arousal. Furthermore, for re-experiencing interac-
tions between sustained attention with information pro-
cessing speed and emotion recognition were unique.
Regarding PTSD symptoms of avoidance, there was no
involvement of inhibitory processes. However, informa-
tion processing speed as a main effect was only import-
ant in this cluster. Alterations in cognition and mood
were furthermore described by interactions between in-
hibitory performance and processing speed as well as
emotion recognition. Finally, for hyper-arousal no other
unique pattern was found.
The current findings suggest that alterations in higher-

order executive functioning like action inhibition or
sustained attention and processing of emotionally incon-
gruent cues on the affective side are relevant for the
emergence of PTSD symptoms. This is consistent with
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Fig. 3 Friedman’s H values for the most important 2-way interactions for all models. For boosted model cluster E, no interaction terms were
included in the final model (tree depth = 1, see Table 4A in the online supportive material). RT = reaction time, FR I-acc = Face recognition
accuracy during incongruent trials; CRT = Choice Reaction Time, CP = Continuous Performance, errors of c = errors of commission, VI = verbal
interference, DL = Digit-Letter
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empirical findings regarding the role of cognitive and
emotional information processing as a mechanism of
PTSD development. It is known that that attentional re-
sources are shifted to trauma-related cues after a trau-
matic event in order to quickly evaluate these stimuli as
potentially threatening [9]. Further, co-occurring alter-
ations in inhibitory control lead to an impaired disen-
gagement of attention from these trauma-related cue.
Therefore, these processes might result in the evolve-
ment of repeatedly occurring pictures and memories of
the traumatic event that are difficult to control.
Symptoms of avoidance might further evolve as a

failed coping strategy, whereas altered speed in process-
ing could aid in the identification and subsequent avoid-
ance of potentially threatening situations [9]. Also the
notion of impairment in disengagement from trauma-
related cues fits well with the interaction between
cognitive domains and altered emotion recognition cap-
abilities [8]. Emotion-related cues are known to affect
memory capacities and stimuli with high emotional load
might be stored differently than more neutral cues [50].
Interacting with cognitive processing, this aspect might
further contribute to the evolvement of a trauma-
specific memory.
In this study, several of the previously empirically

identified cognitive processing and emotion recognition
markers were less relevant in the complex interaction
models [9, 10]. In addition, not all tests for one specific
cognitive domain were relevant. A potential explanation
is that cognitive tests do not always map onto a single
domain and there is controversy regarding the correct
allocation (c.f [10, 13].). Most likely, tests also measure
other neuro-cognitive functions not related to PTSD
symptoms. Furthermore, differences might also be ex-
plained by characteristics of the sample. Finally, these
domains may overlap substantially in the variance in
predication of PTSD. Whilst in most studies patients
with clinically endorsed PTSD symptoms were com-
pared to healthy controls, symptom severity in the
current study were low and a dimensional scoring was
applied.
Overall, the study confirms the power of data-driven

models for merging a large set of diverse information in
a useful way. Moreover, it suggests that cognitive pro-
cessing and emotion recognition characteristics do not
fully characterize PTSD symptoms but combining sev-
eral tests might lead to a substantial better mechanistic
understanding of how PTSD symptoms develop.
Including these factors, for example in future neuro-

imaging studies might have the potential to provide
further comprehension of underlying neural circuit dys-
function. However, current results must be confirmed and
extended in independent samples to be actionable clinically.
With respect to the limited sample size and despite careful

guarding against overfitting, it cannot be completely ruled
out that the findings are specific to the current sample. It
remains to be investigated whether findings generalize to
other settings. Moreover, future large-scale investigations
should also incorporate diverse f risk factors for PTSD
symptoms beyond neuro-cognitive and affective processing
(e.g. socio-demographic factors, initial level of posttrau-
matic stress symptoms, lifetime traumatic load). Further-
more, it is not known whether the model can be applied to
clinical samples with more severe PTSD symptoms.
Regarding clinical implications, the current work

points to the feasibility of cognitive and emotional tasks
to identify risk for PTSD by means of machine-learning
models. From a long-term perspective, such approaches
can support clinical decision making in order to assess
risk for PTSD. This could aid the allocation of early re-
sources for preventing PTSD. In doing so, future re-
search should also focus on predicting PTSD diagnosis
instead of continuous PTSD symptoms.

Limitations
Due to the limited sample size, a-priori theory-based
rigor reduction of relevant variables had to be carried
out. Furthermore, collinear predictors had to be re-
moved before model building. In addition, we did not
explicitly control for traumatic brain injury, and having
included these aspects would have expanded the under-
standing even further. Yet, in comparison to a normative
cohort, there was no evidence for severe impairment. In
addition, we do not know if cognitive processing has
been altered in response to trauma exposure or consti-
tutes a pre-trauma risk factor [15], since there was no
pre-assessment. Whilst the current model suggests an
underlying causality due to the longitudinal design, it is
not an experiment under controlled settings. Accord-
ingly, causality of effects is not conclusive.
Furthermore, the best practice recommendation of

randomly splitting the dataset into a training and test set
was not feasible because all data was needed for model
building. Using a separate test set is recommended in
order to avoid that the algorithm “learns” associations
between predictor and outcome variables that are spe-
cific to the dataset but cannot be generalized. Further-
more, it is unclear how PTSD symptom trajectories of
individuals might develop over the course of time after 3
months. Long-term prediction of PTSD symptoms that
extends beyond the current time frame is advisable. Fi-
nally, there was an under-representation of assaults and
an over-representation of bicycle accidents when com-
paring completers with non-completers.

Conclusion
The current study demonstrates that data-driven models
can contribute to the understanding of PTSD. By
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including a large number of features, machine learning
algorithms can provide new insights in otherwise hidden
and complex interconnections between cognitive and
emotional information processing. Hereby, the current
research points to the importance of simultaneously in-
cluding measures of higher-order cognitive functioning
and emotion recognition in future studies in order to
understand underlying alterations related to the develop-
ment of PTSD symptoms. Future large-scale investiga-
tions are needed to validate the current findings and
being capable of including a more diverse set of variables
with other risk factors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12888-020-02728-4.

Additional file 1.

Abbreviations
CART: Classification and Regression Trees; CP: Continuous Performance;
CRT: Choice Reaction Time; DL: Digit-Letter; DSM-5: Diagnostic and Statistical
Manual 5th Version; FR I-acc: Face recognition accuracy during incongruent
trials; PCL-5: Posttraumatic Symptom Checklist for DSM-5;
PTSD: Posttraumatic Stress Disorder; RF: Random Forests; RMSE: Root means
squared error; RT: Reaction Time; SVM: Support Vector Machines; VI: Verbal
Interference

Acknowledgements
The authors would like to thank the NYU/Bellevue Stress & Resilience
Laboratory research team for their support.

Authors’ contributions
IGL developed the study concept and design, and supervised data
collection. MA performed the data analysis and interpretation under the
supervision of IGL. MA drafted the paper and IGL provided critical revision.
Both authors approved the final version.

Funding
This research was funded by grant K01MH102415 from NIMH awarded to
IGL. A grant for a research stay at NYU was awarded to MA by the Swiss
National Science Foundation (grant IZSEZ0_177986). The funding bodies did
not play any role in the design of the study, collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets generated and/or analyzed during the current study are not
publicly available due to ethical reasons but are available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
The study protocol was approved by the Institutional Review Boards of New
York University School of Medicine as well as Bellevue Hospital (ID s14–0039).
The study was carried out in accordance with Declaration of Helsinki. All
participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050
New York, USA. 2AI Cure, New York, USA. 3New York University School of
Medicine, New York, USA.

Received: 17 June 2019 Accepted: 12 June 2020

References
1. Benjet C, Bromet E, Karam EG, Kessler RC, McLaughlin KA, Ruscio AM, et al.

The epidemiology of traumatic event exposure worldwide: results from the
world mental health survey consortium. Psychol Med. 2016;46(2):327–43.

2. American Psychiatric Association. Diagnostic and statistical manual for
mental disorders. Washington, DC: American Psychiatric Association; 2013.

3. Kessler RC, Angermeyer M, Anthony JC, Graaf RD, Gasquet I, Girolamo GD,
et al. Lifetime prevalence and age-of-onset distributions of mental disorders
in the World Health Organization’s world mental health survey initiative.
World Psychiatry. 2007;6(3):168–76.

4. Infurna FJ, Luthar SS. Re-evaluating the notion that resilience is
commonplace: a review and distillation of directions for future research,
practice, and policy. Clin Psychol Rev. 2018;65:43–56.

5. Galatzer-Levy IR, Huang SH, Bonanno GA. Trajectories of resilience and
dysfunction following potential trauma: a review and statistical evaluation.
Clin Psychol Rev. 2018;63:41–55.

6. DiGangi JA, Kujawa A, Aase DM, Babione JM, Schroth C, Levy DM, et al.
Affective and cognitive correlates of PTSD: Electrocortical processing of
threat and perseverative errors on the WCST in combat-related PTSD. Prog
Neuro-Psychopharmacol Biol Psychiatry. 2017;75:63–9.

7. Etkin A, Maron-Katz A, Wu W, Fonzo GA, Huemer J, Vértes PE, et al. Using
fMRI connectivity to define a treatment-resistant form of post-traumatic
stress disorder. Sci Transl Med. 2019;11(486):eaal3236.

8. Fani N, King TZ, Clendinen C, Hardy RA, Surapaneni S, Blair JR, et al.
Attentional control abnormalities in posttraumatic stress disorder: functional,
behavioral, and structural correlates. J Affect Disord. 2019;253:343–51.

9. Aupperle RL, Melrose AJ, Stein MB, Paulus MP. Executive function and PTSD:
disengaging from trauma. Neuropharmacology. 2012;62(2):686–94.

10. Scott JC, Matt GE, Wrocklage KM, Crnich C, Jordan J, Southwick SM, et al. A
quantitative meta-analysis of neurocognitive functioning in posttraumatic
stress disorder. Psychol Bull. 2015;141(1):105–40.

11. Plana I, Lavoie M-A, Battaglia M, Achim AM. A meta-analysis and scoping
review of social cognition performance in social phobia, posttraumatic
stress disorder and other anxiety disorders. J Anxiety Disord.
2014;28(2):169–77.

12. Elwood LS, Hahn KS, Olatunji BO, Williams NL. Cognitive vulnerabilities to
the development of PTSD: a review of four vulnerabilities and the proposal
of an integrative vulnerability model. Clin Psychol Rev. 2009;29(1):87–100.

13. Block SR, Liberzon I. Attentional processes in posttraumatic stress disorder
and the associated changes in neural functioning. Exp Neurol.
2016;284:153–67.

14. Russman Block SR, Weissman DH, Sripada C, Angstadt M, Duval ER, King AP,
et al. Neural mechanisms of spatial attention deficits in trauma. Biol
Psychiatry Cogn Neurosci Neuroimaging. 2019:S2451902219301429. https://
www.sciencedirect.com/science/article/pii/S2451902219301429.

15. Bomyea J, Risbrough V, Lang AJ. A consideration of select pre-trauma
factors as key vulnerabilities in PTSD. Clin Psychol Rev. 2012;32(7):630–41.

16. Augsburger M, Elbert T. When do traumatic experiences alter risk-taking
behavior? A machine learning analysis of reports from refugees. PLoS One.
2017;12(5):e0177617 Seedat S, editor.

17. Thomas RM, Bruin W, Zhutovsky P, van Wingen G. Dealing with missing
data, small sample sizes, and heterogeneity. In: Mechelli A, editor. Machine
learning: methods and applications to brain disorders. 1st ed. San Deigo:
Elsevier; 2019. p. 249–66.

18. Varma S, Simon R. Bias in error estimation when using cross-validation for
model selection. BMC Bioinformatics. 2006;7(1):91.

19. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm
validation with a limited sample size. PLoS One. 2019;14(11):e0224365
Hernandez-Lemus E, editor.

20. Thoma MV, Höltge J, McGee SL, Maercker A, Augsburger M. Psychological
characteristics and stress differentiate between high from low health
trajectories in later life: a machine learning analysis. Aging Ment Health.
2019;5:1–10.

21. Galatzer-Levy IR, Karstoft K-I, Statnikov A, Shalev AY. Quantitative forecasting
of PTSD from early trauma responses: a machine learning application. J
Psychiatr Res. 2014;59:68–76.

Augsburger and Galatzer-Levy BMC Psychiatry          (2020) 20:325 Page 10 of 11

https://doi.org/10.1186/s12888-020-02728-4
https://doi.org/10.1186/s12888-020-02728-4
https://www.sciencedirect.com/science/article/pii/S2451902219301429
https://www.sciencedirect.com/science/article/pii/S2451902219301429


22. Schultebraucks K, Galatzer-Levy IR. Machine learning for prediction of
posttraumatic stress and resilience following trauma: an overview of basic
concepts and recent advances. J Trauma Stress. 2019;32(2):215–25.

23. American Psychiatric Association. Diagnostic and statistical manual of
mental disorders (4th ed., text rev.). Washington, DC: Author; 2000.

24. Silverstein SM, Berten S, Olson P, Paul R, Williams LM, Cooper N, et al.
Development and validation of a world-wide-web-based neurocognitive
assessment battery: WebNeuro. Behav Res Methods. 2007;39(4):940–9.

25. Paul RH, Lawrence J, Williams LM, Richard CC, Cooper N, Gordon E.
Preliminary validity of “Integneuro”: a new computerized battery of
neurocognitive tests. Int J Neurosci. 2005;115(11):1549–67.

26. Williams LM, Simms E, Clark CR, Paul RH, Rowe D, Gordon E. The test-retest
reliability of a standardized neurocognitive and neurophysiological test
battery: “neuromarker.”. Int J Neurosci. 2005;115(12):1605–30.

27. Brain Resource Ltd. Brain Resource BRISC and WebNeuro Assessment
Manual. 2010.

28. Xu B, Sandrini M, Levy S, Volochayev R, Awosika O, Butman JA, et al. Lasting deficit
in inhibitory control with mild traumatic brain injury. Sci Rep. 2017;7(1):14902.

29. Reitan RM. Validity of the trail making test as an Indicator of organic brain
damage. Percept Mot Skills. 1958;84:271–6.

30. Golden CJ, Freshwater S. The Stroop color and word test: a manual for
clinical and experimental uses. Chicago: Stoelting; 2002.

31. Gur RC, Sara R, Hagendoorn M, Marom O, Hughett P, Macy L, et al. A method
for obtaining 3-dimensional facial expressions and its standardization for use in
neurocognitive studies. J Neurosci Methods. 2002;115(2):137–43.

32. Williams LM, Mathersul D, Palmer DM, Gur RC, Gur RE, Gordon E. Explicit
identification and implicit recognition of facial emotions: I. age effects in males
and females across 10 decades. J Clin Exp Neuropsychol. 2009;31(3):257–77.

33. Blevins CA, Weathers FW, Davis MT, Witte TK, Domino JL. The posttraumatic
stress disorder checklist for DSM-5 (PCL-5): development and initial
psychometric evaluation: posttraumatic stress disorder checklist for DSM-5. J
Trauma Stress. 2015;28(6):489–98.

34. Bovin MJ, Marx BP, Weathers FW, Gallagher MW, Rodriguez P, Schnurr PP,
et al. Psychometric properties of the PTSD checklist for diagnostic and
statistical manual of mental disorders–fifth edition (PCL-5) in veterans.
Psychol Assess. 2016;28(11):1379–91.

35. Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of
random Forest and parametric imputation models for imputing missing
data using MICE: a CALIBER study. Am J Epidemiol. 2014;179(6):764–74.

36. Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, et al.
Comparison of imputation methods for missing laboratory data in
medicine. BMJ Open. 2013;3(8):e002847.

37. Sugarman R. IntegNeuro™ user manual version 3 [Internet]. Brain resource
company; 2007. Available from: www.brainclinics.com.

38. Kuhn M, Johnson K. Applied predictive modeling. Corrected 5th printing,
vol. 600. New York: Springer; 2016.

39. Shatte ABR, Hutchinson DM, Teague SJ. Machine learning in mental health: a
scoping review of methods and applications. Psychol Med. 2019;49(09):1426–48.

40. Cho G, Yim J, Choi Y, Ko J, Lee S-H. Review of machine learning algorithms
for diagnosing mental illness. Psychiatry Investig. 2019;16(4):262–9.

41. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V. Support vector
regression machines. In: Mozer MC, Jordan JI, Petsche T, editors. Advances
in neural information processing systems 9. Proceedings of The 1996
Conference. London: MIT Press; 1997. p. 155–61.

42. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
43. Breiman L. Random forests. Mach Learn. 2001:5–32.
44. Friedman JH. Greedy function approximation: a gradient boosting machine.

Ann Stat. 2001;29(5):1189–232.
45. Titterington M. Neural networks: neural networks. WIREs Comp Stat. 2010;2(1):1–8.
46. Friedman JH, Popescu BE. Predictive learning via rule ensembles. Ann Appl

Stat. 2008;2(3):916–54.
47. R Core Team. R: A language and environment for statistical computing. R

Foundation for Statistical Computing. URL . [Internet]. Vienna, Austria; 2018.
Available from: https://www.R-project.org/.

48. Stekhoven DJ, Buhlmann P. MissForest--non-parametric missing value
imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.

49. Kuhn M. Building Predictive Models in R Using the caret Package. J Stat
Soft. 2008;28(5).

50. Brewin CR. Episodic memory, perceptual memory, and their interaction:
foundations for a theory of posttraumatic stress disorder. Psychol Bull. 2014;
140(1):69–97.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Augsburger and Galatzer-Levy BMC Psychiatry          (2020) 20:325 Page 11 of 11

http://www.brainclinics.com
https://www.r-project.org/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Participants
	Procedures
	Measures
	Predictors at 1-month follow-up: Neuro-cognitive functioning and emotion recognition
	Outcome at 3-months: PTSD overall symptom severity and cluster-specific symptoms

	Data analysis
	Missing values and data pre-processing

	Machine learning algorithms

	Results
	Descriptive statistics
	Data-driven predictions within outcomes
	Model performance across outcomes
	Importance of predictor variables
	Interactions

	Discussion
	Limitations

	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

