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Interconnected pathways link faecal
microbiota plasma lipids and brain activity
to childhood malnutrition related cognition

T. Portlock 1,10, T. Shama 2,10, S. H. Kakon 2,10, B. Hartjen 3,4,10,
C. Pook 1,10, B. C. Wilson 1,10, A. Bhuttor3, D. Ho 1, I. Shennon 1,
A. M. Engelstad 3,5, R. Di Lorenzo 3,4, G. Greaves3, N. Rahman 3, C. Kelsey3,4,
P. D. Gluckman 1,4, J. M. O’Sullivan 1,6,7,8 , R. Haque 2,3, T. Forrester 9 &
C. A. Nelson 3,4,5

Malnutrition affects over 30 million children annually and has profound
immediate and enduring repercussions. Survivors often suffer lasting neuro-
cognitive consequences that impact academic performance and socio-
economic outcomes. Mechanistic understanding of the emergence of these
consequences is poorly understood. Using multi-system SHAP interpreted
random forest models and network analysis, we show that Moderate Acute
Malnutrition (MAM) associates with enrichment of faecal Rothiamucilaginosa,
Streptococcus salivarius and depletion of Bacteroides fragilis in a cohort of one-
year-old children in Dhaka, Bangladesh. These microbiome changes form
interconnected pathways that involve reduced plasma odd-chain fatty acid
levels, decreased gamma and beta electroencephalogram power in temporal
and frontal brain regions, and reduced vocalization. These findings support
the hypothesis that prolonged colonization by oral commensal species delay
gut microbiome and brain development. While causal links require empirical
validation, this study provides insights to improve interventions targeting
MAM-associated neurodevelopmental deficits.

Malnutrition is a significant global health issue responsible for an
estimated 45% of all child deaths worldwide, making it one of the
leading causes of mortality among children under the age of 51. Mod-
erate acute malnutrition (MAM) is the most common and treatable
form of malnutrition and is characterized by delayed growth, pro-
portionate reductions in mass of most organs and tissues, and altera-
tions in tissue architecture2. MAM is also associated with
neurocognitive impairments thought to result from structural and

functional changes to the brain3. Children who survive MAM are likely
to suffer long-term consequences including impaired neurocognitive
development, leading to long-term deficits in cognition and
behaviour3. This leads to poor school performance and economic
prospects as an adult4. Although much is known about the health,
social, and economic ramifications of MAM, significant gaps in our
knowledge remain. Nutritionally wasted children show significant
brain atrophy on MRI5. Although re-feeding reverses this atrophy,
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functional and microstructural deficits persist. One crucial gap is: how
does MAM influence host physiology and cognitive development?

Many aspects of MAM, including host nutritional status, dietary
intake, antibiotic administration, and infections impact the diversity,
composition, and functionality of the microbiome6,7. To this end,
several studies in low- and middle-income countries (LMICs) have
shown differences in faecal microbiome profiles between mal-
nourished and well-nourished children8,9. For example, a study in
Bangladesh found that malnourished children, compared to well-
nourished children, had enrichment of faecal Bifidobacterium and
Escherichia species10. The development of the infant gut microbiome
was shown tobe slowedbymalnutritionwith this effectpersisting after
refeeding11. Work using mouse models points to a possible causal role
of the faecalmicrobiome in growth andweight gain, asmice colonized
using faecal microbial transplantation with samples from mal-
nourished children but not well-nourished controls showed impair-
ments in weight gain and growth12. Critically, perturbations of the
faecal microbiome associated with MAM may have downstream con-
sequences for brain and cognitive development13,14. Given the rapid
development that is occurring early in infancy and the fact that this
overlaps a dynamic period of change in themicrobiome, it is attractive
to speculate that MAM-induced alterations to the gut microbiome
impact brain structure and behaviours, directly or indirectly through
the gut–brain axis15. Studies of well-nourished children living in upper-
middle-income countries have shown that the faecal microbiome is
associated with cognitive and brain development, although the
direction of cause and effect remains unclear, with both increased and
decreased faecal microbiota alpha diversity being linked to positive
cognitive outcomes andneural development16. Alterations in the faecal
microbiome may contribute to negative neurological outcomes
observed inmalnourished children, potentially through the disruption
of nutrient absorption or the accumulation of toxic metabolites17.
However, few studies have examined the link between the faecal
microbiome and cognition in malnourished children11,18. Therefore,
more work is needed to understand how the faecal microbiome
mediates the association between MAM and cognitive development.

Brain and behavioural development may be impacted by MAM
indirectly through the circulating plasma lipidome19,20. Several circu-
lating plasma lipids, including cholesterol, phosphatidylcholines,
phosphatidylethanolamine, and sphingolipids comprise 50%of thedry
weight of the brain and have unique roles in neurological structure and
function21. The brain relies upon nutrients circulating in the blood for
its supply of resources. MAM impairs the blood brain barrier, which
regulates accessibility of the brain to circulating lipids22. Microbially
derived products (e.g. microbially encoded plasma lipids and e.g. bile
acid derivatives23). have been hypothesized to be key components in
plasma lipidome-mediated communication between the faecal
microbiome and the brain24. This is supported by observations that
lipids transformed and synthesized by the gut microbiome can influ-
ence structuring and signalling within host cells and tissues24–26. For
example, by influencing the functionality of membrane-embedded
proteins through effects on membrane structure and function27.
Plasma lipid profiles have been shown to alter in children with MAM
however, the host, microbial, and dietary contributions to these
changes remain unresolved.

Given the range of impacts of MAM that are potentially mediated
through the gut–brain axis, there has been increasing interest in
understanding how its alterations are associated with impacts on
infant neurocognitive development. The present discovery-based
study examines the impact of MAM on the composition of the infant
faecal microbiome, plasma lipidome, neural activity, and cognitive
outcomes in a cohort of well-nourished and MAM 12-month-old Ban-
gladeshi children. Interpreted Random Forest classifiers and co-
abundance network analysis were used to understand multi-modal
interactions that provide putative mechanistic insights into MAM-

associated developmental delays. Overall, this study provides impor-
tant information about faecal–blood–brain-behaviour associations in
children impacted by MAM. This information has the potential to
contribute to the design of improved therapeutic methods and trials
that test the efficiency of current therapies.

Results
Study population characteristics
Dhaka is the secondmost densely populated city in theworld. Dhaka is
the capital of Bangladesh; a country with the highest rate of childhood
malnutrition globally28. TheMirpur regionwaschosen as the site of our
study to assess the impact of early-life malnutrition. Children with
MAM (n = 159) and well-nourished controls (n = 75) at 12 ± 1 months of
age with no history of chronic medical conditions, no known con-
genital anomalies, and no antibiotic use within the past month were
recruited from theMirpur region as part of a community-based, open-
label, randomized clinical trial on the early emergence of executive
function and development in Bangladeshi children using nutritional
and psychosocial intervention (Fig. 1a)29. MAM was defined according
toWHO guidelines, using a threshold between two and three standard
deviations below the mean z-score for weight-for-length/weight-for-
height (WLZ/WHZ)30. The MAM was associated significantly (MWU,
pval < 0.05) with sociodemographic factors that included the principal
toilet system used (septic-tank/toilet), vaginal delivery mode, and
water treatment method (boiling) (Table 1, Supplementary Data 1,
Supplementary Fig. 1).

MAM is associatedwith reduced Shannondiversity and enriched
Rothia mucilaginosa and Streptococcus salivarius
Given the dominant role nutrition plays in driving faecal microbiome
composition31, we sought to characterize and compare the faecal
microbiome of MAM and well-nourished children to identify micro-
biome signatures associated with MAM. Stool metagenomes were
extracted, sequenced (40.53 ± 8.5 million reads with no significant
difference in read counts between MAM and well-nourished (MWU,
p =0.71), and profiled according to their species and functional com-
positions. Across all samples, 4 kingdoms, 18 phyla, 32 classes, 55
orders, 118 families, 319 genera, 1015 species, 611 functional pathways,
and 2,828,874 gene families were detected.

For all children, there was a mean species richness of 56.1 ± 17.7
per sample and mean Shannon diversity of 2.96 ± 0.72. MAM was
associated with a lower Shannon diversity (MWU, p =0.025) and Pie-
lou’s evenness (MWU, p =0.009) than their well-nourished counter-
parts (Fig. 1e, Supplementary Data 2); consistent with previous
observations in malnourished children32. The observed differences in
alpha diversity were underscored by a significant compositional dif-
ference in the Bray–Curtis dissimilarity between the nutritional groups
(PERMANOVA, R2 = 2.22, p = 0.008, Fig. 1d). Significance for this dif-
ference was not observed with other measures of dissimilarity (Jac-
card,Weighed-UniFrac, Unweighted-UniFrac, and Bray–Curtis) despite
the significant correlation between all pairwise comparisons between
them (Mantel q < 0.05, Supplementary Fig. 2).

Redundancy analysis (RDA) was used to investigate the sig-
nificance of MAM in the context of other biologically relevant covari-
ates and measure the extent to which these covariates constrain the
compositional variance (Supplementary Fig. 3). MAM, delivery mode,
biological sex, and duration of exclusive breast-feeding explained
2.27% of the total variance collectively with MAM status as the only
factor that significantly explained the constrained variance (p = 0.022).

Taxonomic differences between MAM and well-nourished infants
were calculated using Multivariate Association with Linear Models
(MaAsLin2) whilst controlling for those covariates as fixed effects. A
differential abundance of 5/286 taxa (2%) was identified (Fig. 1f, Sup-
plementary Data 3). Specifically, the faecal microbiomes from MAM
children had a greater prevalence and abundance of Rothia
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mucilaginosa (MaAsLin2, coef = 1.77, q =0.23), and Streptococcus sali-
varius (MaAsLin2, coef = 2.14, q =0.23), when compared to well-
nourished controls (Fig. 1f). These species were lowly abundant
(mean relative abundance of 0.14 ± 1.1% and 0.004 ±0.019% for S.
salivarius and R. mucilaginosa, respectively) but prevalent (82.2 % and
40.4%) of across all samples (Supplementary Fig. 4). Of note, whilst
Prevotella and Bacteroides genera individually did not meet sig-
nificance threshold, the Prevotella/Bacteroides ratio was elevated in
MAM children (MAM/Well-nourished = 14.4, MWU p =0.020). Of the
other covariates, Bifidobacterium bifidumwas observed to be enriched
in those children that were born by vaginal delivery mode (MaAsLin2,
coef = 1.77, q =0.23).

Functional pathway analyses revealed no significant differences in
the composition of the overall functionome between MAM and well-
nourished controls (PERMANOVA, R2 = 8.76, p = 0.365, Supplementary
Fig. 5, Supplementary Fig. 7). There were no significant differences in
the relative abundances (Supplementary Data 4) or completeness of
individual pathways. MelonnPan was employed to predict the abun-
dance of 81 faecal metabolites based on these functional gene abun-
dance profiles. Subsequent statistical analysis using MaAsLin2
adjusted for confounders revealed no significant differences in the
predicted metabolite concentrations.

MAM impacts brain activity and communication
Having identified the MAM-associated differences in the faecal
microbiome community, the next phase of the investigation was to

look at the other half of the gut-brain axis. Resting-state electro-
encephalography (EEG) assessments of participants were per-
formed to investigate the impacts of MAM on brain activity.
Comparisons of EEG power spectral density (PSD) between children
with MAM and well-nourished controls identified significant dif-
ferences in the beta (12–30 Hz) and gamma (30–45 Hz) frequency
bands distributed across temporal and frontal regions (Fig. 2a, b).
These bands are associated with concentration, alertness, and
higher mental activity and were observed to have higher amplitudes
in the well-nourished children compared to those with MAM (Sup-
plementary Data 5)33–35.

Malnourished children often present with long-term impairments
in neural and cognitive development36. The Bayley Scales of Infant and
Toddler Development Fourth Edition (BSID-IV) was used to assess
development in cohort37. When compared to well-nourished children
and controlling for confounders, there was a significant reduction in
ExpressiveCommunication, FineMotor, andGrossMotor Scores in the
MAM children (MaAsLin2, mean difference (MAM-well-nourished) =
−2.02, −1.68, −2.69, q =0.021, 0.021, 0.047, respectively; Fig. 2c, Sup-
plementary Data 6).

To complement this method of assessing development, Wolke
scoring was performed for the cohort (Fig. 2d, Supplementary Data 7).
The Wolke Behavioural Rating Scale assesses children’s socio-
emotional development across five dimensions38. As with the Bayley
scoring, vocalization scores were disproportionately reduced in MAM
children (MaAsLin2, mean difference (MAM-well-nourished) = −1.47,

Fig. 1 | MAM impacts the 12-month-old faecalmicrobiome. a Schematic of study
design. b Summary of data collected. Boxplots of significant differences (MMU,
p <0.05) in c anthropometric measurements between MAM (n = 156) and well-
nourished controls (n = 74). d Boxplots of significant difference (MWU, p =0.01) in
alpha diversity between MAM (n = 159) and well-nourished controls (n = 75). Box
plots show themedian, the 25th–75th percentiles (IQR), andwhiskers extending up
to 1.5 × IQR. e PCoA Scatterplot of Bray–Curtis beta diversities of samples (each
marker is a single child’s sample). f Volcano plot of differences in species relative

abundance (CPM) that are associated with MAM (n = 159) versus well-nourished
controls (n = 75) measured using MaAsLin2 (two-sided and corrected for multiple
comparisons). Red horizontal line signifies a significance threshold of q =0.25, with
point size representing the mean relative abundance across all 12-month-old chil-
dren and Streptococcus salivarius (q =0.23) and Rothia mucilaginosa (q =0.23)
being the only statistically significant results as signified by an asterisk. All subplots
are coloured orange and blue representing MAM and well-nourished 12-month-
olds, respectively.
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q = 1.44e−9) in addition to corresponding reductions to activity and
approach scores.

MAM is associated with a reduction in circulating odd-chain
fatty acids and ceramides
In addition to the connection between the gut and brain via the
vagus nerve, the circulatory system serves as another important
pathway for the bidirectional communication system. Adequate
nutrition in children is characterized by concentrations of circu-
lating lipids necessary for healthy growth and development39.
Uptake, transport, and metabolism of lipids from the diet and the
microbiome are crucial processes during the developmental win-
dow. Therefore, untargeted LC-MS/MS was used to identify and
quantify the levels of 792 plasma lipids in the children of the
cohort (Fig. 3a).

MAM was associated with major changes (MaAsLin2: 317/792
(40%) q <0.25, PERMANOVA: R2 = 10.31) to the plasma lipidome after
controlling for delivery mode, sex, and duration of exclusive breast-
feeding as biologically relevant covariates (Fig. 3a, Supplementary
Fig. 5, Supplementary Data 8, Supplementary Data 9). Of these chan-
ges, 128 (16%) compounds increased, and 189 (24%) decreased in
relative abundance. Depletion in the relative abundanceof seven lipids
withdiverse functionswasobserved, including those that are known to
be specific to neurological development and function, such as cer-
amides, glycosphingolipids, and fatty amides. Several other plasma
lysolipids from the lysophosphatidylcholine (LPC), and lysopho-
sphatidylethanolamine (LPE) classes were depleted in the MAM chil-
dren, as well as bacterially derived odd-chain fatty acids (OCFA). By
contrast, oxidized glycerophospholipids, steroid conjugates, and gly-
cerophosphoserines were observed to increase in relative abundance
in MAM children (Fig. 3b).

Multimodal Random Forest classification of MAM reveals cross-
mode influences
Having established the existence of changes associated with MAM
across the faecal microbiome, brain, behaviour, and plasma lipids, the
relative importance of changes in each of these domains for the pre-
diction of MAMwas measured. PERMANOVA was used to evaluate the
difference in beta diversity with respect to all phenotypical covariates
including MAM (Supplementary Fig. 5). Across all covariates, nutri-
tional status alone significantly explained the variance in the greatest
number of datasets.

To account for the non-linear associations of the features, sepa-
rate Random Forest classifiers were trained, using either faecal
microbiome taxonomic and functional profiles, neuroimaging (EEG
PSD), lipidome and behavioural data (Bayley scores), to distinguish
MAM from well-nourished children in the cohort (Fig. 4b). Within the
predictors trained on individual feature sets the best predictors of
MAM in 12-month-old children were: (1) plasma lipids (AUCROC=
0.93 ±0.05); (2) brain and behaviouralmetrics (Wolke score, EEG PSD,
Bayley score, AUCROC=0.73 ±0.05, 0.71 ± 0.10, 0.68 ±0.07, respec-
tively) and (3) faecalmicrobiome taxonomic, functional, andpredicted
metabolite profiles (AUCROC=0.56 ±0.07, 0.53 ± 0.07, 0.52 ± 0.06,
respectively).

To account for inter-dataset interactions between features,
multimodal models were trained on individually scaled and con-
catenated data from the faecal microbiome taxonomic and
functional profiles, neuroimaging (EEG), plasma lipidome, and
Bayley and Wolke scores. After including children that had a full
dataset (MAM n = 52, well-nourished n = 50) and hyperparameter
tuning, the models were highly predictive of MAM (AUCROC =
0.82 ± 0.05, Fig. 4c). Shapley additive value (SHAP) interpretation
of the multimodal models was performed to measure the

Table 1 | Baseline child characteristics

MAM (n = 159) Well-nourished (n = 75) pval

WLZ/WHZ −2.24 ± 0.26 −0.23 ±0.48 5.30e−35

MUAC (cm) 12.4 ± 0.49 14.26 ± 0.6 1.23e−34

Weight (kg) 6.8 ± 0.52 8.58 ±0.69 1.78e−32

HC (cm) 42.98 ± 1.33 43.97 ± 1.35 9.98e−07

Principal type of toilet facility used by household members—septic tank or toilet 106/159 (66.7%) 68/75 (90.7%) 5.01e−05

Water treatment method—boil 70/159 (44.0%) 51/75 (68.0%) 0.001

Father’s occupation—businessman 0/159 (0.0%) 6/75 (8.0%) 0.001

Principal type of toilet facility used by household members—pit latrine 40/159 (25.2%) 6/75 (8.0%) 0.002

Delivery Mode—vaginal 104/159 (65.4%) 35/75 (46.7%) 0.007

Number of years lived in current household 5.39 ± 6.28 3.83 ± 5.22 0.011

Toilet facility shared with other households 129/159 (81.1%) 49/75 (65.3%) 0.013

Mother’s income taka 1425.79 ± 3108.0 600.0 ± 2046.75 0.016

Years of father’s education 4.96 ± 3.67 6.45 ± 4.29 0.019

Father’s occupation—daily labourer 38/159 (23.9%) 8/75 (10.7%) 0.021

Water treatment method—water filter 6/159 (3.8%) 9/75 (12.0%) 0.023

Type of cooking fuel—wood 22/159 (13.8%) 3/75 (4.0%) 0.023

Mother’s occupation—housewife 117/159 (73.6%) 65/75 (86.7%) 0.028

Monthly total expenditure taka 14,854.4 ± 6388.11 18,469.33 ± 10,791.88 0.032

Language—Bengali 146/159 (91.8%) 74/75 (98.7%) 0.041

Language—Urdu 13/159 (8.2%) 1/75 (1.3%) 0.041

Principal type of toilet facility used by householdmembers—water-sealed or slab latrine 13/159 (8.2%) 1/75 (1.3%) 0.041

Uses social media—false 109/159 (68.6%) 41/75 (54.7%) 0.042

Sex of child—male 82/159 (51.6%) 47/75 (62.7%) 0.123

Months of exclusive breastfeeding 5.3 ± 1.44 5.12 ± 1.71 0.336

Plus, minus values are mean values ± SD from continuous variables (±). p-values (pval) were calculated using two-sided MWU. All other variables are categorical (True/False) with their p-values
calculated using Fisher's Exact test.
WLZ/WHZ weight-for-length/weight-for-height,MUAC mid-upper arm circumference, HC head circumference.
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importance of each feature (Fig. 4d, Supplementary Data 10,
Supplementary Fig. 8). Prediction importance was highly corre-
lated with the MaAsLin2 significance (i.e. those features that
changed significantly were likely to have a higher importance for
the model prediction (Spearman correlation between mean|SHAP|
and −log2(p) of rho = 0.51)). Interestingly, despite the low pre-
dictive performance of the microbiome in predicting MAM, when
integrated into the multimodal model, the majority of important
features were found to be within the faecal microbiome-derived
datasets (taxonomic, functional, and predicted metabolite pro-
files) (Fig. 4e).

SHAP interaction values are an extension of SHAP values that
provide insight into the interactions between pairs of features in a
model. SHAP interaction values for each bootstrap of the multimodal
models were calculated and averaged. A majority of important inter-
actions (mean Σ(|SHAP interaction|) > 5.017e−5 (90% quantile)) were
observed between those microbiome-derived datasets and the other
datasets (Fig. 4f, Supplementary Data 11).

A multimodal predictive network analysis reveals the impor-
tance of Bacteroides fragilis in infant neurocognitive
development
Network analysis is a useful tool to understand complex systems that
emerge from interactions between multiple components. To better
understand the relationship between the important features (i.e.,
mean|SHAP|> 0.0016 or 90% percentile), their co-abundance was cal-
culated, and a relationship network was constructed (Fig. 5a). Spear-
mancorrelation of the features thatwere important in predictingMAM
were calculated and filtered by significance (rho =0.51, q <0.05) (1052/
3906 correlations, Supplementary Data 11).

Important features were more likely to be significantly corre-
lated (q < 0.05) with one another (Fig. 5a) than unimportant features
(mean|SHAP| < 0.0016). Leiden cluster analyses revealed that those
features that were different between MAM and well-nourished
children were positively correlated. A cluster of B. fragilis, pyruvate
fermentation pathways, plasma ceramides, EEG PSD, and Expressive
Communication was identified as being highly correlated with the

Fig. 2 | Differences in cognitive development of 12-month-old children associ-
ate with MAM. a Heatmap of lobe and frequency-specific changes in EEG resting
state power spectral density (PSD) in MAM (n = 120) versus well-nourished (n = 55)
12-month-olds. PSDwasmeasured in µVolts-squared per Hz and log10-transformed
for normalization. b Boxplots of distributions of significant EEG PSD changes as in
subplot A. c Bayley score differences in MAM (n = 151) versus well-nourished

controls (n = 70).dWolke score differences inMAM (n = 152) versus well-nourished
controls (n = 65). *q <0.05. Box plots show the median, the 25th–75th percentiles
(IQR), and whiskers extending up to 1.5 × IQR. All differences were measured using
MaAsLin2 (two-sided and corrected for multiple comparisons as is the default).
All subplots are coloured orange and blue representing MAM and well-nourished
12-month-olds, respectively.
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well-nourished state (Fig. 5b). Plasma lipids that were depleted
(MaAslin2, q < 0.05, coef < 0) from the MAM infant samples were
also negatively correlated with EEG PSD high-frequency amplitudes.
Notably, EEG measurements were also correlated with bacterial
pyruvate fermentation pathways and B. fragilis relative abundance.
Although not significantly differentially abundant, B. fragiliswas the
4thmost abundant species amongst all children in the cohort (mean
RA of 0.0487, 0.0748 in MAM and well-nourished, respectively). A
cluster of P. copri, S. salivarius, R. mucilaginosa, glycolysis, pepti-
doglycan biosynthesis pathways, BCAA pathways, and plasma
sphingomyelins was identified as being associated with the MAM
condition. The strongest inter-species SHAP interaction effect was
observed between R. Mucilagniosa and S. salivarius indicating
that their combined presence amplifies the prediction of MAM
(mean Σ(|SHAP interaction|) = 0.00021.

Discussion
This study employed an interpreted random forest network approach
to identify interconnected pathways between the faecal microbiome,
plasma lipids, electroencephalogram power spectral density data, and
behavioural outcomes from children with MAM and well-nourished
controls. MAM was characterized by reduced alpha diversities and
enrichment of specificmicrobial species. Differences in brain electrical
activity and expressive communication between MAM and well-
nourished children were observed. However, direct correlations
between brain EEG and behavioural measures were not significant.
Plasma lipidome analysis revealed significant differences in poly-
unsaturated fatty acids and, notably, ceramides, which are crucial for
neural development. Integrated analysis across multimodal models
identified non-linear associations between microbially-derived sec-
ondary bile acid deoxycholic acid, the microbiome, and behavioural

c

a b

100

150

200

250

300

350

400

OCFA

400

600

800

1000

lysolipids

MaAsLin2
p = 5.77e-4

MaAsLin2
p = 0.05

Enriched Lipid classes in Malnutrition Depleted Lipid classes in Malnutrition

Plasma Lipids

Lo
g 2

(R
el

at
iv

e 
ab

un
da

nc
e)

Lo
g 2

(R
el

at
iv

e 
ab

un
da

nc
e)

Well-nourishedMalnourished

*

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0

5

10

15

20

25
-lo

g1
0 

q-
va

lu
e

PE.O.40.11

DG.38.6

NAE.12.0PC.37.6 PI.40.4PC.35.4
AAHFA.34.7.2O
PC.39.0 PC.40.2

DG.47.12.1 DG.48.12ST.27.1.O.1
PE.O.40.5 PC.42.6TG.53.6

Cer.42.2.O3

CE.20.4

DG.52.9 HexCer.42.2.2O
LPE.O.18.1

LPE.18.0 DG.30.3DG.52.2FA.28.7
DG.33.3 PC.34.4

MaAsLin2 Coefficicient

Enriched in malnutritionDepleted in malnutrition

0

2

4

6

8

10

12

Oxid
ize

d g
lyc

ero
ph

os
ph

olip
ids

0

5

10

15

20

25

30

Ster
oid

 co
nju

ga
tes

20

25

30

35

40

45

50

Fatt
y a

mide
s

40

60

80

100

120

140

160

Neu
tra

l g
lyc

os
ph

ing
olip

ids
15

20

25

30

35

40

45

Glyc
ero

ph
os

ph
os

eri
ne

s

300

400

500

600

700

Glyc
ero

ph
os

ph
oe

tha
no

lam
ine

s
100

150

200

250

300

Cera
mide

s

200

300

400

500

600

Dira
dy

lgly
ce

rol
s

200

300

400

500

600

700

Fatt
y A

cid
s 

0

2

4

6

8

Bile 
ac

ids
 

* * * * * * * * *

Fig. 3 | MAM results in major, compositional differences in plasma lipids of
12-month-old children. a Volcano plot of changes to plasma lipids between MAM
(n = 76) and well-nourished (n = 73) 12-month-olds. (Upper left and upper right
quadrants signify significant changeswhere the red horizontal line signifies q <0.05
after mixed effect modelling adjusting for covariates. Vertical lines represent the
mixed effect model coefficient of −0.1 and 0.1, respectively). b Box plot of changes

in plasma odd-chain fatty acid (OCFA) and lysolipid relative abundance due to
MAM. c Box plots of changes to lipid classes associated with MAM. *p <0.05. Box
plots show themedian, the 25th–75th percentiles (IQR), andwhiskers extending up
to 1.5 × IQR. All differences were measured using MaAsLin2 (two-sided and cor-
rected for multiple comparisons). All subplots are coloured orange and blue
representing MAM and well-nourished 12-month-olds, respectively.
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outcomes, suggesting microbial signalling pathways impacting beha-
viour.Bacteroides fragilis abundance, linked to fermentationpathways,
emerges as a predictive factor for well-nourished children. Causality
between faecal microbiome, plasma metabolite changes, and MAM
phenotype remains unclear, necessitating further research.

Several key differences between the faecal microbiomes of MAM
andwell-nourished childrenwere identified. In linewith prior research,
it was found that MAM children had reduced species alpha diversities.
The oral-commensal, Gram-positive, facultative anaerobes S. salivarius
and R. mucilaginosa were enriched in MAM children. This class of
species is also found enriched in sufferers of liver cirrhosis, hypothe-
sized to be the result of bile acid dysregulation40,41. In addition, MAM
children had a higher P/B ratio. One possible interpretation for the
differential Prevotella abundance in MAM children is that microbial
development is accelerated inMAMchildren. This hypothesis is in part
supported by the elevated abundances of P. copri and Bifidobacterium
adolescentis, which are markers of weaning42. Alternatively, selective
microbiome community-driven interactions might explain the inverse

correlations that were observed between P. copri and Bifidobacterium
species. The higher P/B ratio also points to a possible depletion in
Bacteroides which has been observed previously in Bangladeshi
children32. Taken together, the findings provide evidence for a accel-
erated development of the microbiome–faecal–brain axis during
childhood MAM, possibly due to mothers having to find alternative
food sources for their children rather than relying solely on breast-
feeding. However, it should be noted that, while work in adults has
shown that the P/B ratio is shaped in part by diet and lifestyle (e.g.,
hygiene practices, living environment)43 there is a lack of research on
Prevotella rich microbiomes (previously referred to as the Prevotella
enterotype) due to their underrepresentation in high-income
countries44.

Comparisons of the MAM and well-nourished children identified
differences both in brain electrical activity and expressive commu-
nication that were associated with MAM. Severe acute malnutrition
during childhood is generally recognized as having long-term effects
on adult cognitive, academic, and behavioural development45. Despite
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well-nourished children. a Network illustrating inter-relationships of feature
associations that predict MAM. Inclusion in the network requires a feature to
be important in the prediction of MAM (mean|SHAP| of >0.0016, 90%
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Scatterplots show a correlation between features, with points coloured
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12-month-olds, respectively.
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this, our integrated analysis did not identify any significant direct
correlations between brain EEG and behavioural measures (Wolke
vocalization andBayley expressive communication) inMAM12-month-
old children. When investigating differences in EEG power spectral
density (PSD), disruptionswere especially evident for higher frequency
canonical frequency bands (high alpha, beta, and gamma) but not the
lower frequency bands (delta, theta, or low alpha) in the frontal,
temporal and occipital areas. Notably, we did identify connections
between the biological markers (faecal microbiome, microbial path-
ways, and blood metabolome) and both brain (EEG PSD) and beha-
vioural metrics (Bayley, Wolke).

We identified significant differences in plasma lipids between
MAM and well-nourished children. These changes included both
increases and decreases in polyunsaturated fatty acids (PUFA) with
extended chain lengths (>18) or odd chain numbers. The observed
changes may be due to the combined effects of reduced dietary intake
(e.g. C16 and C18 derivatives) and altered microbial metabolism (e.g.
odd chain FA) in the MAM condition. By contrast, the increased very
long-chain fatty acids (>C20) likely reflect an alteration in host meta-
bolism. This is consistent with observations from animal models that
diets low in protein result in hepatic steatosis, loss of peroxisomes, and
mitochondrial dysfunction46. Peroxisomes are important for the β-
oxidation of very long-chain fatty acids (>C20), branched fatty acids,
xenobiotics, and bile acids. The low protein diet peroxisome and
mitochondrial dysfunction are reflected in severemetabolic disruption,
including to the levels of plasma lipids, consistent with our observa-
tions in the MAM individuals. The MAM-associated reduction in 16C
and 18C chain FA may reflect the dietary deprivation. Notably, the
plasma lipidomes of MAM children also exhibited significant differ-
ences in the levels of ceramides and lysolipids (i.e. lipid derivatives in
which one or both acyl derivatives have been removed by hydrolysis).

Numerous specific changes in plasma lipid levels stand out as
being potentially important for neural development. Firstly, lacto-
sylceramide (hex2cer 34:1) is an essential precursor for the synthesis of
all complex glycosphingolipids47 that was depleted by approximately
50% in MAM children. Secondly, lysophosphatidylcholine (LPC) and
lysophosphatidylethanolamine (LPE) are essential for brain develop-
ment and growth as they carry fatty acids across the blood-brain bar-
rier, via themajor facilitator superfamilydomain-containingprotein 2A
(Mfsd2a)48. Phosphatidylcholine (PC) is a precursor to acetylcholine,
an essential neurotransmitter for memory and cognitive function.
Supplementing neuron differentiation medium with phosphati-
dylcholine reduces the impact of inflammatory stress and neuronal
damage, increasing the number of healthy neurons and modulating
neuronal plasticity49. By contrast, PI 40:4 increased within the plasma
ofMAM children. PI 40:4 is a precursor to prostaglandin synthesis that
is important for brain development50. Previous work has found that
microbial fatty acids support myelin biosynthesis and maintenance,
and this function may be a possible explanation for the associations
found between microbial fatty acid biosynthesis, plasma lipids, and
electrical activity in the brain51–53. However, further work is required to
test this hypothesis.

Random Forest classification models trained on the fecal micro-
biome, neuroimaging data, and the plasma lipidome accurately pre-
dicted theMAM condition. Integrating the important features of these
models and Spearman correlation using network analysis provided a
holistic view of the MAM mechanism and highlights the potential
importance of a subset of microbes (i.e. Bacteroides fragilis) as indi-
cators of childhood neurocognitive and microbiome-faecal-brain axis
development in MAM. The integrated analysis identified non-linear
associations between circulating bile acids and the microbiome and
indirect associations through phosphosphingolipids with behavioural
outcomes (i.e. Wolke Vocalization and Bayley Expressive Commu-
nication scores). Bile acid concentrations in MAM children were

elevated when compared to well-nourished children. Bile acids are
hormone-likemolecules that have recognized, albeit poorly described,
roles as signalling molecules to the brain54. Secondary bile acids are
synthesized directly by themicrobiome and are detectable in the brain
where there are numerous bile acid receptors54. Notably, deletion of
the FarnesoidX receptor (FXR), involved in bile acid homoeostasiswas
associated with a reduction in depressive and anxiety-like behaviour,
but increased motor activity. Collectively, these findings reinforce the
hypothesis that there is microbial signalling, through the peripheral
circulatory system to the brain that can impact behaviour. However,
direct causal effects are yet to be demonstrated for the compoundswe
have identified55.

Recent studies have emphasised the significant role of the faecal
microbiome in mediating dietary effects on host physiology, in addi-
tion to its influence on the development and function of the nervous
system56–59. Multiomic analysis examined associations between child-
hoodMAM, altered brain function, and themicrobiomeand suggested
amechanism that links the fermentation of pyruvate to butanoate and
ceramide biosynthesis to brain function and language development.
However, in the absence of causal animal studies, it remains unclear if
the faecal microbiome, and plasma metabolite changes are a result of
or contribute causally to the wider MAM phenotype. Additional lim-
itations are linked to the structure of the cross-sectional cohort itself
and lack of temporal samples, the correlative nature of the data, and
the choiceofmeasures (e.g. EEGhas poor spatial resolution hampering
precise localization of brain signal). Another limitation of this study is
the useof relative abundancedata, which can introduce compositional
bias by distorting changes in microbial taxa and plasma lipids.
Although we have applied approaches designed to mitigate composi-
tional bias, such as statisticalmethods likeMaAsLin2, which are widely
accepted for handling compositional structures, some biases may
remain. Future studies with absolute abundance data could provide
more accurate insights.

Notwithstanding these limitations, the integrated dataset and
incorporation of age-matched controls, provide evidence that is con-
sistent with the hypothesis that, in infants with MAM, the persistence
of oxygen-sensitive oral commensals Rothia mucilaginosa and Strep-
tococcus salivarius in the gut microbiome hinders gut and neurode-
velopmental maturation by out-competing the colonization of
Bacteroides fragilis, a critical species for production of brain-
supportive lipids. Under healthy conditions, B. fragilis replaces these
oral commensal species as the gut matures, contributing to the
synthesis of odd-chain fatty acids essential for brain development,
which are associated with enhanced expressive communication. The
impact of delays in the sequential colonization sequence could be
tested in animal models and should be empirically tested.

Integrative multi-omics analysis highlights inter-connected path-
ways between Bacteroides fragilis, plasma OCFA, temporal/frontal
beta/gamma EEG PSD, and vocalization. This primary study provides a
testable hypothesis to determine the effects of interventions onMAM-
associated behaviour and brain development.

Methods
Ethics
The protocol (registered on ClinicalTrials.gov, study ID number:
NCT05629624) was co-developed by researchers from The University
of The West Indies, Boston Children’s Hospital, USA, International
Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), and
University of Auckland, New Zealand. Ethical approvals were obtained
from the Research Review Committee (RRC; August 21, 2021) and
Ethical Review Committee (ERC) of icddr,b (protocol no.: PR-21084;
September 21, 2021), University of Auckland, New Zealand (approval
AH23922; for analyses of collected biological samples) and University
of West Indies (CREC-MN.51, 21/22).
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Study design and participants
This case-control study was performed on the baseline data from two
cohorts of children who were enroled (between February and
December 2022) as part of the M4EFaD intervention, a community-
based clinical trial within the Mirpur slum, Dhaka, Bangladesh29. The
cohort consisted of a control group of 75 well-nourished children at
12 ± 1 months (WLZ score > −1 SD), an intervention group of 159 chil-
dren with WLZ < −2 and >−3 and/or MUAC< 12.5 and >11.5 cm and
havingMAMat 12 ± 1months. Inclusion criteria included anassessment
of MAM, no history of chronic medical conditions, known congenital
anomalies, and no antibiotic use within the past month.

Recruitment and anthropometric data collection
Enrolment was initiated on February 7, 2022, and will continue until
February 2024. Study surveillanceworkers (SWs) conducted a door-to-
door census (~100,000 households) in Mirpur DNCC wards 2, 3, and 5
between January and December 2022. Verbal consent was obtained to
participate in the census. The census identified 5736 children aged
between 11 and 13 months and 2314 children aged between 34 and
38 months. During the census, if the guardian verbally consented to
the study procedure and the babies met the inclusion and exclusion
criteria of the study for either the well-nourished control arm or the
MAM arm, the SWs proceeded to measure the MUAC of the child.
Mothers of babies who were within the MUAC range were invited to
visit the icddr,b study clinic for further assessment and enrolment.

Final screening for eligibility and study consent occurred at the
icddr,b Mirpur study clinic. Written consent was obtained from the
parents or legal guardians of each child included in this study. The
consenting process was tailored to each mother’s literacy level and
involved reviewing the inclusion and exclusion criteria. Comprehen-
sion of the study was assessed using scripted points and open-ended
questions. For mothers or legal guardians who were illiterate, we
involved an impartial witness to assist during the consent process. In
such cases, we obtained themother or the legal guardian’s thumbprint
along with the witness’s signature on the written informed consent.

Following consent, the clinical screening team completed a
screening form, capturing the date of enrolment, sex, date of birth
(DOB), weight (kg), length/height (cm), head circumference (cm), and
MUAC (cm) measurements of the child. The WLZ/WHZ score for each
child was calculated using the WHO anthropometric calculator. The
child’s age was validated using the EPI vaccination card. Bayley scores
and EEG data were collected upon enrolment to evaluate brain and
cognitive development.

EEG data collection and analysis
Continuous scalp EEG was recorded using NetStation 4.5.4. and 128-
channel Hydrocel Geodesic Sensor Nets modified to remove eye
electrodes (Electrical Geodesics, Inc. (EGI), Eugene, OR, USA) (Sup-
plementary Fig. 6). Datawas sampled at 500Hz. Impedanceswere kept
under 100 kΩ when possible and measured once at the beginning of
the session, and again halfway through. Sessions were conducted in a
dimly lit room with the participants sitting on the parent’s lap. The
participants were separated from the research staff conducting the
session by a curtain, but the testing area was not acoustically or elec-
trically shielded. A second research staff member was present in the
testing area to help keep the participant engaged. The subsequent
(pre-)processing steps were applied to the resting state data where
participants watched a 3-min video that featured toys.

EEG data were pre-processed with MatLab (R2021B) using the
Harvard Automated Processing Pipeline for Electroencephalography
(HAPPE) Version 360,61. A specified subset of 30 channels was excluded
(E1, E8, E14, E17, E21, E25, E32, E38, E43, E44, E48, E49, E56, E63, E68,
E73, E81, E88, E94, E99, E107, E113, E114, E119, E120, E121, E125, E126,
E127, E128). Data were bandpass filtered (1–100Hz) and filtered using a
50Hz cleanline filter for line noise removal. Bad channels were then

automatically identified and rejected, and wavelet thresholding was
performed to detect and impute artefacts. Resting-state data were
segmented into 2 s epochs; epochs with an amplitude > |150|mV were
rejected. Segments were also rejected using segment similarity cri-
teria. Data were then re-referenced to the average of all channels.

EEG outputs from HAPPE were then reformatted and processed
using the batch electroencephalography automated processing plat-
form (BEAPP)62 to extract power spectra for each participant across the
following frequency bands: delta (2–4Hz), theta (4–6Hz), low alpha
(6–9Hz), high alpha (9–12Hz), beta (12–30Hz), and gamma (30–45Hz)
and the following regions of interest (Supplementary Fig. 6): occipital
(E70, E71, E75, E76, E83), temporal (E36, E40, E41, E45, E46, E102, E103,
E104, E108, E109), parietal (E52, E53, E59, E60, E85, E86, E91, E92), and
frontal (E5, E6, E12, E13, E24, E27, E28, E33, E34, E112, E116, E117, E122,
E123, E124). Further, PSD values were normalized by a log10 transform.

Developmental outcomes
The Bayley Scales of Infant and Toddler Development, Fourth Edition
(BSID-IV) cognitive, language, andmotor subscales were administered
to all participants36. Research assistants were trained to research
reliability in the administration and scoring of the Bayley-4. Due to
cultural differences between Bangladesh and the United States where
the assessment was developed, Bangladeshi researchers modified
some assessment stimuli to improve cultural responsiveness and
relevancy. Pictures for the itemnaming series and actionnaming series
of the expressive language and receptive language subscales were
adapted to include items that Bangladeshi children are more likely to
be familiar with. For example, in an item depicting a child in a one-
piece pyjama set requiring children to predictwhat the childwas about
to do, the pyjama set was replaced by bedtime clothing familiar to
Bangladeshi children that would signify that the child was going to
sleep. The Wolke ratings are a measure of development that has been
validated in previous studies of nutritional impacts on behavioural
development in Bangladesh38,63–65.

Biological sample collection
Stool samples were collected from each infant at their home at the
baseline visit. Samples were collected in DNA/RNA Shield Faecal Col-
lection Tubes (Zymo Research, #R1101). Peripheral venous blood
samples were collected in EDTA Vacutainers, separated into plasma
and RBCs, and immediately frozen at −80 °C. Batches of blood and
stool samples were air-freighted on dry ice from Bangladesh to the
Liggins Institute, New Zealand for processing and analysis.

Microbiome DNA extraction, sequencing, and profiling
DNA was extracted from stool samples using the ZymoBIOMICS
MagBead DNA/RNA extraction kit (Zymo Research, #R2136) following
the standard protocol. Samples (1mL) were mechanically lysed in
bead-bashing tubes using the MiniG tissue homogenizer prior to
extraction of DNA. 200 µL of the sample was used post-bead bashing
for extraction of DNA following the protocol. A volume of 50 L of elute
was collected in DNAse/RNAse Free Water. Samples with a DNA con-
centration <14.5 ng/L were re-extracted following the ZymoBIOMICS
DNA extraction protocol. DNA concentration measurements were
measured using the Nanodrop. Samples were shotgun sequenced
(Illumina NovaSeq 150PE reads) to an average sequencing depth of
20M read-pairs/sample across three batches with ZymoBIOMICS®
Microbial Community Standard and water used for positive and
negative controls, respectively, for each batch to rule-out batch effect
and identify microbial contamination.

Raw sequencing reads were processed using BioBakery3 tools66.
Contaminant removal was performed with KneadData using paired-
end inputs and the human genome reference (hg37). Quality trimming
was done with Trimmomatic using the options “HEADCROP:15 SLI-
DINGWINDOW:4:15 MINLEN:50.” Microbial community profiling was
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conducted with MetaPhlAn3 (Version 3.1, mpa_v31_CHO-
COPhlAn_201901 database), including viral taxa and unknown esti-
mates via the ‘-add_viruses’ and ‘-unknown_estimation’ flags.
Functional profiling was performed using HUMAnN 3.6 with default
parameters, indexing with ‘uniref90_annotated_v201901b’.
KneadData-filtered reads and taxonomicprofiles were input, with gene
families identified using the UniRef90 database and reads mapped to
MetaCyc pathways. Functional profiles were renormalized to CPM
using the ‘humann2_renorm_table’ function. Predicted stool metabo-
lite profiles were generated from the gene profiles using MelonnPan
using default parameters.

Plasma lipidomics
Plasma samples for lipidomics were thawed on ice in sets of eight
bracketed by a procedural blank and quality control and extracted
according to a methodmodified from ref. 67. Briefly, 10 L volume was
placed in an amber glass autosampler vial, and 300 L of a mixture of
Type 1 water, butanol, methanol, chloroform, and SPLASH Lipidomix
in a ratio of 4:15:15:20:1 was added. The mixture was vortexed and
sonicated at room temperature before the protein precipitate was
removed by centrifugation and an aliquot of the supernatant was
transferred to an amber glass autosampler for negative ionization
LC–MS/MS. A second aliquot of the supernatant was diluted 5 times
with 75% IPA for positive ionization LC–MS/MS. A 5 µL volume of each
sample was injected onto a Phenomenex Kinetex F5 column
(100mm×2.1mm×2.6m), and lipids were separated using a ternary
gradient of Type 1 water, methanol, and isopropanol containing
ammonium acetate. Lipids were quantified and identified with a
Q-Exactive mass spectrometer (Thermo Fisher Scientific, Germany)
equipped with a heated electrospray ionization HESI source. Data was
processed using MS-DIAL v4.92 9268. Batches were preceded by six
injections of a quality control sample to stabilize the instrument. For
full methodological details see the supplementary information. The
lipidomics standard initiative report is available (https://doi.org/10.
5281/zenodo.14349715).

Statistics and reproducibility
Python version 3.9.2 was used to perform all analyses unless otherwise
stated69. Due to the unequal sample sizes and non-normally distributed
data; non-parametric statistical approaches were used for differential
analysis. Significance between ordinal-continuous covariates was mea-
sured with the Mann–Whitney U test (MWU) using the ‘mannwhitneyu’
function from ‘scipy.stats’. Alpha (Gini, Shannon, richness, and Simpson)
and Beta (Bray–Curtis Jaccard, weighted-unifrac, unweighed-unifrac)
diversities were calculated using BioBakery’s ‘calculate_diversity.R’ on
MetaPhlAn’s ‘utils’ directory on their GitHub page. Co-linearity between
the Beta diversity metrics was measured for significance using the
‘mantel’ function in ‘skbio’ python package. PCoA ordinations (plotted
using 'skbio.stats.ordination.pcoa’ module) was used to visualize the
clustering of the beta diversities between samples for each dataset. To
quantify the variance explained and constrained by metadata labels
monovariate PERMANOVA p-values were calculated from those beta
diversities using the 'permanova’ function from the ’skbio.stats.distance’
module. Associations between features were measured with Spearman
correlation (calculated using 'spearmanr’ function from 'scipy.stats’
module), where significance was defined as FDR adjusted p-values65 of
<0.05. No blinding was performed for this study.

Associations between categorical variables were evaluated using
Fisher’s Exact test (via the fisher_exact function from the scipy.stats
module), with significance defined by p-values < 0.05. Differential
analysis across all datasets was conducted using a mixed modelling
approach through MaAsLin2, adjusting for delivery mode, child sex,
and duration of exclusive breastfeeding as fixed effects70. For the
microbiome analysis, total sum scaling (TSS) normalization was used
to account for the compositionality of the dataset71 along with default

parameters of prevalence filtering of 10% and abundance of 0.01%. For
all other datasets, no normalization or prevalence/abundance filtering
was performed. Significance was defined as a q-value of <0.25. This
threshold is appropriate formultivariable models, where the inclusion
of covariates increases the multiple testing burden14,70,72,73. This allows
for the detection of biologically meaningful associations while main-
taining anappropriate balancebetweenType I andType II errors. Fixed
effects were integrated into a formula for Redundancy Analysis (RDA)
using the ‘rda’ function in the ‘vegan’ package in the R programming
language74. Prevotella/Bacteroides (P/B) ratio was calculated by divid-
ing the pseudo-value adjusted and log-transformed-relative abun-
dance of Bacteroides divided by the same transformation of Prevotella.

Machine learning
Random Forest classifiers were trained to differentiate MAM from
well-nourished controls. Each dataset was split 70/30 percent into
training and testing sets. Class imbalance was addressed using the
‘SMOTE’ function from the ‘imblearn’ package for upsampling of
the training data. Multimodal models were trained on data that
was individually scaled and concatenated. Model hyperpara-
meters, including the number of trees in the forest, maximum
tree depth, and minimum sample numbers needed to split inter-
nal nodes, were tuned using grid searching with tenfold cross-
validation of the test dataset using the ‘pycaret’ python package.
The AUCROC of 100 Random Forest models for each prediction
was used to measure the performance of each model and identify
overfitting. Mean absolute SHapley Additive exPlanations (SHAP)
value and the mean sum of the SHAP interaction values for each
pair of features were used to interpret the contributions that each
feature had on each model’s performance using the ‘shap’ python
package75. Important features were classified as having mean|
SHAP| of above the 90th percentile of all values. Important
interactions between features were classified as having mean
Σ(|SHAP interaction|) above the 90th percentile of all values.

Network analysis
Important features (as defined above) in a multimodal model from
faecal bacterial species and functional profiles, EEG PSD, Bayley,Wolke
scores, and plasma lipids were included in the network analysis. Sig-
nificant Spearman rho (q <0.05) between important features were
used as edges. Leiden clustering of the positive correlations was per-
formed using the Leidenalg and igraph python packages. Networks
were visualized using Cysoscape (v3.10.2)76.

Ethics approval and consent to participate
Ethical approvals were obtained from the Research Review Committee
(RRC; August 21, 2021) and Ethical Review Committee (ERC) of icddr,b
(protocol no.: PR-21084; September 21, 2021), Institutional Review
Board of Boston Children’s Hospital, USA (for analyses of neu-
ropsychological assessments), University of Auckland, New Zealand
(approval AH23922; for analyses of collected biological samples) and
University of West Indies (CREC-MN.51, 21/22).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metagenomics data generated in this study have been deposited
in the NCBI-SRA database under accession code PRJNA1087376. The
lipidomics data generated in this study have been deposited in the
Metabolights database under accession code MTBLS10066. The pro-
cessed EEG, Bayley, Wolkes, Lipidomics spectral data, and anthropo-
metric data are available on figshare (https://doi.org/10.17608/k6.
auckland.25560768). All differential, feature importance and
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correlation data generated in this study are provided in the Supple-
mentary Information/Source Data file.

Code availability
All analysis code is available on the GitHub repository https://github.
com/theoportlock/m4efad (https://doi.org/10.5281/zenodo.14428001).
The codebase is organized into scripts, providing a comprehensive fra-
mework for replicating the experiments. Detailed documentation and
instructions on how to use the code are provided in the repository’s
README file.
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