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Abstract: There is an unmet need for the identification of biomarkers to aid in the diagnosis, clinical
management, prognosis and follow-up of meningiomas. There is currently no consensus on the opti-
mum management of WHO grade II meningiomas. In this study, we identified the calcium binding
extracellular matrix glycoprotein, Fibulin-2, via mass-spectrometry-based proteomics, assessed its
expression in grade I and II meningiomas and explored its potential as a grade II biomarker. A total
of 87 grade I and 91 grade II different meningioma cells, tissue and plasma samples were used for
the various experimental techniques employed to assess Fibulin-2 expression. The tumours were re-
viewed and classified according to the 2016 edition of the Classification of the Tumours of the central
nervous system (CNS). Mass spectrometry proteomic analysis identified Fibulin-2 as a differentially
expressed protein between grade I and II meningioma cell cultures. Fibulin-2 levels were further
evaluated in meningioma cells using Western blotting and Real-time Quantitative Polymerase Chain
Reaction (RT-qPCR); in meningioma tissues via immunohistochemistry and RT-qPCR; and in plasma
via Enzyme-Linked Immunosorbent Assay (ELISA). Proteomic analyses (p < 0.05), Western blotting
(p < 0.05) and RT-qPCR (p < 0.01) confirmed significantly higher Fibulin-2 (FBLN2) expression levels
in grade II meningiomas compared to grade I. Fibulin-2 blood plasma levels were also significantly
higher in grade II meningioma patients compared to grade I patients. This study suggests that
elevated Fibulin-2 might be a novel grade II meningioma biomarker, when differentiating them from
the grade I tumours. The trend of Fibulin-2 expression observed in plasma may serve as a useful
non-invasive biomarker.

Keywords: meningioma; atypical; benign; biomarker; plasma

Int. J. Mol. Sci. 2021, 22, 560. https://doi.org/10.3390/ijms22020560 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1101-9896
https://orcid.org/0000-0003-3871-9267
https://orcid.org/0000-0001-7471-9374
https://orcid.org/0000-0003-4587-2139
https://orcid.org/0000-0002-1951-1025
https://doi.org/10.3390/ijms22020560
https://doi.org/10.3390/ijms22020560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22020560
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/2/560?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 560 2 of 13

1. Introduction

Meningiomas are the most commonly occurring benign primary tumours of the central
nervous system (CNS). They arise from the meningeal coverings of the brain and spinal
cord, specifically from meningothelial (arachnoid cap) cells lining the arachnoid layer [1] or
the Dural border cells found in the layer immediately superficial to the arachnoid layer [2].

According to the most recent (2016) World Health Organization classification of tu-
mours of the central nervous system [3], there are three distinct histological tumour grades:
the benign grade I meningiomas (70–85% of all meningiomas), the intermediate atypical
grade II (15–30% of all meningiomas) and the most aggressive anaplastic/malignant grade
III tumours (1–2%) [4–6]. Compared to the benign grade I tumours, the higher grade
atypical and malignant meningiomas have a poorer prognosis with respect to mortality
and recurrence free survival [7,8].

When diagnosing grade II tumours, inter-observer discordance can be as high as 12.2%
(compared to 7 and 6.4% in grade I and III meningiomas, respectively) [9]. Their biological
behaviour and risk of recurrence can range from indolent to highly aggressive despite
being phenotypically identical [9–13], and their optimal management has not been defined
and remains controversial [14–21].

Fibulin-2 is a large calcium binding extracellular matrix (ECM) glycoprotein hypothe-
sized to stabilize and maintain ECM integrity and tissue architecture [22,23]. It interacts
with other ECM proteins [24] known to be widely expressed in meningiomas such as
MUC4 [25], α5β1 integrins [26], laminin-α2 chain and fibronectin, to facilitate cell motil-
ity, proliferation and angiogenesis [27], but is not currently known to play any role in
meningioma pathogenesis. However, the Fibulin-2 protein has been described as a driver
for malignant progression in lung adenocarcinomas [22,28], whereas the Fibulin 2 gene
(FBLN2; chromosome 3p24-p25) has been reported to have tumour suppressive properties
in nasopharyngeal carcinomas [23]. High FBLN2 expression is also known to be prognostic
in liver (favourable) and in endometrial cancers (unfavourable) [28] (Human Protein Atlas
available from http://www.proteinatlas.org, accessed on the 1st December 2020), and
dysregulation of Fibulin-2 is involved in the development of breast cancer [24], Kaposi’s
sarcoma and pancreatic cancer [22].

To the best of our knowledge, no previous study has investigated the clinical signifi-
cance of Fibulin-2 as a meningioma biomarker. In this study, we identified Fibulin-2 as a
novel biomarker for differentiating between grade II and I meningiomas and demonstrated
higher expression in grade II meningioma (primary cells and tissue), at protein and gene
expression levels. We also confirmed higher plasma Fibulin-2 concentrations in blood
samples from grade II meningioma patients, compared to those from grade I meningioma
patients.

2. Results
2.1. Fibulin-2 Is Significantly Differentially Expressed between Grade II and Grade I Primary
Meningioma Cells

An extensive unbiased global protein expression (proteomic) analysis between grade
I and II meningiomas was carried out via Mass Spectrometry (MS), using primary menin-
gioma cell cultures derived from four grade I and four grade II tumours.

Of the 391 proteins identified (via MS) to be significantly differentially expressed
between grades, Fibulin-2 expression was the most significant. It was observed to be
overexpressed in grade II compared to grade I primary meningioma cells (Log2 Fc Gd II vs.
Gd I = 5.19 and p = 0.02) (Figure 1a).

Using Western Blotting, we validated these findings on the primary cell cultures
(discovery set) used during mass spectrometry analysis. This confirmed Fibulin-2 overex-
pression in grade II compared to grade I meningioma primary cells (Figure 1b,c).

Real-time Quantitative Polymerase Chain Reaction (RT-qPCR) gene expression studies
on a validation sample set showed that FBLN2 gene expression was significantly higher
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(Log2Fc of Gd II vs. Gd I = 5.36; p < 0.05) in grade II (n = 6) versus grade I (n = 7) meningioma
cells (Figure 1d).
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Shows the mass spectrometry-derived Fibulin-2 comparative expression profile between grade I and II meningiomas; (b)
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analysis by RT-qPCR of FBLN2 in meningioma primary cells. Data shown as Log 2-fold change (Fc) for grade I (n = 7) and
grade II (n = 6) meningiomas. Data presented as mean ± SEM, * p < 0.05.

2.2. Fibulin-2 Is Significantly Overexpressed in Grade II Compared to Grade I Meningioma Tissues

We further validated the findings from the primary cells experiments on a validation
set of grade I and II meningioma tissues.

As an additional (semiquantitative) validation method, we carried out immunohis-
tochemical studies on 10 different grade I tumour slides and 11 different grade II tumour
slides, to compare expression between grades. Fibulin-2 staining was observed to be



Int. J. Mol. Sci. 2021, 22, 560 4 of 13

diffusely cytoplasmic in tumour cells, and more intense in the grade II tumours (Figure 2a),
with 64% of grade II meningiomas staining strongly compared to 40% in the grade I cohort
(Supplementary data S1).
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Figure 2. Fibulin-2 and FBLN2 are significantly overexpressed/upregulated in grade II compared to grade I meningioma
tissue. (a) Representative immunohistochemistry images for Fibulin-2 staining in grade I and II meningiomas at 200×
magnification. Staining was diffusely cytoplasmic in tumour cells, and more intense in the grade II meningioma sections;
(b) gene expression analysis by RT-qPCR of FBLN2 in meningioma tissue is reported. Data shown as log 2-fold change (FC)
for grade I (n = 26) and grade II (n = 23) meningiomas. Data presented as mean ± SEM, ** p < 0.01.

In order to further evaluate the expression profiles of Fibulin-2 (FBLN2) in these
meningioma grades, we carried out gene expression studies on 26 grade I and 23 grade II
meningioma tumour tissues via RT-qPCR. This also revealed a higher FBLN2 expression
(Log2Fc of Gd II vs. Gd I = 5.46; p < 0.01) in grade II meningiomas compared to grade I
(Figure 2b).

These findings suggest that FBLN2 gene expression and Fibulin-2 protein levels are
both increased in grade II meningiomas compared to the grade I tumours.

2.3. Plasma Fibulin-2 Levels Are Higher in Grade II Compared to Grade I Meningioma Patients

The plasma levels of Fibulin-2 in patients with grade I (n = 40) and grade II menin-
giomas (n = 47) were assessed using ELISA, and shown in Figure 3. Compared to the grade
I meningioma patients, Fibulin-2 plasma concentrations were significantly higher in grade
II patients (p = 0.03).

When differentiating between grade II and I meningiomas, a Fibulin-2 blood plasma
cut off value > 2.5 ng/mL has a 95% specificity for identifying patients with grade II
meningiomas over those with grade I tumours.

We also found a significant correlation between high plasma fibulin-2 levels and more
aggressive methylation classes, irrespective of meningioma grade (Figure 4).
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Figure 4. Plasma Fibulin-2 levels correlate with methylation class aggressiveness. The figure shows
the relationship between methylation class and Fibulin-2 levels, irrespective of meningioma grade.
MC = methylation class; Ben 1,2,3 = benign classes, Int A,B = intermediate classes, Mal = malignant
class. ANOVA *** p < 0.0001.

3. Discussion

Meningiomas are among the most common primary tumours affecting the CNS and
constitute between 30 and 35% of all primary CNS tumours [29,30], of which 15–30% are
grade II tumours [4,6].
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In this study, we assessed Fibulin-2 as a biomarker for differentiating between grade
II and grade I meningiomas (Table 1), by evaluating its expression in meningioma cells,
tissue and blood plasma levels.

Table 1. Clinical characteristics of the meningioma samples used (n = 178). There were two grade
I meningioma patients with mixed histology; one had metaplastic, transitional and microcystic
(sphenoid wing) and transitional (frontal) tumours; the other had a mixed meningothelial, microcystic
and angiomatous meningioma.

Clinical Features Group Patients

n (%)

Sex
Female 123 69.1
Male 54 30.3

Unknown 1 0.6

Age Median
Range

59
27–92

WHO grade WHO I 87 48.9
WHO II 91 51.1

Grade I

Meningothelial 27 31.0
Fibrous 25 28.7

Transitional 17 19.5
Psammomatous 6 6.9

Angiomatous 1 1.1
Secretory 1 1.1

Metaplastic 1 1.1
Not reported 6 6.9

Meningothelial + bony invasion 1 1.1
Mixed 2 2.3

Chordoid 7 7.7
Atypical 71 78.0
Clear cell 1 1.1

Atypical + brain invasion 11 12.1
Atypical + bone/dura invasion 2 2.2

Chordoid + dura invasion 1 1.1
Grade II Atypical with extracranial extension 1 1.1

Atypical + focal rhabdoid features 1 1.1

Location

Falcine 10 5.4
Cerebello-pontine angle 4 2.2

Parasagittal 15 8.1
Olfactory groove 11 5.9

Frontal 42 22.7
Occipital 17 9.2

Intraventricular 2 1.1
Spheno-orbital 3 1.6
Sphenoid wing 9 4.9

Tentorial 4 2.2
Parietal 9 4.9

Temporal 9 4.9
Posterior fossa (not specified) 9 4.9

Planum sphenoidale 6 3.2
Fronto-parietal 13 7.0

Fronto-temporal 2 1.1
Petrous temporal (incl. petro-clival) 3 1.6

Cavernous sinus 1 0.5
Planum sphenoidale 6 3.2

Thoracic 2 1.1
Skull base (not specified) 1 0.5

Not specified/stated 7 3.8
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A total of 178 grade I and II different meningioma cells, tissue and plasma samples
(sometimes from the same patient) were used for the various experimental techniques
employed to assess Fibulin-2 expression.

By performing MS proteomics validated with Western Blotting, we found that primary
cells derived from grade II meningiomas expressed significantly higher levels of Fibulin-2
when compared to levels in grade I meningioma cells. RT-qPCR confirmed higher FBLN2
expression in the grade II meningioma cells.

We then assessed Fibulin-2 expression patterns in grade I and II meningioma tissue.
IHC revealed more intense staining in the grade II tumours compared to grade I, while
RT-qPCR showed that the FBLN2 gene is also overexpressed in grade II meningiomas
compared to grade I, confirming the expression patterns observed in the meningioma cells.
These findings are supported by our earlier proteomic study on meningioma tissue of
different grades, where Fibulin-2 was identified to be non-significantly overexpressed in
grade II meningioma tissue compared to grade I [12].

To assess the efficacy of Fibulin-2 as a non-invasive biomarker difference between
grade I and II meningiomas, we carried out ELISA experiments on blood (plasma) samples
from meningioma patients. We found significantly higher plasma concentrations of Fibulin-
2 in grade II meningioma patients compared to the grade I cohort. However, there was a
notable overlap in the spread of Fibulin-2 levels between grades, though we found that a
cut-off value > 2.5 ng/mL was highly specific for patients with grade II meningiomas.

The observed overlap in grade I and II plasma Fibulin-2 levels was not surprising. Previ-
ous studies have described intra-tumoural biological heterogeneity in meningiomas [9,31,32]
and a spectrum of biological behaviour in the grade II tumours [9–11,13], with biomarker
validation studies often showing variable protein expression in these tumours, and similar
expression profiles when compared to grade I and III meningiomas [12,33].

There are currently no reliable grade II-specific blood biomarkers, hence the objective
of this study. We primarily focused on grade II tumours compared to grade I because the
management of the grade I and III tumours is not as controversial as that of the grade II
tumours, underlined by the ongoing debate surrounding the use of adjuvant radiotherapy
in the management of grade II meningiomas [6,16,34,35].

Fibulin-2 has been shown to be involved in the physiological regulation of the devel-
opment of the central/peripheral nervous systems [36,37], and its expression was observed
to be increased at sites of traumatic CNS injury [38]. However, the mechanism underlying
the Fibulin-2 expression patterns observed in this study remains unclear but may be related
to the brain invasive properties of the higher grade meningiomas.

Fibulin-2 dysregulation is known to promote metastatic progression; mice studies
have shown that Fibulin-2 is required for tissue repair following hypoxic stress [39] and is
preferentially expressed in highly metastatic cells [40], while human transcriptomic studies
have confirmed FBLN2 overexpression in metastatic tumours compared to the primary
tumour site [41]. The study by Baird et al. on lung adenocarcinomas showed that high
Fibulin-2 expression stabilizes the tumoural extracellular matrix (ECM) by acting as a
biomechanical intermolecular anchor, thus driving malignant progression [23].

In this study, the observed increase in Fibulin-2 (FBLN2) expression in grade II menin-
giomas may be due to the protein stabilizing the tumoural ECM, promoting an environment
that favours hypercellularity, cell proliferation [22] and (brain) invasion [42].

While this is primarily a diagnostic biomarker study, the mechanism underlying
Fibulin-2 (FBLN2) expression in meningiomas will need to be investigated with further
in vitro studies such as the knock-down of the FBLN2 gene and downregulation of Fibulin-
2 expression in grade II meningiomas. The expression of the Fibulin-2 interacting proteins
known to be expressed in meningiomas (MUC4, α5β1 integrins, laminin-α2 chain, type
IV collagen and fibronectin) [22,24–27,43] can also be manipulated to assess the effects
on the tumour biology (motility, invasion and proliferation) of grade II meningiomas, in
order to better understand their heterogeneous histo-phenotypical characteristics, and dis-
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cover more sophisticated biomarkers for clinical diagnosis/prognostication and potential
molecular targets for treatment.

Review of our clinical data revealed a correlation between high plasma Fibulin-2
levels and a more aggressive meningioma methylation class, (Figure 4), but did not show
a correlation between Fibulin-2 levels and patient demographics, radiological findings,
histological characteristics or clinical outcome, meaning that the neuro-oncological use of
Fibulin-2 should be in conjunction with these other factors to predict clinical outcome.

There are some limitations to this study. Expanding the study to include a larger
sample cohort and longer (5–10 years) follow up period may improve the diagnostic
accuracy of Fibulin-2 for differentiating between grade II and grade I meningiomas. A
prospective study assessing preoperative and postoperative plasma Fibulin-2 levels will
provide more data on its potential role as a biomarker for monitoring progression (in
19.5–46% of patients treated for a recurrence) [13,44] of grade I meningiomas or recurrence
(in 39–58%) [6] of grade II meningiomas. We also suggest the evaluation of Fibulin-2 in
grade III meningioma patients, though a large multicentre study will be required due to
the small incidence/prevalence of grade III meningiomas.

In conclusion, we show that Fibulin-2 is expressed at higher levels both at the protein
and RNA level, in grade II meningiomas compared to grade I. This study demonstrates that
elevated Fibulin-2 levels might be a novel grade II meningioma biomarker, when differenti-
ating them from the grade I tumours. The trend of Fibulin-2 expression observed in plasma
from these patients may serve as a useful non-invasive biomarker when differentiating
between both meningioma grades.

4. Materials and Methods
4.1. Clinical Material and Ethical Approval

The anonymized meningioma, Formalin Fixed and Paraffin Embedded (FFPE) and
blood samples were obtained from the “UK Brain Archive Information Network (BRAIN
UK)” biobank, under the ethical approval granted by the South West research ethics
committee (REC No: 14/SC/0098; IRAS project ID: 143874, BRAIN UK Ref: 15/011); from
the “Identification and validating molecular targets in low grade brain tumours (MOT)”
biobank, under the ethical approval granted by the South West research ethics committee
(REC No: 14/SW/0119; IRAS project ID: 153351; Plymouth Hospitals NHS Trust: R&D No:
14/P/056 and North Bristol NHS Trust: R&D No: 3458); and from the Walton Research
Tissue bank (REC No: 15/WA/0385; IRAS project ID: 186041, WRTB Ref: 19_04).

All tumours were classified according to the 2016 WHO Classification of Tumours of
the Central Nervous System.

Commercially available Human Meningioma Cells (HMC) cell lines were obtained
from ScienCell™ and used as controls for the experiments involving primary meningioma
cells or cell lines.

The clinical and demographic data for all the samples used are detailed in Supplemen-
tary data S2.

4.2. Meningioma Specimens, Tumour Digestion and Cell Culture

Meningioma specimens were collected during planned tumour resections; these are
surplus samples destined for the incinerator following histological analysis for diagnosis
and processed using techniques previously described [33,45].

Briefly, tumour (tissue) viability was maintained in a sterile transport media (DMEM
supplemented with 10% FBS, 500 U/mL penicillin and streptomycin, 2.5 µg/mL ampho-
tericin B) until processing. The tumour was then washed twice with sterile phosphate
buffered saline (PBS, Gibco, Life Technologies, Loughborough, UK), transferred into in-
cubation media (Dulbecco’s Modified Eagle Medium, DMEM (Gibco, Life Technologies,
Loughborough, UK), supplemented with 10% FBS (Sigma Aldrich, Gillingham, UK) and
100 U/mL Penicillin/Streptomycin (Gibco, Life Technologies, Loughborough, UK)), and
incubated at 37 ◦C in a humidified atmosphere (5% CO2) until digestion.
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The tumours were then minced into small pieces and disaggregated in digestion media
(Dulbecco’s Modified Eagle Medium, DMEM supplemented with 10% FBS, 100 U/mL
Penicillin, 100 U/mL Streptomycin and 20 units/mL of Type III collagenase (Worthington
Biochemical Corp, Lakewood Township, NJ, USA)) overnight at 37 ◦C. Following digestion,
the cells were pelleted at 1500 rpm for 5 min, the supernatant was removed and the
pellet re-suspended in the complete medium and seeded in the appropriate tissue culture
dish [45].

The grade I primary cells used for Western blotting were cultured in DMEM sup-
plemented with 10% FBS (Sigma Aldrich, Gillingham, UK), 1% D-(+)-glucose (Sigma
Aldrich, Gillingham, UK), 100 U/mL penicillin/streptomycin (Gibco, Life Technologies,
Loughborough, UK) and 2 mM GlutaMAXTM-I (Gibco, Life Technologies, Loughborough,
UK) [33].

All the primary meningioma cells used for mass spectrometry and the grade II primary
cells used for Western blotting were cultured in in Dulbecco’s Modified Eagle Medium F-12
Nutrient Mixture (Ham) (DMEM/F-12 (1:1)(1X) + GlutaMAX™-I; Gibco, Life Technologies,
Loughborough, UK) supplemented with 20% FBS (Sigma Aldrich, Gillingham, UK), 1%
D-(+)-glucose (Sigma Aldrich, Gillingham, UK) and 100 U/mL penicillin/streptomycin
(Gibco, Life Technologies, Loughborough, UK).

The HMC cells were cultured in the recommended manufacturers’ Meningeal Cell
Medium (Meningeal Cell Medium (MCM, Cat. #1401)).

All cell cultures were at 37 ◦C in humidified 5% CO2, keeping confluency above ~80%.

4.3. Western Blotting, Mass Spectrometry Proteomics and Immunohistochemistry

Protein extraction, quantification and cell culture Western blots were performed as
previously described [12,33,45–48]. Antibodies used are listed in Supplementary data S3.

The proteomic analysis (on four grade I and four grade II meningioma primary cell
cultures) was conducted according to previously described methods [12,46,47]. An amount
of 50 µg of protein (cell lysates) was separated using SDS-PAGE on 4–15% Mini-PROTEAN®

TGX™ Precast Protein Gels (Bio-Rad). The gels were stained with colloidal Coomassie blue
stain (Life Technologies) until lanes were visible, then de-stained with de-staining solution.

Sample lanes were cut out and sliced into 10 fractions that were further diced into
1 mm3 pieces before in-gel digestion according to the Shevchenko protocol. The samples
were cleaned and desalted by STAGE tips (made in-house) as previously described [47]
and re-suspended in 0.5% acetic acid, 1% trifluoroacetic acid (TFA) in a final volume of
~25 µL for mass spectrometry analysis.

Mass Spectrometry and protein identification were performed according to protocols
previously described [12,46,47].

For immunohistochemical (IHC) studies, 4 µm FFPE sections from 21 (10 grade I
and 11 grade II) tumours were processed using the method previously described by
our lab [12,33,48]. Following EDTA antigen retrieval, the sections were further blocked
using normal horse serum and the Avidin-biotin blocking solution to reduce non-specific
signal [48], prior to incubation with the primary antibody (Supplementary data S3).

The slides were visualised with the Vectastain Elite ABC-HRP kit (Vector Laboratories
Ltd, Burlingame, USA) according to the manufacturer’s protocol. For control, sections
were incubated without addition of the primary antibody [12,33,48].

The immunohistochemical results were reviewed “blind” to histological grade by
a neuropathologist (D.H). Semiquantitative assessment of the intensity of immunore-
activity was undertaken and scored as follows: 0 none; 1 weak; 2 moderate; 3 strong
(Supplementary data S1).

4.4. RNA Isolation and Gene Expression Analysis

Total RNA was extracted from 62 frozen tissues and cells using the Qiazol reagent
(Qiagen UK), according to the manufacturer’s protocol. The ThermoFisher Scientific
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Nanodrop 2000 Spectrophotometer (Waltham, MA, USA) was used to assess the quality
and concentration of the RNA [33,45].

Real time polymerase chain reaction (RT-PCR) was performed on 1 µg of total RNA
using the High-Capacity cDNA Reverse Transcription Kit, according to the manufacturer’s
instructions.

qPCR was performed on a LightCycler 480 Real-Time system (Roche), with TaqMan®

probes (FBLN2 ID Hs00157482_m1 and Glyceraldehyde 3-phosphate dehydrogenase,
GAPDH ID Hs02786624_g1 [Applied Biosystems, ThermoFisher Scientific, Loughborough,
UK]) according to the manufacturer’s protocol, in triplicate for each gene.

GAPDH was used as internal control, RNA extracted from the HMC cell line was
used as a calibrator and the 2−(∆∆Ct) method was used for relative gene expression quan-
tification [33,45,49].

4.5. Enzyme-Linked Immunosorbent Assay

A commercially available (abx350725, Abbexa Ltd., Cambridge, UK) sandwich enzyme-
linked immuno-sorbent assay (ELISA) for the quantitative measurement of plasma Fibuin-2
levels was used according to the protocol (https://www.abbexa.com/human-fibulin-2-
elisa-kit-2, accessed on the 1st December 2020) provided by the manufacturer, to compare
levels in grade I and II meningioma patients.

The plasma samples were derived from blood collected (pre-operatively) in lavender
BD Vacutainer® EDTA tubes (Becton Dickinson U.K. Ltd., Swindon, UK). The samples
were gently mixed (by inversion) for a minute, then centrifuged at 2400× g for 10 min at
4 ◦C. The supernatant was collected and stored at −80 ◦C pending the ELISA experiments.

4.6. Methylation Profiling

DNA was extracted from tumour tissue using the Qiagen DNeasy Blood and Tissue
DNA extraction kit (QIAGEN, Manchester, UK-Cat No: 69504), with the (extracted) DNA
concentrations calculated using the ThermoFisher Scientific Nanodrop 2000 Spectropho-
tometer [45]. Methylation profiling was performed using the Infinium MethylationEPIC
(850k) BeadChip (Illumina, San Diego, CA, USA) or Infinium HumanMethylation450 (450k)
BeadChip array (Illumina) as previously described [50].

4.7. Statistical Analysis

According to the experimental procedure, probability (p) values were estimated with
the Student’s t-Test or the ANOVA one-way analysis of variance, using the GraphPad
Prism 8.4.2 and Microsoft Excel 2016 software programs. p values < 0.05 were considered
to be statistically significant. The results are expressed as the mean ± standard error of the
mean (SEM).

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/14
22-0067/22/2/560/s1. Supplementary data S1—Immunohistochemistry staining intensity scores;
Supplementary data S2—detailed clinico-demographic and plasma Fibulin-2 concentration data;
Supplementary data S3—Antibody details.
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