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There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological
insulators. Recently, transport of massless Dirac fermions in the band of ‘‘topological’’ states has been
demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a
topological background and are therefore strongly dependent on the properties of the surface. We study the
problem of the conductivity of Tamm-Shockley edge states through direct transport experiments.
Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single
nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling
around the nanohole. The results demonstrate the deep connection between topological and
non-topological edge states in 2D systems of massless Dirac fermions.

N
ature is arranged such that electronic surface states (SSs) or interface states always appear on the surfaces
of real crystals. Usually, they are induced by defects in the crystal surface, impurities, or contaminants
and have a disordered character. Such ‘‘extrinsic’’ SSs lead to a finite density of states in the forbidden

band of the crystal, which disturbs the functioning of many solid-state devices1.
In principle, there may be other SSs that are not related to defects on the surface (‘‘intrinsic’’ SSs). Since the

pioneering works by Tamm2 and Shockley3, theoretical models predict that breaking of the crystal periodic
potential at the surface can lead to the appearance of a two-dimensional (2D) band of conducting electronic
states near the surface4. These SSs are sometimes called Tamm states, Shockley states, or Tamm-Shockley states.
Usually, they are detected using local methods (such as STM and ARPES) on atomically clean surfaces of a number
of metals and semiconductors in ultrahigh vacuum. (In addition to electronic SSs, there is an optical analogue on
the surface of photonic crystals5,6). However, on real interfaces, such states typically do not exist (we do not
consider the special SSs that appear only in a magnetic field and are associated with skipping orbits). General
criteria for the existence of Tamm-Shockley states have not been determined. What is clear is that these states are
associated with both the features of the bulk band structure and the details of the electronic structure of the surface
on the atomic scale. The important feature of intrinsic SSs is their ability to conduct electrical current. The high
conductivity of SSs can lead to qualitatively new physical effects. Therefore, studies of their transport properties are
currently of great interest. Other species of intrinsic SSs are related to the physics of topological insulators (TIs). In
recent years, TI studies have been the fastest-growing area of modern physics7,8. On the surface of a number of
crystals (such as Bi2Se3) that have modified Dirac band structures, a 2D surface band of massless Dirac fermions
(DFs) with a conical dispersion is formed. The cause of these bands is the existence of a special topological
invariant, which is determined solely by the peculiarities of the bulk band structure of the TI9. An intriguing feature
of these SSs is their transport properties: they are protected against backscattering by time-reversal symmetry,
which results in their high conductance of electric current. The energy spectrum of these SSs has been investigated
foremost by ARPES10–12. Moreover, manifestations of these SSs have also been found in transport measurements.
In refs 13, 14, an Aharonov-Bohm (AB) -type effect in the resistance of a TI – Bi2Se3 nanowire in a longitudinal
magnetic field was observed. The possibility of observing AB magneto-oscillations in samples with non-ring
geometries is related to the existence of conducting SSs, encircling the nanowire cross section15.

Thirty years ago, it became clear that narrow-gap semiconductors and semimetals with relativistic band
structures (such as Bi, BiSb, and PbTe) are convenient objects for the study of Tamm-Shockley SSs. The charge
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carriers in these crystals are now referred to as massive DFs. For these
crystals, the possibility of the formation of Tamm-Shockley-type SSs
with a conical massless Dirac spectrum on the surfaces of a certain
class was predicted16. In the model of ‘‘inversion heterojunction’’17,18,
the aforementioned specific class of surface can be attributed to the
near-surface inversion mass of the bulk DFs (see also ref. 19). We
emphasise that in this case, the bulk band structure does not exhibit
the topological invariant.

Thus, at present, theory predicts the existence of two types of
intrinsic SSs that are filled with massless DFs with conical spectra.
The first type of SS is referred to as a topological SS. The latter is a
type of Tamm-Shockley state that is referred to hereafter as a Tamm-
Dirac (TD) state. The first type of SS has been detected in transport
measurements, whereas the second has not. In 2D electron systems,
edge states (ESs) of topological or TD type are analogous to the
surface states. The present work is aimed at the detection of ESs of
TD type through direct transport experiments.

Two graphene systems were selected as convenient objects of
study, graphene on silicon oxide and graphene-on-graphite. Ideal
graphene realises a system of 2D massless DFs that has an energy
spectrum of the conical type and is doubly degenerate in the valley
quantum number20. The theory of ESs in graphene is the subject of
several theoretical works21,22. In fact, these works explored ESs of the
TD type, even if this fact was not explicitly stated. General graphene
half-planes with translational invariant edges were considered in refs
23, 24. It was predicted that the TD states spectrum in the reduced
valleys scheme consists of a pair of rays that emanate from the Dirac
point; see below for details. This spectrum is somewhat reminiscent
of the spectrum of the topological edge states in a 2D TI of CdTe-
CdHgTe type, although graphene is not a TI. It can be assumed that
this similarity is not accidental and that the transport properties of
these different edge states will also be similar. This assumption is the
basic motivation of this work.

Experiment
Some indications of the existence of ESs in graphene have been
demonstrated using the local STM technique25,26; see also the
Conclusions. However, until recently, there was no direct experiment
regarding their contribution to transport measurements. In the pre-
sent paper, we probe TD-type ESs by measuring the Aharonov-
Bohm (AB) effect. We consider that if the edge states--are conductive
in nature, the AB effect will appear as resistance magneto-oscillations
of graphene samples (graphene and graphene-on-graphite) that con-
tain a single nanohole in a perpendicular magnetic field H. The phase
and spectrum of the edge DFs that circulate around the hole will be
controlled by the magnetic flux through the hole. This effect can, in
principle, lead to an H-periodic contribution to the magnetoresis-
tance of the sample.

Nevertheless, until recently, the AB effect in graphene has been
observed only for ring-shaped samples27–35 or on a lattice of nano-
holes36, in which the effect of a single hole was masked by the pres-
ence of the lattice and the effects of the fictitious magnetic field that is
associated with elastic deformations37. Here, we observe for the first
time the AB effect on graphene and graphite structures with a single
nanohole. The latter permeates the entire structure.

We use nano-thin graphite samples to avoid shunting of the sur-
face graphene layers by the bulk. On the surface of graphite one often
finds graphene flakes weakly bound to the surface where interlayer
coupling is strongly suppressed. Several papers have noted the sig-
nificant contribution of the surface graphene layer to the quantum
oscillations of thin graphite. Thus, recent STM38, cyclotron res-
onance39 and Raman spectroscopy40,41 experiments have demon-
strated that the surface layer of graphite is often represented as a
graphene layer of an exceptional quality (‘‘graphene-on-graphite’’).
Therefore, we believe that the bulk of thin film of graphite contri-
butes only to the background resistance, but oscillating part of the

magnetoresistance is due to massless DFs in the top graphene layer. It
is in agreement with the following observation: the period of these
oscillations does not depend on the thickness of the graphite samples.

Large-area flakes of natural graphite with thicknesses of as little as
30 nm were cleaved from large-crystal graphite using adhesive tape,
and the adhesive layer was dissolved in acetone. In the second stage,
the crystal was thinned using soft plasma etching down to the atomic
thickness of approximately 1 nm42. Scanning Raman spectroscopy
indicated high uniformity of the thinned crystals over the lateral size
of hundreds of microns. For comparison, we also used commercial
graphene samples.

The samples were processed to form a Hall bar geometry.
Nanoholes were introduced using two independent techniques, (1)
the FIB technique with Ga-ions and (2) a helium ion microscope. We
used the FIB technique to fabricate small holes with diameters of as
little as d 5 35 nm (Fig. 1a). To produce the smallest hole, with
diameter d 5 20 nm, we used the helium ion microscope (Figs. 1b
and 1c).

Shubnikov-de Haas oscillations were clearly observed in the thin
graphite samples in weak fields. They exhibited inversed-field peri-
odicity with a period of 0.2 T21 and terminated at field strengths
greater than < 8 T35, when the energy of the first Landau level
exceeds the Fermi energy.

The results of resistance measurements performed in the magnetic
quantum limit (H . 8 T) are shown in Fig. 2 for a structure of thin
graphite with a single nanohole produced by FIB (Fig. 2a) and a
graphene structure with a single nanohole produced by the helium
ion microscope (Fig. 2b). The common feature of both structures was
the presence of field-periodic oscillations at high magnetic fields.

We compared the oscillation period for three single-nanohole sam-
ples of different diameters (see Table 1). Within the experimental
uncertainty of approximately 10%, we found that the oscillation period
DH for all samples corresponded to the flux quantisation in a hole

DHpD2=4~W0 ð1Þ

where W0 5 hc/e is the flux quantum and D is the diameter of the
hole. This result is expected if one considers that the main contri-
bution to the effect comes from the carriers with orbits that are
localised very near the edge of the hole. Such a periodicity was
observed for the first time in ring-shaped samples of graphene by
S. Russo et al.27. We can therefore attribute the oscillations to
quantum interference of massless DFs in a band of conducting edge
states.

An interesting question is why the orbits of the DFs that contribute
to the oscillations are so close to the edge. Actually, there are con-
ventional skipping cyclotron orbits of DFs around the nanohole.
However, they should not exhibit the interference effect. The reason
is that skipping orbits circle around the hole in the same direction
independent of valley index. In contrast, TD states in two valleys
revolve in opposite directions. This leads to emergence of resonances
in intervalley backscattering, which will be explained below, see sec-
tion ‘‘Theory and comparison with experiment’’. Therefore, only TD
states that exist close to the nanohole edge may cause the oscillations.

TD-type edge states can play the role of a ring that keeps carriers
near the edge of the hole. We can estimate the effective width of this
type of effective ring. Table 1 presents a comparison of the geomet-
rical size of the hole and the size of the effective 1D ring. One can see
that the radius of the effective ring is always greater the geometrical
radius and the difference is approximately 2 nm (within the experi-
mental accuracy). This value gives an experimental estimate of the
width of the effective ring that is associated with the edge states, i.e.,
the penetration depth of the edge states.

We now discuss the temperature dependence of the amplitude
of the oscillations. For experiments with graphene rings, the AB

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7578 | DOI: 10.1038/srep07578 2



oscillations have been observed only below the temperature range of
liquid helium35. The effect on nanoholes persists to much higher
temperatures. For example, Fig. 3a shows the oscillating component
of the magnetoresistance extracted from the data of Fig. 2b by sub-
tracting the monotonic part. One can see that oscillations persist up
to temperatures as high as 50 K. The four main peaks marked by the
upper arrows are clearly observed at field strengths of greater than
10 T, when the magnetic quantum limit is realised (i.e., the energy of
the first Landau level exceeds the Fermi energy). Their spacing DH
corresponds to the flux quantum per nanohole area, following Eq. 1.

Fig. 3b shows the temperature dependence of the height of one of
these peaks A observed at H 5 18 T. This figure clearly shows an

exponential dependence, A / exp(T/T0), with T0 < 17 K. Weak T-
damping of oscillations is consistent with the theory of edge states
that is discussed below.

The next important point revealed from the experiment is the exist-
ence of the relatively small peaks that are marked in Fig. 3a by upward
arrows. The two series of peaks can be considered as shifted by p series
with the same W0 periodicity or as series of oscillations with periodicit-
ies W0 and W0/2. We can extract the temperature dependence of this
type of oscillation only from the peak at H 5 10 T, which is more or
less clearly resolved. A comparison of the temperature dependence of
the peaks of these two different series demonstrates the same exponen-
tial dependence, thus indicating their common origin.

Figure 1 | Experimental realisation of graphene nanohole structures. Single hole produced by FIB (SEM image, a) and by the helium ion microscope

(SHIM image, b, c) in graphene (b) and thin graphite (a), (c).
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One can consider that the characteristic temperature T0 is related
to the typical energy of the edge state as kT0 5 E0 5 "v0/R. This
relationship gives an estimate for v0, v05 5 ? 106 cm/s. To compare
the temperature dependences for samples #2 and #3, we found that
for nanoholes of smaller diameter, the T0 value increases approxi-
mately proportional to 1/Reff.

Theory and comparison with experiment
The band structure of graphene consists of two almost-independent
cones, which are often called valleys. Let us colour them red and blue
for convenience, as indicated in Fig. 4. The electronic structure of
graphene is modified near an edge such that TD-type edge states can
appear. The wave function of carriers at the edge state is exponen-
tially localised near the interface. Neglecting the inter-valley scatter-
ing, one can characterise the edge23,24 by a real phenomenological
parameter a. This parameter is included in the boundary conditions
for the Weyl-Dirac equations describing the massless DFs. In fact,
real atomic structure of graphene edge around the hole is unknown.
In frames of our phenomenological approach23 the edge parameter a
should depend on the tangential DF coordinate along the edge, but
we simulate the edge by an average value of this parameter. This
approximation corresponds to an average dynamic of the edge states
circling around the hole. The value of a can be determined by com-
parison with experiment. However, a comparison with the micro-
scopic model calculations24 indicates that the value is small: jaj= 1.
Below, we will use this smallness.

For a half-plane graphene sample, the spectrum of the edge states
in a zero magnetic field is23,24:

Et(kjj)~t2av�hkjj, tkjj§0 ð2Þ

(see Fig. 4a). Here, kjj is the one-dimensional electron momentum
along the edge measured from the centres of the valleys, n 5 108 cm/s
is the effective speed of light in the bulk graphene spectrum, and the
index t 5 61 enumerates the valleys in graphene. For small a, the
localisation length of the edge state at the Fermi level is xT 5 1/jkrj5

1/jkbj. A comparison with experiment, which is presented in Table 1,
yields the estimate xT 5 2 nm.

Edge states also exist at the edges of a round hole (‘‘antidot’’) of
radius R in an infinite sheet of graphene. DFs trapped in the edge
states behave like electrons in a narrow ring (xT=R), which causes us
to expect manifestations of the Aharonov-Bohm effect. The finite
perimeter of the antidot leads to a quantisation of the tangential
component of the momentum. The discrete edge states are thus
characterised by half-integer total angular momenta jt (tjt . 0). In
the quasiclassical approach, the spectrum of these edge states is
obtained from (2) by substituting kjj for jt/R. Although these states
are quasistationary in the absence of a magnetic field, their finite
lifetime (due to their decay into the bulk states) is large in the actual
case of small a.

In a magnetic field H, the spectrum of the TD edge states in an
antidot has quasiclassical asymptotes at jaj= 1:

Et~t2a
�hv
R

(jtzW=W0{t=2) ð3Þ

where W 5 HpR2, W0 5 hc/e and the half-integer jt satisfies the
condition t(jt 1 W/W0) . 0.

Under the conditions of our experiment, the asymptotes given by
(3) are valid. Knowing xT 5 2 nm and the value of the field corres-
ponding to the last Shubnikov-de Haas oscillation, we can estimate
from Eq. (1) the absolute value of the parameter a to be jaj 5 0.05.

Bulk DFs move on trajectories in smooth random potential
(Fig. 4d). If the trajectory is close enough to the antidot, bulk DFs
can tunnel to the edge state at the antidot.Then a fermion in the edge
state moves periodically around the antidot (clockwise in one valley
and counterclockwise in another), thereby acquiring additional
Aharonov-Bohm phase in a magnetic field. Its wave function satisfies
the Bloch theorem. The spectrum of the edge states has a band
character, and the magnetic flux plays the role of an effective
quasi-momentum. Intra-valley scattering does not essentially change
this picture. Consider weak inter-valley scattering, which potentially
acts as a periodic potential. This leads to the formation of energy gaps

Figure 2 | Aharonov-Bohm resistance magneto-oscillations. Field-periodic resistance oscillations for (a) a thin graphite single nanohole (D 5 37 nm)

structure made by FIB at various temperatures: T 5 1.5, 4.2, 10, 15, 20, 30, 45 K (from top to bottom) and (b) a graphene structure with a single

nanohole made using a helium ion microscope, D 5 20 nm, T 5 4.2 K.

Table 1 | The table includes the following samples: #1 – graphene structure with a hole produced by HIM, #2 – thin graphite structure with a
hole produced by FIB, and #3 – thin graphite structure with a hole produced by HIM. The thicknesses of the thin graphite structures were
varied in the range of 30-50 nm. The parameter Deff was calculated using Eq. (1)

Sample No DH, T Dgeom., nm Deff., nm (Dgeom 2 Deff)/2, nm

#1 9.0 20 6 1 24 6 0.1 2.0 6 0.5
#2 3.2 37 6 2 41 6 0.2 2.0 6 1.0
#3 6.0 25 6 1 30 6 0.2 2.5 6 0.5
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in the band spectrum in Fig. 4b if the following conditions of inter-
valley (‘‘blue-red’’) resonance are fulfilled:

W

W0
~

jzzj{
2

ð4Þ

These resonances lead to a strong backscattering, which, in turn,
according to the Landauer formula, results in the negative peaks in
the conductance. Consider the magnetic quantum limit, when the
AB oscillations are observed. Then, the Fermi level is close to the
Dirac point, which fluctuates strongly in space because of the forma-
tion of ‘‘puddles’’ of electrons and holes43. If the spatial scale of these
fluctuations is comparable to the size of the antidot, and if the energy
scale is comparable to the energy of the perimetric quantisation of the
edge states, the resonance (4) does not depend on the position of the
Fermi energy and its temperature smearing. This qualitatively
explains the weak temperature dependence of the observed AB
oscillations.

As demonstrated above, the velocity of the edge Dirac fermions
extracted from the experimental temperature dependence of the
amplitude of oscillations is 20 times less than that of the bulk fer-
mions. This difference may be explained by considering the small-
ness of the edge parameter, jaj 5 0.05. This value is consistent with
the independent estimate of a made above.

With the magnetic field variation, the energies of the TD states in
the red valley E1(W, j1) periodically coincide with the TD energies in
the blue valley E2(W, j2) with W0/2 periodicity. Because j takes only
half-integer values, it follows from (4) that the flux W/W0 can accept
either integer or half-integer values. The first condition is responsible
for the main series of oscillations, whereas the second one results in
the complementary series.

Conclusions
In summary, we found that graphene-on-graphite and graphene
nanostructures that contain single nanoholes exhibit field-periodic
resistance oscillations with magnetic flux periodicity that is approxi-
mately equal to the flux quantum per nanohole area. This result is
considered to be the Aharonov-Bohm effect due to conducting states
localised near the edge of the hole. Such states, which are called
Tamm-Dirac states, are manifestation of Tamm-Shockley edge states
in two-dimensional systems of massless Dirac fermions. From the
experiment, we have obtained an estimate of the values of the
penetration depth and the velocity of these states. The proposed
mechanism of the oscillations is based on resonant inter-valley
back-scattering of the Tamm-Dirac states.

Recently, a nanohole array in nanoperforated graphene was
studied using gate voltage spectroscopy in the absence of a magnetic
field44. Discrete levels that are presumably related to the edge states
were observed. However, the most important distinctive feature of
the Tamm-Shockley states – the ability to conduct electrical current –
has not been directly demonstrated. Moreover, the effects of the
mutual influence of neighbouring nanoholes in the array do not have

Figure 3 | Temperature behaviour of magneto-oscillations for sample #2. (a) Oscillating part of the resistance at various temperatures. The downward

arrows indicate the main series, which corresponds toW#5 nW0 1 1/2 (where n is an integer), whereas the upward arrows mark an additional series W"5

nW0. (b) Temperature dependences of the oscillation amplitude for W/W0 5 5.5 (red line) and 3 (blue line).

Figure 4 | Edge states around the graphene nanohole. (a) The red and

blue rays are the Tamm-Dirac states contra-propagating along the

graphene semi-plane. There are two Tamm-Dirac states at the Fermi level:

kr in the red valley with positive velocity and kb in the blue valley with

negative velocity. The bulk continuum states are shadowed. (b) Spectrum

of the Tamm-Dirac states in an antidot for different j1, j2 as a function of

the magnetic flux that passes through the antidot area. The spectrum has a

band character, and the flow through the antidot plays a role of quasi-

momentum in the reduced zone scheme. The red (blue) colour

corresponds to the valley with t 5 11 (t 5 21), E0 < 2a"v/R. The red-

blue scattering results in band gaps (vertical bold lines). Gaps are formed

by anticrossing of red and blue edge states with angular momenta j1 and

j2. Gap values are denoted by the index j5(j11j2)/2. (c) Inter-valley

contribution to the conductivity in the reduced zone scheme. The peaks

correspond to resonant red-blue back-scattering. The two series of peaks

are connected by the passing of the magnetic flux through the centre and

boundary of the zone shown in panel (b). (d) Contra –propagating

trajectories of the orbit centres for different valleys for the zero Landau

level (N5 0) in a smooth-impurity potential. One of the orbits is close to

the antidot and can experience inter-valley back-scattering at the above-

mentioned values of the flux.
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an unambiguous interpretation. Therefore, the question of the origin
of the detected levels remained open.

In this study, we obtained the first direct evidence for band con-
duction of Tamm-Shockley-type edge states. In graphene, the
Tamm-Dirac edge states are populated by massless Dirac fermions,
the low temperature conductivity of which is metallic. The conduct-
ing properties of these non-topological states are similar to the prop-
erties of topological edge states in topological insulators that are
known in the literature. This analogy is apparently connected to
the similarity of the edge spectra of massless Dirac fermions in these
two different systems.

1. Shur, M. Physics of Semiconductor Devices (Prentice Hall, New Jersey, 1990).
2. Tamm, I. E. Uber eine mogliche Art der Elektronenbindung an

Kristalloberflachen. Phys. Z. Sowjetunion 1, 733–736 (1932).
3. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev.

56, 317–323 (1939).
4. Duke, C. B. Surface Science: The First Thirty Years [Duke, C. B. (ed.)] (North-

Holland, Amsterdam, 1994).
5. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals:

Molding The Flow Of Light (Princeton Univ. Press, New Jersey, 1995).
6. Vinogradov, A. P., Dorofeenko, A. V., Merzlikin, A. M. & Lisyansky, A. A. Surface

states in photonic crystals. Phys. Usp. 53, 243–256 (2010).
7. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulator. Rev. Mod. Phys. 82,

3045 (2010).
8. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod.

Phys. 83, 1057 (2011).
9. Fu, L. & Kane, C. L. Topological Insulators with Inversion Symmetry. Phys. Rev. B.

76, 045302 (2007).
10. Chen, Y. L. et al. Experimental Realization of a Three-Dimensional Topological

Insulator, Bi2Te3. Science 325, 178 (2009).
11. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single

Dirac cone on the surface 2009. Nature Phys. 5, 398 (2009).
12. Hsieh, D. et al. Observation of Unconventional Quantum Spin Textures in

Topological Insulators. Science 323, 919 (2009).
13. Peng, H. et al. Aharonov–Bohm interference in topological insulator

nanoribbons. Nat. Mater. 9, 225 (2010).
14. Xiu, F. et al. Manipulating surface states in topological insulator nanoribbons. Nat.

Nanotechnol. 6, 216 (2011).
15. Bardarson, J. H. & Moore, J. E. Quantum interference and Aharonov–Bohm

oscillations in topological insulators. Rep. Prog. Phys. 76, 056501 (2013).
16. Volkov, V. A. & Pinsker, T. N. Spin splitting of the electron spectrum in finite

crystals having the relativistic band structures. Sov. Phys. Solid State 23, 1022
(1981).

17. Volkov, B. A. & Pankratov, O. A. Two-dimensional massless electrons in an
inverted contact. JETP Lett. 42, 178 (1985).

18. Kusmartsev, F. V. & Tsvelik, A. M. Semimetallic properties of a heterojunction.
JETP Lett. 42, 257 (1985).

19. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398
(1976).

20. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183 (2007).
21. Nakada, K., Fujita, M. & Dresselhaus, M. S. The edge state in graphene ribbons:

Nanometer size effects and edge shape dependence. Phys. Rev. B. 54, 17954–17961
(1996).

22. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The
electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

23. Volkov, V. A. & Zagorodnev, I. V. Electrons near a graphene edge. Low Temp.
Phys. 35, 2–5 (2009).

24. van Ostaay, J. A. M., Akhmerov, A. R., Beenakker, C. W. J. & Wimmer, M. Dirac
boundary condition at the reconstructed zigzag edge of graphene. Phys. Rev. B 84,
195434 (2011).

25. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic
properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242
(2009).

26. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons.
Nature Phys. 7, 616–620 (2011).

27. Russo, S. et al. Observation of Aharonov-Bohm conductance oscillations in a
graphene ring. Phys. Rev. B. 77, 235404 (2007).

28. Huefner, M. et al. Investigation of the Aharonov-Bohm effect in a gated graphene
ring. Phys. Status Solidi B, 245, 2756–2759 (2009).

29. Wurm, J., Wimmer, M., Baranger, H. U. & Richter, K. Graphene rings in magnetic
fields: Aharonov-Bohm effect and valley splitting. Semicond. Sci. Technol. 25,
034003 (2010).

30. Huefner, M. et al. The Aharonov-Bohm effect in a side gated graphene ring. New.
J. Phys. 12, 043054 (2010).

31. Weng, L., Zhang, L., Chen, Y. P. & Rokhinson, L. P. Atomic force microscope local
oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107 (2008).

32. Yoo, J. S., Park, Y. W., Skakalova, V. & Roth. Shubnikov-de Haas and Aharonov
Bohm effects in a graphene nanoring structure. Appl. Phys. Lett. 96, 143112
(2010).

33. Smirnov, D., Schmidt, H. & Haug, R. G. Aharonov-Bohm effect in an electron-
hole graphene ring system. Appl. Phys. Lett. 100, 203114 (2012).

34. Nam, Y. et al. The Aharonov-Bohm effect in graphene rings with metal mirrors.
Carbon. 50, 5562–5568 (2012).

35. Schelter, J., Recher, P. & Trauzettel, B. The Aharonov-Bohm effect in graphene
rings. Sol. State Commun. 152, 1411–1419 (2012).

36. Shen, T. et al. Magnetoconductance oscillations in graphene antidot array. Appl.
Phys. Lett. 93, 122102 (2008).

37. de Juan, F., Cortijo, A., Vozmediano, M. A. H. & Cano, A. Aharonov-Bohm
interferences from local deformations in graphene. Nature Phys. 7, 810 (2011).

38. Li, G., Luicann, N. & Andrei, E. Y. Scanning Tunneling Spectroscopy of Graphene
on Graphite. Phys. Rev. Lett. 102, 176804 (2009).

39. Neugebauer, P., Orlita, M., Faugeras, C., Barra, A.-L. & Potemski, M. How Perfect
Can Graphene Be? Phys. Rev. Lett. 103, 136403 (2009).

40. Faugeras, C. et al. Magneto-Raman Scattering of Graphene on Graphite: Electron
Scattering and Phonon Excitations. Phys. Rev. Lett. 107, 036807 (2011).

41. Kuhne, M. et al. Polarization-resolved magneto-Raman scattering of graphene-
like domains on natural graphite. Phys. Rev. B. 85, 195406 (2012).

42. Latyshev, Yu, I. et al. Graphene production by etching natural graphite single
crystals in a plasma-chemical reactor based on beam-plasma discharge. Doklady
Physics. 57, 1–3 (2012).

43. Das Sarma, S., Adam, S., Hwang, E. & Rossi, E. Electronic transport in two-
dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).

44. Latyshev, Yu, I. et al. Orbital quantization in a system of edge Dirac fermions in
nanoperforated graphene. JETP Lett. 98, 214 (2013).

Acknowledgments
The first author, Prof. Yuri Latyshev passed away in Moscow on 10th June 2014. The present
publication is devoted to his memory. The work has been supported partly by RFBR and the
associated International Laboratory between the Neel Institute (France) and the Kotelnikov
Institute (Russia).

Author contributions
Yu.I.L. and V.A.V. devised the project. Yu.I.L. and A.P.O. designed and fabricated the
single-hole nanostructures with FIB. O.F.V. and Yu.V.P. fabricated the single-hole
nanostructures with the helium ion microscope. Yu.I.L. and A.P.O. performed
measurements and analysed the results. P.M. supported the experiments performed at the
High Magnetic Field Laboratory in Grenoble. V.A.V., I.V.Z. and V.V.E. provided
theoretical support. Yu.I.L. and V.A.V. wrote the paper. All authors contributed to
discussions.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Latyshev, Y.I. et al. Transport of Massless Dirac Fermions in
Non-topological Type Edge States. Sci. Rep. 4, 7578; DOI:10.1038/srep07578 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7578 | DOI: 10.1038/srep07578 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Title
	Figure 1 Experimental realisation of graphene nanohole structures.
	Figure 2 Aharonov-Bohm resistance magneto-oscillations.
	Table 
	Figure 3 Temperature behaviour of magneto-oscillations for sample &num;2.
	Figure 4 Edge states around the graphene nanohole.
	References

