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Short chain fatty acids-producing and mucin-degrading
intestinal bacteria predict the progression of early Parkinson’s
disease
Hiroshi Nishiwaki1, Mikako Ito 1, Tomonari Hamaguchi1, Tetsuya Maeda 2, Kenichi Kashihara3, Yoshio Tsuboi 4, Jun Ueyama5,
Takumi Yoshida6, Hiroyuki Hanada 7, Ichiro Takeuchi6,7, Masahisa Katsuno 8, Masaaki Hirayama 5✉ and Kinji Ohno 1✉

To elucidate the relevance of gut dysbiosis in Parkinson’s disease (PD) in disease progression, we made random forest models to
predict the progression of PD in two years by gut microbiota in 165 PD patients. The area under the receiver operating
characteristic curves (AUROCs) of gut microbiota-based models for Hoehn & Yahr (HY) stages 1 and 2 were 0.799 and 0.705,
respectively. Similarly, gut microbiota predicted the progression of Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) III scores in an early stage of PD with AUROC= 0.728. Decreases of short-chain fatty acid-producing genera,
Fusicatenibacter, Faecalibacterium, and Blautia, as well as an increase of mucin-degrading genus Akkermansia, predicted accelerated
disease progression. The four genera remained unchanged in two years in PD, indicating that the taxonomic changes were not the
consequences of disease progression. PD patients with marked gut dysbiosis may thus be destined to progress faster than those
without gut dysbiosis.
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INTRODUCTION
Parkinson’s disease (PD) is a long-term neurodegenerative disease
that exhibits not only motor symptoms but also non-motor
symptoms1. PD is attributed to the loss of dopaminergic neurons
in the substantia nigra. The loss is caused by abnormal
aggregation of α-synuclein fibrils (Lewy bodies) in the neuronal
cells. Lewy bodies also exist in the lower brainstem and the
cerebral cortex2, the olfactory bulb3, the salivary glands4, the skin5,
the autonomic nervous system6, and the intestine4,7,8. The Braak’s
breakthrough paper and the following studies indicated that
abnormal aggregation of α-synuclein fibrils starts in the intestinal
nerve plexus and gradually moves up to the substantia
nigra2,3,9,10. Constipation, idiopathic rapid eye movement sleep
behavior disorder (iRBD), and depression can be frequently
observed about 20, 10, and 5 years before the development of
motor symptoms in PD1, which is consistent with the Braak’s
hypothesis. In rodent models, gastrointestinal injection of
pathogenic α-synuclein causes propagation of α-synuclein aggre-
gates to brain via the vagus nerve11–14 and neurodegeneration of
the substantia nigra14. In common marmoset, pathologic α-
synuclein transmits within the brain and can be neurotoxic15.
Similarly, in baboon monkey, pathogenic α-synuclein transmits
bidirectionally between the enteric and the central nervous
systems even in the absence of α-synuclein pathology in the
vagus nerve16.
Epidemiological studies indicate that older age, male, cognitive

impairment, and postural instability/gait-dominant type of PD are
predictive of rapid progression of PD17–21. A single machine-
learning model to predict the progression of PD has been
reported, and will be addressed in detail in the discussion22.

As far as we know, 19 studies in PD23–41 and one study in iRBD42

have been reported on gut microbiota. Another study analyzed
gut microbiota in both PD and iRBD43. We showed by meta-
analysis of gut microbiota in five countries that genus Akkermansia
was increased and genera Roseburia and Faecalibacterium were
decreased in PD38. In contrast, in a meta-analysis of iRBD in
Germany and Japan, genus Akkermansia was increased, whereas
genera Roseburia and Faecalibacterium were not decreased42.
Akkermansia degrades the intestinal mucin layer,44,45 and is
predicted to increase the intestinal permeability, which has been
reported in PD by us23 and others46. Genera Roseburia and
Faecalibacterium produce short chain fatty acids (SCFAs).
Decreased SCFAs are potentially linked to activated neuroinflam-
mations in PD47,48. In Finland, genus Prevotella was decreased in
PD, and PD patients with lower relative abundance of genus
Prevotella tended to progress faster in two years24,41. In our meta-
analysis of PD in five countries, however, significant decrease of
genus Prevotella was observed in Finland, but not in United States,
Russia, Germany, or Japan38. Similarly, genus Prevotella was not
decreased in iRBD in Germany or Japan42,43. We here examined
whether gut microbiota could predict the progression of PD in
two years.

RESULTS
Clinical features of PD patients at years 0 and 2
We collated clinical features of PD patients at years 0 and 2
(Supplementary Table S1). Total MDS-UPDRS, HY stage, levodopa/
carbidopa dosage, walking and balance (MDS-UPDRS 2.12),
freezing (MDS-UPDRS 2.13), gait (MDS-UPDRS 3.10), freezing of
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gait (MDS-UPDRS 3.11), and postural stability (MDS-UPDRS 3.12)
were significantly different between years 0 and 2.
We also collated clinical features (Table 1), as well as clinical

features in the stable and deteriorated groups (Supplementary
Table S2), for each HY stage at year 0. Fifteen out of 35 features
were significantly different between HY stages 1, 2, and 3. The
significant difference was observed only in reasonable features
like age, disease duration, and MDS-UPDRS scores.

Construction of random forest models to predict whether HY
stages are advanced in two years or not
We divided PD patients at HY stages 1–3 (n= 165), 1 (n= 24), 2
(n= 85), and 3 (n= 56) at year 0 into the deteriorated and
stable groups. The deteriorated group had an increased HY
stage, whereas the stable group had an unchanged or
decreased HY stage. We made random forest models to
differentiate the deteriorated and stable groups for HY stages
1–3, 1, 2, and 3 at year 0 using bacterial features, and compared
the models with those using clinical features. Generations of
random forest models by nested cross-validation and cross-
validation are indicated in detail in Methods, and are illustrated
in Fig. 1. We first examined the validity of our modeling strategy
by nested cross-validation with recursive feature elimination
(RFE), which should have no leakage (type 1 circularity49)
between the training and test datasets.
The nested cross-validation for HY stages 1–3 at year 0 yielded

AUROCs of 0.548 (95% confidence interval: 0.456–0.641) in
microbiota-based models (red line in Fig. 2a) and 0.559
(0.464–0.654) in clinical feature-based models (blue line in Fig.
2a). Thus, both bacterial and clinical features failed to make decent
models. We thus constructed models for each HY stage.
For HY stage 1 at year 0, the nested cross-validation yielded

AUROCs of 0.799 (95% confidence interval: 0.615–0.982) in
microbiota-based models (red line in Fig. 2d) and 0.549
(0.307–0.791) in clinical feature-based models (blue line in Fig. 2d).
In the nested cross-validation, the microbiota-based model yielded
75% sensitivity and 83% specificity, whereas the clinical feature-
based model failed to make a decent model (Fig. 2d). Seven
statistical measures including sensitivities and specificities to indicate
the performance of each model were all better with the microbiota-
based models than with the clinical feature-based models (Table 2).
As the nested cross-validation did not provide us with essential
features that determined the progression of PD, we made models by
recursively eliminating features and evaluated them by cross-
validation (Fig. 1). Recursive feature elimination with cross-
validation showed that maximum AUROCs were 0.868
(0.719–1.000) at two genera (Fusicatenibacter and Faecalibacterium)
in microbiota-based models (red line in Fig. 2e, f) and 0.639
(0.402–0.876) at two features (BMI and age) in clinical feature-based
models (blue line in Fig. 2e, f). AUROC was as high as 0.861
(0.707–1.000) even when a model was generated using genus
Fusicatenibacter alone (green dot in Fig. 2e and green line in Fig. 2f).
The microbiota-based model with Fusicatenibacter and Faecalibacter-
ium yielded 83% sensitivity and 83% specificity, and Fusicatenibacter-
based model yielded 92% sensitivity and 75% specificity (Fig. 2f). In
contrast, the clinical feature-based model with BMI and age yielded
75% sensitivity and 67% specificity (Fig. 2f).
For HY stage 2 at year 0, the nested cross-validation yielded

AUROCs of 0.705 (0.592–0.818) in microbiota-based models (red
line in Fig. 2g) and 0.719 (0.602–0.835) in clinical feature-based
models (blue line in Fig. 2g). Seven statistical measures to indicate
the performance of each model were slightly better with the
clinical feature-based models than with the microbiota-based
models except for specificity (Table 2). Recursive feature elimina-
tion with cross-validation showed that maximum AUROCs were
0.793 (0.692–0.895) at seven genera (Lactobacillus, Blautia,
Fusicatenibacter, Anaerostipes, Ruminococcus gnavus group,

Akkermansia, Bifidobacterium) in microbiota-based models (red
line in Fig. 2h, i) and 0.783 (0.682–0.883) at ten features in clinical
feature-based models (blue line in Fig. 2h, i).
For HY stage 3 at year 0, the nested cross-validation yielded

AUROCs of as low as 0.509 (0.301–0.719) in microbiota-based
models (red line in Fig. 2j) and 0.772 (0.619–0.925) in clinical
feature-based models (blue line in Fig. 2j). Thus, microbiota-based
models were dependable for the early stage of PD, but clinical
feature-based models became reliable with the advancement of PD.
We also made random forest models using both bacterial and

clinical features to examine whether some clinical features were as
essential as bacterial features for HY stage 1 (Supplementary Fig.
S1, Supplementary Table S3). Step-wise feature elimination for HY
stage 1 revealed that the combined feature-based models and the
gut microbiota-based models (black solid line and red dotted line
in Supplementary Fig. S1b, respectively) became identical, when
the number of features became six or less. Thus, all clinical
features were eliminated in the combined feature-based models,
when the number of features became six or less. This indicates
that none of the 31 clinical features were as predictive as the
remaining six bacterial features. Two bacterial features made the
maximum AUROC (an arrow in Supplementary Fig. S1b), and are
indicated in Supplementary Table S3.
In contrast, clinical features constituted two out of nine

essential features for HY stage 2, and three out of six essential
features for HY stage 3 (Supplementary Table S3). This indicates
that some clinical and some bacterial features were similarly
essential to predict the progression of PD for HY stages 2 and 3.
However, nested cross-validation showed that the combined
models were not as good as either microbiota-based models or
clinical feature-based models for each HY stage, which was likely
due to the inclusion of a large number of non-informative
features. In contrast to nested cross-validation (Supplementary Fig.
S1d, g), cross-validation showed that the combined models
outperformed both microbiota-based models and clinical
feature-based models (Supplementary Fig. S1e, f, h, i) for HY
stages 2 and 3, which indicates the requirement of nested cross-
validation to examine the feasibility of modeling strategies.
We next asked whether gut microbiota is able to predict

changes of MDS-UPDRS III, representing objective motor symp-
toms, in two years. As gut microbiota was able to predict the
progression of PD at the early stage of PD, we divided PD patients
in half using MDS-UPDRS III to make cohorts of the early and
advanced stages of PD patients. We then sorted the rates of
change of MDS-UPDRS III in two years in ascending order. The top
and bottom halves of patients constituted the stable and
deteriorated groups, respectively. Nested cross-validation of
microbiota-based models for the early and advanced PD patients
yielded AUROCs of 0.728 (95% confidence interval: 0.601–0.854)
and 0.586 (95% confidence interval: 0.449–0.723), respectively.
Cross-validation of microbiota-based models identified four
essential genera. Genera Faecalibacterium, Dorea, Ruminococcus
gnavus group were decreased, while genus Bacteroides was
increased, in the deteriorated group. In HY-based models, genera
Faecalibacteirum and Ruminococcus gnavus group constituted
essential features in HY stage 1 and 2, respectively. Genera
Faecalibacterium and Dorea are SCFA-producing bacteria. Identi-
fication of the early stage of PD and evaluation of the disease
progression both by MDS-UPDRS III similarly showed that gut
microbiota predicted the progression of PD in two years for the
early stage of PD.
As we evaluated all PD patients in outpatient clinics, MDS-

UPDRS III scores were obtained in the “on” state. We estimated
MDS-UPDRS III scores in the “off” state by adding 7.3, 8.5 and 6.1
for patients taking levodopa only, levodopa and any other
medications, and dopamine agonists without levodopa according
to a report by Bordelon and colleagues50. Nested cross validation
with the adjusted MDS-UPDRS III scores in the “off” state yielded
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Table 1. Clinical and demographic features of PD patients at Hoehn & Yahr stages 1, 2, and 3 at year 0 used to generate random forest models.

Hoehn & Yahr 1 (n= 24)a Hoehn & Yahr 2 (n= 85)a Hoehn & Yahr 3 (n= 56)a P-valueb

# Stable group 12 (50.0%) 56 (65.9%) 44 (78.6%) *0.035

Age (years) 66.3 ± 9.0 65.9 ± 9.3 70.4 ± 6.7 *9.2E-3

# Females 19 (79.2%) 46 (54.1%) 31 (55.4%) 0.075

Body mass index (BMI) 20.9 ± 2.8 22.2 ± 3.0 21.1 ± 3.2 0.054

# Constipation (≤twice a week) 7 (29.2%) 26 (30.6%) 25 (44.6%) 0.19

Stool frequency/week 4.5 ± 2.3 5.9 ± 5.8 4.0 ± 3.1 0.16

Disease duration (years) 3.9 ± 3.2 5.2 ± 4.0 10.0 ± 5.7 *2.4E-6

Total MDS-UPDRS 31.5 ± 11.9 43.2 ± 15.9 58.5 ± 20.8 *1.0E-9

(range 11–68) (range 12–92) (range 17–115)

MDS-UPDRS III 16.1 ± 7.6 23.0 ± 10.5 31.4 ± 12.1 *3.6E-8

(range 4–42) (range 4–56) (range 5–61)

# Proton pump inhibitor 2 (8.3%) 13 (15.3%) 7 (12.5%) 0.74

# H2 blocker 1 (4.2%) 2 (2.4%) 4 (7.1%) 0.36

# Antihyperlipidemic drug 2 (8.3%) 17 (20.0%) 8 (14.3%) 0.38

# Angiotensin II receptor blocker 1 (4.2%) 8 (9.4%) 11 (19.6%) 0.12

# Calcium channel blocker 3 (12.5%) 14 (16.5%) 11 (19.6%) 0.75

Levodopa/Carbidopa (mg) 192 ± 163 286 ± 143 446 ± 298 *8.6E-7

# COMT inhibitor 8 (33.3%) 20 (23.5%) 28 (50.0%) *5.3E-3

# Anticholinergic agent 1 (4.2%) 9 (10.6%) 4 (7.1%) 0.64

# Dopamine agonist 11 (45.8%) 56 (65.9%) 39 (69.6%) 0.13

# MAO-B inhibitor 11 (45.8%) 17 (20.0%) 18 (32.1%) *0.030

# Amantadine 1 (4.2%) 12 (14.1%) 16 (28.6%) *0.016

# Smoking (never, past, present) 20 (83.3%), 2 (8.3%), 2 (8.3%) 69 (81.2%), 12 (14.1%), 4 (4.7%) 46 (82.1%), 9 (16.0%), 1 (1.8%) 0.62

# Coffee (none, 1 or 2/week, 3 ~ 5/week, 6 or 7/
week)

1 (4.2%), 3 (12.5%), 3 (12.5%),
17 (70.8%)

16 (18.8%), 22 (25.9%), 12
(14.1%), 35 (41.2%)

14 (25%), 11 (19.6%), 8
(14.3%), 23 (41.1%)

0.15

Walking and balance (MDS-UPDRS 2.12) 0.708 ± 0.455 0.988 ± 0.728 1.66 ± 1.04 *5.9E-7

(range 0–1) (range 0–3) (range 0–4)

Freezing (MDS-UPDRS 2.13) 0.375 ± 0.563 0.600 ± 0.755 1.23 ± 1.07 *1.1E-5

(range 0–2) (range 0–2) (range 0–4)

Gait (MDS-UPDRS 3.10) 0.500 ± 0.500 0.976 ± 0.782 1.52 ± 0.886 *6.1E-7

(range 0–1) (range 0–3) (range 0–4)

Freezing of gait (MDS-UPDRS 3.11) 0 ± 0 0.165 ± 0.456 0.625 ± 0.836 *3.1E-6

(range 0–0) (range 0–2) (range 0–4)

Postural stability (MDS-UPDRS 3.12) 0.750 ± 0.968 0.506 ± 0.806 2.16 ± 1.03 *2.2E-16

(range 0–3) (range 0–3) (range 0–4)

Tremor (MDS-UPDRS 2.10) 0.542 ± 0.763 0.918 ± 0.785 1.00 ± 0.964 0.085

(range 0–3) (range 0–3) (range 0–3)

Postural tremor of the hands (MDS-UPDRS 3.15) 0.625 ± 0.633 0.894 ± 1.12 1.16 ± 1.08 0.098

(range 0–2) (range 0–6) (range 0–4)

Kinetic tremor of the hands (MDS-UPDRS 3.16) 0.833 ± 0.898 0.965 ± 1.30 1.39 ± 1.45 0.10

(range 0–3) (range 0–6) (range 0–4)

Rest tremor of the hands (MDS-UPDRS 3.17) 0.625 ± 0.949 0.482 ± 1.04 0.643 ± 1.33 0.68

(range 0–3) (range 0–6) (range 0–5)

Rest tremor of the legs (MDS-UPDRS 3.17) 0.417 ± 0.862 0.188 ± 0.642 0.35 ± 0.785 0.40

(range 0–3) (range 0–4) (range 0–4)

Rest tremor of the lip/jaw (MDS-UPDRS 3.17) 0 ± 0 0.0353 ± 0.323 0.0893 ± 0.391 0.47

(range 0–0) (range 0–3) (range 0–2)

Constancy of rest tremor (MDS-UPDRS 3.18) 0.708 ± 1.10 0.659 ± 1.18 0.571 ± 1.13 0.86

(range 0–4) (range 0–4) (range 0–4)

MMSE 29.3 ± 0.89 28.5 ± 2.3 27.6 ± 2.5 *6.6E-3

(range 27–30) (range 16–30) (range 19–30)

aMean and SD are indicated when applicable.
bEither analysis of variance (ANOVA) or Fisher’s exact test is applied.
*P < 0.05.

H. Nishiwaki et al.

3

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2022)    65 



AUROC of 0.717 (0.550–0.883) and 0.571 (0.444–0.697) for the early
stage and the advanced stages of PD, respectively, which were
similar to those obtained with the “on” state. We examined
whether combinations of medications, as well as levodopa-
equivalent daily doses (LEDDs), were different between the stable
and deteriorated groups at years 0 and 2. We found that
combinations of medications were not statistically different
between the stable and deteriorated groups at years 0 and 2
(Supplementary Table S4). Although the rate of change of LEDDs
in two years was marginally higher in the stable group than the
deteriorated group, no statistical significance was observed
(Supplementary Fig. S2).

Differences of taxonomic relative abundances between the
deteriorated and stable groups
We collated the feature importance and p-value of bacterial and
clinical features that attained a maximum AUROC for HY stages 1,
2, and 3 in Supplementary Tables S5 and S6, respectively. Again,
microbiota-based models for HY stages 1 and 2, but not HY stage
3, were dependable. Two and seven essential genera made
dependable models for HY stages 1 and 2, respectively, while
genus Fusicatenibacter was shared between HY stages 1 and 2. To
ask why essential genera were different between HY stages 1 and
2, we plotted relative abundances of the eight genera in the
deteriorated and stable groups for each of HY stages 1, 2, and 3

(Fig. 3). We found that these genera were changed in the same
direction in the stable and deteriorated groups for HY stages 1, 2,
and 3, except for genus Bifidobacterium in HY stage 1. The same
genera were likely to have the same effects on the progression of
PD independent of HY stages, but the effect size of each genus
was different from HY stage to HY stage. It was also interesting to
note that Fusicatenibacter, Faecalibacterium, Blautia, and Akker-
mansia (green letters in Fig. 3) were significantly different between
controls and PD in our data in our previous analysis38.

Change of relative abundances of four genera in two years
Plots of the four genera, Fusicatenibacter, Faecalibacterium, Blautia,
and Akkermansia, at years 0 and 2 in the deteriorated group
showed that all the four genera remained unchanged in two years
(Fig. 4a, c, e, g). Additionally, plots of these four genera in the
course of progression of α-synucleinopathy showed that Akker-
mansia becomes higher with disease progression, whereas
Fusicatenibacter, Faecalibacterium and Blautia become lower with
disease progression, with statistically significant monotonous
trends for all the four genera (Fig. 4b, d, f, h). No change of the
four genera even in the deteriorated group and the change of the
four genera with disease progression suggest that patients
harboring dysbiosis of the four genera progress more rapidly
than those without dysbiosis.

PD Patients 
with stool samples and

clinical features

Two-year follow-up

PD patients
with stool samples

Year 0

Year 2

1) Validation of modeling strategy
by nested cross-validation

2) Determination of essential features
               by cross-validation

Test dataset

Validation dataset

PD patients with clinical features

n = 224

n = 165*

n = 104†

Generation of gut microbiota-based models 
to predict PD progression (Figs. 2 and 3) 

Analysis of temporal profiles 
of gut microbiota (Fig. 4)

Feature elimination and evaluation of the model

Feature elimination 

Year 0

Year 2

No leakage between datasets
Essential features cannot be determined

Marginal leakage between datasets
Essential features can be determined

Uq
ni

ue
 lo

op

Ou
te

r l
oo

p
In
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Evaluation of the model

Training dataset

Training dataset

Training dataset

Test dataset

*Clinical features were obtained at year 2 from 17
additional PD patients at HY stages 4 and 5, but
were excluded from modeling. 
†Fecal samples were obtained at year 2 from 9
additional PD patients at HY stages 4 and 5, but
were excluded from analysis of temporal profiles. 

Fig. 1 Illustration of workflows of this study. Fecal samples and clinical features were obtained at year 0 in 224 PD patients. At year 2, clinical
features were evaluated in 165 PD patients, and fecal samples were obtained in 104 PD patients. Although clinical features were evaluated at
year 2 in 17 additional PD patients (a total of 182 patients), they were excluded from making prediction models (see Materials and Methods).
Similarly, fecal samples were obtained at year 2 in nine additional PD patients (a total of 113 patients), but they were excluded from analysis of
temporal profiles of gut microbiota. Bacterial and clinical features at year 0, as well as clinical features at year 2, in 165 PD patients were used
for Figs. 2 and 3. Gut microbiota at years 0 and 2 in 104 PD patients were used for Fig. 4. Construction of prediction models was constituted of
two steps: (1) nested cross-validation has no leakage between the training and test datasets, and is for evaluation of the modeling strategy,
and (2) cross-validation has marginal leakage between the training and test datasets, and is for determination of essential features to predict
the progression of PD. Recursive feature elimination (FRE) was employed in both steps. AUROCs were calculated in both steps, but AUROC of
the nested cross-validation should be dependable because of lack of potential leakage.
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DISCUSSION
We examined whether gut microbiota was able to predict the
progression of PD in two years, and asked whether gut microbiota
predicted the progression of PD more precisely than clinical
features. We first scrutinized whether our modeling approach was

appropriate or not by nested cross-validation, in which there
should be no leakage between the training and test datasets (Fig.
1). Nested cross-validation showed that bacterial features pre-
dicted the progression of PD with AUROC= 0.799 for HY stage 1,
and the efficiency decreased for HY stages 2 and 3 (Fig. 2 and
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Table 2). Bacterial features similarly predicted the progression of
PD evaluated by MDS-UPDRS III with AUROC= 0.728 for the early
stage of PD. Similarly, bacterial features predicted the progression
of PD evaluated by MDS-UPDRS III in the estimated “off” state with
AUROC= 0.717 for the early stage of PD. However, lack of the
MDS-UPDRS III in the “off” state in our patients was a limitation of
our analysis. In contrast to gut microbiota-based models, nested
cross-validation showed that clinical features predicted the
progression of PD with AUROC= 0.772 for HY stage 3, and the
efficiency decreased for HY stages 2 and 1 (Fig. 2 and Table 2).
Thus, bacterial and clinical features predicted the progression of
PD at the early and medium stages of PD, respectively.
Two and seven genera were essential to predict the disease

progression for HY stages 1 and 2, respectively, and only genus
Fusicatenibacter was shared between HY stages 1 and 2 (Fig. 3 and
Supplementary Table S5). Plots of the relative abundances of the
eight genera showed that seven out of the eight genera had the
same effects on the progression of PD for HY stages 1, 2, and 3
(Fig. 3). The difference in the effect sizes of each genus for
different HY stages was likely to have given rise to different
essential genera for each HY stage.
Clinical features were better than bacterial features in predicting

the progression of PD for HY stage 3, which was likely because at
HY stage 1 all PD patients exhibited minimal and similar clinical
phenotypes, and clinical features were not informative enough to
predict the prognosis. In contrast to HY stage 1, PD patients at HY
stage 3 exhibited widely variable phenotypes from infrequent
episodes of toppling down to marked difficulty in walking. Among
a total of 12 essential clinical features to predict the prognosis of
PD for HY stages 1, 2, and 3 (Supplementary Table S6), six features
(age, MMSE, tremor, postural instability, walking and balance, and
gait) were previously reported to be associated with the
progression and the mortality rate of PD in two original
articles18,21 and a review article summarizing 27 original articles17.
Two features (disease duration and levodopa dosage) were also
predictive of the progression and the mortality rate of PD in some
but not in all reports17,18,21. The remaining four features (BMI,
COMT inhibitor, kinetic tremor of hands, and stool frequency) have
not been analyzed in association with the progression and the
mortality rate of PD to the best of our knowledge. Both previous
studies17–21 and our current study point to the notion that tremor-
dominant type of PD progresses more slowly than postural
instability/gait-dominant type of PD.
A machine-learning model was recently reported to predict the

prognosis of PD using clinical features, which was aimed at
predicting the progression of total MDS-UPDRS in two or four
years22. AUROC of their model was 0.7022. The important features
were autonomic dysfunction, mood impairment, anxiety, iRBD,
cognitive decline, and memory impairment22. MMSE in our model
for HY stage 2, and cognitive decline and memory impairment in a
model for total MDS-UPDRS22, were the only important features
shared between the two models. Lack of shared features may be
accounted for by the differences in the number of features: 601
features in their model vs 31 features in our model.
After assuring the validity of our modeling strategy by nested

cross-validation, we determined essential bacterial features by cross-
validation with RFE (Fig. 1). For HY stage 1, the best model to predict

the progression of PD was constructed by two genera (Fusicateni-
bacter and Faecalibacterium) (Supplementary Table S5). Similarly, for
HY stage 2, the best model was constructed by seven genera
including Fusicatenibacter and Blautia (Supplementary Table S5).
These three genera (Fusicatenibacter, Faecalibacterium, and Blautia)
are SCFA-producing bacteria. Faecalibacterium was decreased in PD
across countries in meta-analyses by us38 and others51. Similarly,
Fusicatenibacter and Blautia were decreased in PD except for
Germany in meta-analyzes by us38 and others51. Reduced abun-
dances of these genera were thus hallmarks of rapid progression in
the early stage of PD, as well as hallmarks of PD. As stated in the
introduction, decreased SCFAs are potentially associated with
abnormal activation of neuroinflammations in the brain47,48. In
addition, increased genus Akkermansia also predicted the progres-
sion of PD for HY stage 2 in our model (Supplementary Table S5). In
contrast, Akkermansia is protective against ALS52 and epilepsy53 in
mouse models, as well as diabetes mellitus54–56 and obesity57–60 in
humans. In a mouse model of ALS, nicotinamide produced by
Akkermansia improves motor symptoms52. In a mouse model of
epilepsy, ketogenic-diet increases Akkermansia, which inhibits seizure
by decreasing gamma-glutamylated amino acids in the colon
lumen53. As epidemiological studies indicate that diabetes mellitus
increases a risk of PD 1.85-folds61, Akkermansia should decrease a risk
of PD by normalizing glucose metabolisms54–56. We, however,
showed that Akkermansia was rather associated with the develop-
ment and progression of PD. Akkermansia-mediated improvement in
glucose metabolisms may have no effect on the prevention of the
development of PD by unknown mechanisms. Akkermansia thickens
the mucin layer of mice when fed with a high fat diet45. On the other
hand, Akkermansia degrades the mucin layer in mice when fed with
fiber-free diet44. Similarly, Akkermansia induces intestinal inflamma-
tion and increases intestinal permeability by possibly generating
hydrogen sulfide62. The intestinal environment of PD patients is likely
to be similar to the latter situation since expression of the tight
junction protein, occludin, is decreased in PD63, and intestinal
permeability is increased in PD23,46. The association of pesticides and
herbicides with PD has been repeatedly reported in 440 original
epidemiological studies and 69 review articles64. The increased
intestinal permeability might have led to exposure of the intestinal
nerve plexus to pesticides/herbicides and other toxins. Alternatively,
increased intestinal permeability may enhance the intestinal
oxidative stress, as observed in increased intestinal staining for
nitrotyrosine in PD patients46, which may potentiate the formation of
α-synuclein fibrils. Increased Akkermansia is thus likely to have
substantial effects on the development and progression of PD, but
about 42% of PD patients had no intestinal Akkermansia in our
cohort38. PD in patients without Akkermansia is likely to be mediated
by SCFA-producing or other unrecognized bacteria, or not by
dysbiosis of gut microbiota.
Although we obtained stool samples in 50.4% of PD patients at

year 2, we unexpectedly observed that relative abundances of four
genera (Fusicatenibacter, Faecalibacterium, Blautia, and Akkermansia)
remained unchanged in two years even in the deteriorated group
(Fig. 4a, c, e, g). Nevertheless, we observed that genus Akkermansia
was increased with the progression of α-synucleinopathy, whereas
genera Fusicatenibacter, Faecalibacterium, and Blautia were decreased
with the progression (Fig. 4b, d, f, h). Thus, increased Akkermansia,

Fig. 2 Validation of modeling strategy by nested cross-validation and determination of essential features by cross-validation. a, d, g, and
j ROC curves of nested cross-validation of random forest models for HY stages 1–3 (a), 1 (d), 2 (g), and 3 (j) at year 0. Red and blue solid lines
represent models constructed by bacterial and clinical features, respectively. The optimal point by Youden index is indicated by a dot with the
specificity and sensitivity in parentheses. b, e, h, and k AUROCs by leave-one-out cross-validation of random forest models for HY stages 1–3
(b), 1 (e), 2 (h), and 3 (k) at year 0, while features were recursively eliminated. An arrow points to the maximum AUROC with the number of
features. c, f, i, and l ROC curves of leave-one-out cross-validation of random forest models at the maximum AUROC for HY stages 1–3 (c), 1 (f),
2 (i), and 3 (l) at year 0. The optimal point by Youden index is indicated by a dot with the specificity and sensitivity in parentheses. Green ROC
curve in f represents a model predicted by Fusicatenibacter alone, and its AUROC is plotted in green in e.

H. Nishiwaki et al.

6

npj Parkinson’s Disease (2022)    65 Published in partnership with the Parkinson’s Foundation



Ta
bl
e
2.

A
re
a
u
n
d
er

th
e
R
O
C
cu

rv
e
(A
U
R
O
C
)
an

d
se
ve

n
st
at
is
ti
ca
l
m
ea
su
re
s
o
f
ra
n
d
o
m

fo
re
st

m
o
d
el
s
fo
r
H
o
eh

n
&
Ya
h
r
(H
Y
)
st
ag

es
1–

3,
1,

2,
an

d
3.

A
U
R
O
C

95
%

C
o
n
fi
d
en

ce
In
te
rv
al

A
cc
u
ra
cy

Po
si
ti
ve

Pr
ed

ic
ti
ve

Va
lu
e
(P
PV

)
Se

n
si
ti
vi
ty

Sp
ec
ifi
ci
ty

F1
sc
o
re

N
eg

at
iv
e
Pr
ed

ic
ti
ve

Va
lu
e
(N
PV

)
M
C
C

N
es
te
d
cr
o
ss
-

va
lid

at
io
n

B
ac
te
ri
al

fe
at
u
re
-

b
as
ed

m
o
d
el
s

H
Y
st
ag

es
1–

3
0.
54

8
0.
45

6–
0.
64

1
–

–
–

–
–

–
–

H
Y
st
ag

e
1

0.
79

9
0.
61

5–
0.
98

2
79

.2
%

81
.8
%

75
.0
%

83
.3
%

78
.3
%

76
.9
%

0.
58

5

H
Y
st
ag

e
2

0.
70

5
0.
59

2–
0.
81

8
69

.4
%

54
.8
%

58
.6
%

75
.0
%

56
.7
%

77
.8
%

0.
33

1

H
Y
st
ag

e
3

0.
50

9
0.
30

1–
0.
71

9
–

–
–

–
–

–
–

C
lin

ic
al

fe
at
u
re
-

b
as
ed

m
o
d
el

H
Y
st
ag

es
1–

3
0.
55

9
0.
46

4–
0.
65

4
–

–
–

–
–

–
–

H
Y
st
ag

e
1

0.
54

9
0.
30

7–
0.
79

1
–

–
–

–
–

–
–

H
Y
st
ag

e
2

0.
71

9
0.
60

2–
0.
83

5
70

.6
%

55
.3
%

72
.4
%

69
.6
%

62
.7
%

83
.0
%

0.
40

1

H
Y
st
ag

e
3

0.
77

2
0.
61

9–
0.
92

5
66

.1
%

40
.0
%

92
.3
%

58
.1
%

55
.8
%

96
.2
%

0.
42

7

C
ro
ss
-v
al
id
at
io
n

B
ac
te
ri
al

fe
at
u
re
-

b
as
ed

m
o
d
el
s

H
Y
st
ag

es
1–

3
0.
67

7
0.
59

2–
0.
76

2
60

.6
%

44
.0
%

83
.0
%

50
.0
%

57
.5
%

86
.2
%

0.
31

6

H
Y
st
ag

e
1

0.
86

8
0.
71

9–
1.
00

0
83

.3
%

83
.3
%

83
.3
%

83
.3
%

83
.3
%

83
.3
%

0.
66

7

H
Y
st
ag

e
2

0.
79

3
0.
69

2–
0.
89

5
77

.7
%

67
.9
%

65
.5
%

83
.9
%

66
.7
%

82
.5
%

0.
49

9

H
Y
st
ag

e
3

0.
70

5
0.
54

4–
0.
86

5
67

.9
%

36
.4
%

66
.7
%

68
.2
%

47
.0
%

88
.2
%

0.
29

3

Fu
si
ca
te
ni
ba

ct
er

H
Y
st
ag

e
1

0.
86

1
0.
70

7–
1.
00

0
83

.3
%

78
.6
%

91
.7
%

75
.0
%

84
.6
%

90
.0
%

0.
67

6

C
lin

ic
al

fe
at
u
re
-

b
as
ed

m
o
d
el

H
Y
st
ag

es
1–

3
0.
65

6
0.
57

1–
0.
74

1
55

.8
%

41
.9
%

90
.7
%

38
.7
%

57
.3
%

89
.6
%

0.
30

5

H
Y
st
ag

e
1

0.
63

9
0.
40

2–
0.
87

6
70

.8
%

69
.2
%

75
.0
%

66
.7
%

72
.0
%

72
.7
%

0.
41

8

H
Y
st
ag

e
2

0.
78

3
0.
68

2–
0.
88

3
68

.7
%

60
.5
%

79
.3
%

73
.2
%

68
.7
%

87
.2
%

0.
50

1

H
Y
st
ag

e
3

0.
81

8
0.
68

2–
0.
95

3
76

.8
%

50
.0
%

76
.9
%

76
.7
%

60
.6
%

91
.7
%

0.
47

3

Th
e
n
u
m
b
er

o
f
PD

p
at
ie
n
ts

at
H
Y
st
ag

es
1,

2,
an

d
3
at

ye
ar

0
w
er
e
24

,8
5,

an
d
56

,r
es
p
ec
ti
ve
ly
.

Th
e
se
ve

n
fo
llo

w
in
g
st
at
is
ti
ca
l
m
ea
su
re
s
w
er
e
ca
lc
u
la
te
d
w
h
en

A
U
R
O
C
w
as

>
0.
6.

H. Nishiwaki et al.

7

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2022)    65 



and decreased Fusicatenibacter, Faecalibacterium, and Blautia were
not due to the progression of PD, but were likely to have driven the
progression of PD. In other words, PD patients with these taxonomic
changes were likely to be destined to progress rapidly. These
observations are also in accordance with the assumption that
intestinal dysbiosis of these genera determines the progression of α-
synucleinopathy. We thus may be able to retard the progression of
PD in the early stages by therapeutic intervention with pre-, pro-, and
post-biotics to normalize gut dysbiosis or to compensate for
defective gut metabolisms.

METHODS
Patients
All studies were approved by the Ethical Review Committees of the Nagoya
University Graduate School of Medicine (approval #2016-0151), Iwate
Medical University (H28-123), Okayama Kyokuto Hospital (approval #kyoIR-
2016002), and Fukuoka University School of Medicine (approval

#2016M027). We obtained written informed consent from all recruited
individuals.
Out of 251 potentially eligible patients at year 0 (November 2016–May

2019), 27 patients did not participate in this study. We thus obtained fecal
samples and clinical features in 224 PD patients at year 0 (November
2016–May 2019), and followed them for two years. PD patients were
diagnosed based on the Movement Disorder Society’s (MDS) PD criteria65.
Our cohort did not include PD patients with other chronic diseases
including diabetes mellitus, heart failure, liver cirrhosis, malignancy,
hematological diseases, and autoimmune diseases. Similarly, our cohort
did not include PD patients who claimed to have taken antibiotics in the
past one month. At year 2 (November 2018–May 2021), fecal samples were
obtained from 113 PD patients, and clinical features were obtained from
182 PD patients. We obtained clinical features at year 2 in 182 out of 224
PD patients (81.3%). We similarly obtained fecal samples at year 2 in 113
PD patients (50.4%). Loss of a substantial number of patients in 2 years was
partly because participants complained that it was too much burden to
take and send fecal samples to us. Additionally, some participants moved
out to other hospitals. We also included 137 healthy controls whose fecal
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Fig. 3 Relative abundances of essential genera at year 0, which made the maximum AUROCs for HY stages 1 and 2 in Fig. 2eh, in the
stable (S) and deteriorated (D) groups. HY stages for which a specific genus was essential in modeling are underlined. Genera that were
significantly changed in our dataset in our previous analysis38 are indicated in green letters. Note that vertical scales are different for different
HY stages in Akkermansia, Lactobacillus, and Ruminococcus gnavus group. Means are indicated by red bars. P-values were calculated by the
Wilcoxon rank sum test. *P < 0.05.
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Fig. 4 Changes of four essential genera in two years and in the course of disease progression. Relative abundances of genera
Fusicatenibacter, Faecalibacterium, Blautia, and Akkermansia at years 0 and 2 in the control, stable, and deteriorated groups of combined HY
stages 1–3 (a, c, e, and g), as well as at year 0 in controls, iRBD, and HY stages 1–5 (b, d, f, and h). The four genera constituted features to make
the highest AUROC models (Fig. 2 and Supplementary Table S5) and were significantly changed in PD in our dataset in our previous analysis38.
Means are indicated by red bars. a, c, e, and g P-values were calculated by the Wilcoxon signed-rank test. *P < 0.05. Means are indicated by red
bars. b, d, f, and h P-values are calculated by Jonckheere-Terpstra trend test to indicate whether the relative abundances increase or decrease
monotonically. Plots of genera Faecalibacterium (d) and Akkermansia (h) with the progression of α-synucleinopathy were previously reported
with fewer numbers of samples42.
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samples were available at year 0. Among the controls, 112 subjects were
healthy cohabitants of PD patients. At year 2, fecal samples were obtained
from 52 controls.

DNA isolation and 16S rRNA V3–V4 gene amplicon sequencing
The samples were transported from the participant’s home to Nagoya
University below 4 ˚C, freeze-dried66, and subjected to DNA isolation and
sequencing of the 16S rRNA V3–V4 region using a pair of primers (341F, 5'-
CCTACGGGNGGCWGCAG-3' and 805R, 5'-GACTACHVGGGTATCTAATCC-
3')38,42. Paired-end sequencing of 300-nucleotide fragments was per-
formed using the MiSeq reagent kit V3 on a MiSeq System (Illumina). The
16S rRNA gene amplicon sequencing data were analyzed by QIIME267 with
DADA2 using the SILVA taxonomy database release 13868,69.

Deteriorated and stable groups for combined HY stages 1–3
and each of HY stages 1, 2, and 3
For HY stages 1–3 (165 patients), 1 (24 patients), 2 (85 patients), and 3 (56
patients), we divided PD patients into the deteriorated and stable groups.
The deteriorated group was comprised of PD patients with an advanced
HY stage at year 2 compared to year 0. In contrast, in the stable group, the
HY stage remained unchanged or was decreased at year 2. We excluded 14
patients at HY stage 4 at year 0, because only two of them were advanced
to HY stage 5 in two years. The unbalanced dataset should give rise to a
biased model that would be in favor of predicting no progression. We also
excluded three patients with HY stage 5 at year 0, because this was the
final stage of PD.
We obtained 113 pairs of stool samples at years 0 and 2. To analyze

taxonomic changes in two years, we excluded nine pairs of stool samples
with HY stages 4 and 5 at year 0. A total of 104 pairs of stool samples were
thus used to analyze taxonomic changes in two years (Fig. 1).

Bacterial and clinical features for random forest modeling
We filtered intestinal genera under the following conditions. For each
dataset, we selected genera with >0.5% relative abundance on average.
The numbers of genera that satisfied this criterion were 44, 41, 43, and 42
for HY stages 1–3, 1, 2, and 3, respectively. These genera were used as
features to predict whether HY stages were advanced or not in two years
for each dataset. We similarly limited the number of clinical and
demographic features to 31 to prevent overfitting of our models and also
to match the number of bacterial features. The clinical and demographic
features included age, sex, body mass index (BMI), disease duration, stool
frequency per week, and HY stage at year 0. The clinical features also
included the use of proton pump inhibitor, H2 blocker, antihyperlipidemic
drug, angiotensin II receptor blocker, calcium channel blocker, COMT
inhibitor, anticholinergic agent, dopamine agonist, MAO-B inhibitor, and
amantadine, as well as levodopa/carbidopa dosage. We also used MDS-
UPDRS to differentiate dominance in tremor and postural instability with
gait difficulty70. We assessed MDS-UPDRS in PD patients with medication
ON state. The extracted MDS-UPDRS features included tremor (MDS-UPDRS
2.10), walking and balance (MDS-UPDRS 2.12), freezing (MDS-UPDRS 2.13),
gait (MDS-UPDRS 3.10), freezing of gait (MDS-UPDRS 3.11), postural
stability (MDS-UPDRS 3.12), postural tremor of the hands (MDS-UPDRS
3.15), kinetic tremor of the hands (MDS-UPDRS 3.16), rest tremor of the
hands (MDS-UPDRS 3.17), rest tremor of the legs (MDS-UPDRS 3.17), rest
tremor of the lip/jaw (MDS-UPDRS 3.17), and constancy of rest tremor
(MDS-UPDRS 3.18). We also included Mini-Mental State Examination
(MMSE), coffee intake, and smoking.

Construction of random forest models to predict whether HY
stages are advanced in two years or not
We constructed random forest models with sklearn.ensemble.RandomFor-
estRegressor function on Python 3.8.2 to differentiate the deteriorated and
stable groups for HY stages 1–3, 1, 2, and 3 at year 0 using bacterial and
clinical features. We followed the AUC-RF method to determine the
bacterial and clinical features71, which was previously adopted to make
random forest models using bacterial features to differentiate adenoma
and colon cancer72. The outline of this analysis was illustrated in Fig. 1. We
first examined the performance of our modeling strategy by nested cross-
validation with recursive feature elimination using sklearn.feature_selec-
tion.RFECV function on Python 3.8.2. In the nested cross-validation, the
outer loop was comprised of leave-one-out cross validation (LOOCV),
whereas the inner loop was comprised of 10-to-20-fold cross validation

depending on the number of samples. In the inner loop, features were
recursively eliminated one by one to obtain the best combination of
features that gave rise to the highest AUROC. The best model in the inner
loop was generated, and was applied to predict the prognosis of a patient
that was left out by LOOCV. The nested cross-validation should have no
leakage between the training and test datasets (type 1 circularity49), but
could not provide us with bacterial and clinical features to make clinically
applicable models. We thus determined essential bacterial and clinical
features by recursive feature elimination using the sklearn.feature_selec-
tion.RFE function on Python 3.8.2. For the determined essential genera, we
compared the relative abundances in the stable and deteriorated groups
at year 0 by the Wilcoxon rank sum test. Python code to perform nested
cross-validation and cross-validation are available upon request.

Seven statistical measures to represent the model
performance
We evaluated the performance of random forest models by the following
seven statistical measures. TP, FP, FN, and TN indicate true positive, false
positive, false negative, and true negative, respectively.

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Rate to predict true positives and true negatives in the whole dataset

Precision=Positive Prediciton Value PPVð Þ ¼ TP
TPþ FP

(2)

Rate of true positives in predicted positives

Recall=Sensitivity ¼ TP
TPþ FN

(3)

Rate of true positives in actual positives

Specificity ¼ TN
FPþ TN

(4)

Rate of true negatives in actual negatives

F1 score ¼ 2
Precision´ Recall
Precisionþ Recall

(5)

Harmonic mean of precision and recall. Higher precision and higher
recall increase F1 score, but discrepancy between precision and recall
lowers F1 score.

Negative Predictive Value ðNPVÞ ¼ TN
TNþ FN

(6)

Rate of true negatives in predicted negatives

MatthewsCorrelationCoefficient ðMCCÞ
¼ TP ´ TN��FP´ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p (7)

A correlation coefficient between the actual and predicted binary
conditions while the numbers of each condition are balanced. Unlike the
other parameters, MCC balances the ratio between actual positives and
actual negatives.

Statistical analysis
Relative abundances of intestinal bacteria were analyzed by the Wilcoxon
signed-rank test for matched pairs with the wilcoxon functionality of scipy.
stat, and by the Wilcoxon rank sum test for unmatched pairs with the
mannwhitneyu functionality of scipy.stat, both on Python 3.8.2.
Jonckheere-Terpstra trend test to examine whether intestinal bacteria
increased or decreased monotonically was performed with jonckheere.test
of library PMCMR on R version 4.1.0. The area under the receiver operating
characteristic curve (AUROC) was calculated with the roc_curve function-
ality of sklearn.metrics on Python 3.8.2. P-values < 0.05 were considered to
be significantly different.
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the accession numbers of “DRA009229” and “DRA012438” for year 0, and
“DRA012445” for year 2.

H. Nishiwaki et al.

10

npj Parkinson’s Disease (2022)    65 Published in partnership with the Parkinson’s Foundation

https://www.ncbi.nlm.nih.gov/sra/?term=%20DRA009229
https://www.ncbi.nlm.nih.gov/sra/?term=%20DRA012438
https://www.ncbi.nlm.nih.gov/sra/?term=%20DRA012445


Received: 28 October 2021; Accepted: 5 May 2022;

REFERENCES
1. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).
2. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease.

Neurobiol. Aging 24, 197–211 (2003).
3. Chiang, H. L. & Lin, C. H. Altered gut microbiome and intestinal pathology in

Parkinson’s disease. J. Mov. Disord. 12, 67–83 (2019).
4. Cersosimo, M. G. Gastrointestinal biopsies for the diagnosis of Alpha-synuclein

pathology in Parkinson’s disease. Gastroenterol. Res Pr. 2015, 476041 (2015).
5. Gibbons, C. H., Garcia, J., Wang, N., Shih, L. C. & Freeman, R. The diagnostic

discrimination of cutaneous alpha-synuclein deposition in Parkinson disease.
Neurology 87, 505–512 (2016).

6. Bloch, A., Probst, A., Bissig, H., Adams, H. & Tolnay, M. Alpha-synuclein pathology
of the spinal and peripheral autonomic nervous system in neurologically unim-
paired elderly subjects. Neuropathol. Appl Neurobiol. 32, 284–295 (2006).

7. Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric alpha-synuclein immu-
noreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for
Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

8. Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S. & Kordower, J. H. Is
alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evi-
dence from 3 cases. Mov. Disord. 27, 716–719 (2012).

9. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson’s disease: a dual-hit hypothesis.
Neuropathol. Appl Neurobiol. 33, 599–614 (2007).

10. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson’s disease: the dual hit theory
revisited. Ann. N. Y Acad. Sci. 1170, 615–622 (2009).

11. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the
gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).

12. Uemura, N. et al. Inoculation of alpha-synuclein preformed fibrils into the mouse
gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the
vagus nerve. Mol. Neurodegener. 13, 21 (2018).

13. Manfredsson, F. P. et al. Induction of alpha-synuclein pathology in the enteric
nervous system of the rat and non-human primate results in gastrointestinal
dysmotility and transient CNS pathology. Neurobiol. Dis. 112, 106–118 (2018).

14. Kim, S. et al. Transneuronal propagation of pathologic alpha-Synuclein from the
gut to the brain models Parkinson’s disease. Neuron 103, 627–641 e627 (2019).

15. Shimozawa, A. et al. Propagation of pathological alpha-synuclein in marmoset
brain. Acta Neuropathol. Commun. 5, 12 (2017).

16. Arotcarena, M. L. et al. Bidirectional gut-to-brain and brain-to-gut propagation of
synucleinopathy in non-human primates. Brain 143, 1462–1475 (2020).

17. Post, B., Merkus, M. P., de Haan, R. J., Speelman, J. D. & Group, C. S. Prognostic
factors for the progression of Parkinson’s disease: a systematic review. Mov.
Disord. 22, 1839–1851 (2007) .

18. Oosterveld, L. P. et al. Prognostic factors for early mortality in Parkinson’s disease.
Parkinsonism Relat. Disord. 21, 226–230 (2015).

19. Thenganatt, M. A. & Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 71,
499–504 (2014).

20. Hoehn, M. M. & Yahr, M. D. Parkinsonism: onset, progression and mortality.
Neurology 17, 427–442 (1967).

21. Macleod, A. D., Dalen, I., Tysnes, O. B., Larsen, J. P. & Counsell, C. E. Development
and validation of prognostic survival models in newly diagnosed Parkinson’s
disease. Mov. Disord. 33, 108–116 (2018).

22. Tsiouris, K. M., Konitsiotis, S., Koutsouris, D. D. & Fotiadis, D. I. Prognostic factors of
rapid symptoms progression in patients with newly diagnosed parkinson’s dis-
ease. Artif. Intell. Med. 103, 101807 (2020).

23. Hasegawa, S. et al. Intestinal dysbiosis and lowered serum Lipopolysaccharide-
binding protein in Parkinson’s disease. PLoS One 10, e0142164 (2015).

24. Scheperjans, F. et al. Gut microbiota are related to Parkinson’s disease and clinical
phenotype. Mov. Disord. 30, 350–358 (2015).

25. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. Mov.
Disord. 30, 1351–1360 (2015).

26. Unger, M. M. et al. Short chain fatty acids and gut microbiota differ between
patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat.
Disord. 32, 66–72 (2016).

27. Hill-Burns, E. M. et al. Parkinson’s disease and Parkinson’s disease medications
have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).

28. Petrov, V. A. et al. Analysis of gut microbiota in patients with Parkinson’s disease.
Bull. Exp. Biol. Med. 162, 734–737 (2017).

29. Bedarf, J. R. et al. Functional implications of microbial and viral gut metagenome
changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med.
9, 39 (2017).

30. Hopfner, F. et al. Gut microbiota in Parkinson disease in a northern German
cohort. Brain Res. 1667, 41–45 (2017).

31. Li, W. et al. Structural changes of gut microbiota in Parkinson’s disease and its
correlation with clinical features. Sci. China Life Sci. 60, 1223–1233 (2017).

32. Qian, Y. et al. Alteration of the fecal microbiota in Chinese patients with Par-
kinson’s disease. Brain Behav. Immun. 70, 194–202 (2018).

33. Lin, A. et al. Gut microbiota in patients with Parkinson’s disease in southern
China. Parkinsonism Relat. Disord. 53, 82–88 (2018).

34. Tan, A. H. et al. Unveiling the function of altered gut microbiota composition in
Parkinson’s disease. Mov. Disord. 33, S783–S784 (2018).

35. Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical
parkinsonism. Mov. Disord. 34, 396–405 (2019).

36. Pietrucci, D. et al. Dysbiosis of gut microbiota in a selected population of Par-
kinson’s patients. Parkinsonism Relat. Disord. https://doi.org/10.1016/j.
parkreldis.2019.06.003 (2019).

37. Li, C. et al. Gut microbiota differs between Parkinson’s disease patients and
healthy controls in Northeast China. Front Mol. Neurosci. 12, 171 (2019).

38. Nishiwaki, H. et al. Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov.
Disord. 35, 1626–1635 (2020).

39. Cirstea, M. S. et al. Microbiota composition and metabolism are associated with
gut function in Parkinson’s disease. Mov. Disord. 35, 1208–1217 (2020).

40. Vascellari, S. et al. Gut microbiota and metabolome alterations associated with
Parkinson’s disease. mSystems https://doi.org/10.1128/mSystems.00561-20
(2020).

41. Aho, V. T. E. et al. Gut microbiota in Parkinson’s disease: temporal stability and
relations to disease progression. EBioMedicine 44, 691–707 (2019).

42. Nishiwaki, H. et al. Short-chain fatty acid-producing gut microbiota is decreased
in Parkinson’s disease but not in rapid-eye-movement sleep behavior disorder.
mSystems https://doi.org/10.1128/mSystems.00797-20 (2020).

43. Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease
and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33,
88–98 (2018).

44. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic
mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 e1321
(2016).

45. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal
epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110,
9066–9071 (2013).

46. Forsyth, C. B. et al. Increased intestinal permeability correlates with sigmoid
mucosa alpha-synuclein staining and endotoxin exposure markers in early Par-
kinson’s disease. PLoS One 6, e28032 (2011).

47. Li, J. M. et al. Dietary fructose-induced gut dysbiosis promotes mouse hippo-
campal neuroinflammation: a benefit of short-chain fatty acids. Microbiome 7, 98
(2019).

48. Park, J., Wang, Q., Wu, Q., Mao-Draayer, Y. & Kim, C. H. Bidirectional regulatory
potentials of short-chain fatty acids and their G-protein-coupled receptors in
autoimmune neuroinflammation. Sci. Rep. 9, 8837 (2019).

49. Grimm, D. G. et al. The evaluation of tools used to predict the impact of missense
variants is hindered by two types of circularity. Hum. Mutat. 36, 513–523 (2015).

50. Bordelon, Y. M. et al. Medication responsiveness of motor symptoms in a
population-based study of Parkinson disease. Parkinsons Dis. 2011, 967839
(2011).

51. Romano, S. et al. Meta-analysis of the Parkinson’s disease gut microbiome sug-
gests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 7, 27
(2021).

52. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating
ALS in mice. Nature 572, 474–480 (2019).

53. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the
ketogenic diet. Cell 174, 497 (2018).

54. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or
the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat.
Med. 23, 107–113 (2017).

55. Zhang, J. et al. Decreased abundance of akkermansia muciniphila leads to the
impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes.
Adv. Sci. (Weinh.) 8, e2100536 (2021).

56. Remely, M. et al. Gut microbiota of obese, type 2 diabetic individuals is enriched
in faecalibacterium prausnitzii, akkermansia muciniphila and Peptostreptococcus
anaerobius after weight loss. Endocr. Metab. Immune Disord. Drug Targets 16,
99–106 (2016).

57. Xu, Y. et al. Function of Akkermansia muciniphila in obesity: interactions with
lipid metabolism, immune response and gut systems. Front Microbiol. 11, 219
(2020).

58. Depommier, C. et al. Supplementation with Akkermansia muciniphila in over-
weight and obese human volunteers: a proof-of-concept exploratory study. Nat.
Med. 25, 1096–1103 (2019).

H. Nishiwaki et al.

11

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2022)    65 

https://doi.org/10.1016/j.parkreldis.2019.06.003
https://doi.org/10.1016/j.parkreldis.2019.06.003
https://doi.org/10.1128/mSystems.00561-20
https://doi.org/10.1128/mSystems.00797-20


59. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during
a dietary intervention in obesity: relationship with gut microbiome richness and
ecology. Gut 65, 426–436 (2016).

60. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by
metformin treatment improves glucose homeostasis in diet-induced obese mice.
Gut 63, 727–735 (2014).

61. Hu, G., Jousilahti, P., Bidel, S., Antikainen, R. & Tuomilehto, J. Type 2 diabetes and
the risk of Parkinson’s disease. Diabetes Care 30, 842–847 (2007).

62. Hertel, J. et al. Integrated analyses of microbiome and longitudinal metabolome
data reveal microbial-host interactions on Sulfur metabolism in Parkinson’s dis-
ease. Cell Rep. 29, 1767–1777 e1768 (2019).

63. Clairembault, T. et al. Structural alterations of the intestinal epithelial barrier in
Parkinson’s disease. Acta Neuropathol. Commun. 3, 12 (2015).

64. Islam, M. S. et al. Pesticides and Parkinson’s disease: current and future per-
spective. J. Chem. Neuroanat. https://doi.org/10.1016/j.jchemneu.2021.101966
(2021).

65. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov.
Disord. 30, 1591–1601 (2015).

66. Ueyama, J. et al. Freeze-drying enables homogeneous and stable sample pre-
paration for determination of fecal short-chain fatty acids. Anal. Biochem. 589,
113508 (2020).

67. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome
data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

68. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

69. Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic
frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

70. Stebbins, G. T. et al. How to identify tremor dominant and postural instability/gait
difficulty groups with the movement disorder society unified Parkinson’s disease
rating scale: comparison with the unified Parkinson’s disease rating scale. Mov.
Disord. 28, 668–670 (2013).

71. Calle, M. L., Urrea, V., Boulesteix, A. L. & Malats, N. AUC-RF: a new strategy for
genomic profiling with random forest. Hum. Hered. 72, 121–132 (2011).

72. Baxter, N. T., Ruffin, M. T. T., Rogers, M. A. & Schloss, P. D. Microbiota-based model
improves the sensitivity of fecal immunochemical test for detecting colonic
lesions. Genome Med. 8, 37 (2016).

ACKNOWLEDGEMENTS
We acknowledge Keiichi Takimoto, Keigo Otsuka, Karin Ozeki, Harumi Kodama, and
Tomomi Yamada at the Nagoya University Graduate School of Medicine for their
technical assistance. This study was supported by Grants-in-Aid from the Japan
Society for the Promotion of Science (JP21H03561); the Ministry of Health, Labor and
Welfare of Japan (20FC1036); the Japan Agency for Medical Research and

Development (JP21gm1010002, JP21ek0109488, and JP21bm0804005), the National
Center of Neurology and Psychiatry (2–5), and Smoking Research Foundation.

AUTHOR CONTRIBUTIONS
H.N., M.H., and K.O. conceived the study. H.N. performed data science analyses with
the help of T.Y., H.H., and I.T. M.I., T.H., J.U., and M.H. performed microbiota analyses.
T.M., K.K. Y.T., M.K., and M.H. provided fecal samples and clinical data. All authors
critically revised and approved the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41531-022-00328-5.

Correspondence and requests for materials should be addressed to Masaaki
Hirayama or Kinji Ohno.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

H. Nishiwaki et al.

12

npj Parkinson’s Disease (2022)    65 Published in partnership with the Parkinson’s Foundation

https://doi.org/10.1016/j.jchemneu.2021.101966
https://doi.org/10.1038/s41531-022-00328-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Short chain fatty acids-producing and mucin-degrading intestinal bacteria predict the progression of early Parkinson&#x02019;s disease
	Introduction
	Results
	Clinical features of PD patients at years 0 and 2
	Construction of random forest models to predict whether HY stages are advanced in two years or not
	Differences of taxonomic relative abundances between the deteriorated and stable groups
	Change of relative abundances of four genera in two years

	Discussion
	Methods
	Patients
	DNA isolation and 16S rRNA V3&#x02013;nobreakV4 gene amplicon sequencing
	Deteriorated and stable groups for combined HY stages 1&#x02013;nobreak3 and each of HY stages 1, 2, and 3
	Bacterial and clinical features for random forest modeling
	Construction of random forest models to predict whether HY stages are advanced in two years or not
	Seven statistical measures to represent the model performance
	Statistical analysis

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




