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ABSTRACT

RNA sequencing (RNA-seq) is widely used to iden-
tify differentially expressed genes (DEGs) and reveal
biological mechanisms underlying complex biologi-
cal processes. RNA-seq is often performed on het-
erogeneous samples and the resulting DEGs do not
necessarily indicate the cell-types where the differen-
tial expression occurred. While single-cell RNA-seq
(scRNA-seq) methods solve this problem, technical
and cost constraints currently limit its widespread
use. Here we present single cell Mapper (scMappR),
a method that assigns cell-type specificity scores
to DEGs obtained from bulk RNA-seq by leverag-
ing cell-type expression data generated by scRNA-
seq and existing deconvolution methods. After eval-
uating scMappR with simulated RNA-seq data and
benchmarking scMappR using RNA-seq data ob-
tained from sorted blood cells, we asked if scMappR
could reveal known cell-type specific changes that
occur during kidney regeneration. scMappR appro-
priately assigned DEGs to cell-types involved in kid-
ney regeneration, including a relatively small popula-
tion of immune cells. While scMappR can work with
user-supplied scRNA-seq data, we curated scRNA-
seq expression matrices for ∼100 human and mouse
tissues to facilitate its stand-alone use with bulk
RNA-seq data from these species. Overall, scMappR

is a user-friendly R package that complements tra-
ditional differential gene expression analysis of bulk
RNA-seq data.

INTRODUCTION

RNA-seq is a powerful and widely used technology to mea-
sure transcript abundance and structure in biological sam-
ples (1). RNA-seq analyses typically compare transcript
abundance between conditions by identifying differentially
expressed genes (DEGs) (2,3). When RNA-seq of a whole
tissue (bulk RNA-seq) is completed, it is often a challenge
to determine the extent to which changes in gene expres-
sion are due to changes in cell-type proportion (4). This
challenge is addressed by single-cell RNA-seq (scRNA-seq)
methods that measure gene expression at a single-cell reso-
lution. Despite many advances, technical limitations (e.g.,
low gene detection per cell and cell dissociation optimiza-
tion) and cost currently limit the use of scRNA-seq for
hard-to-dissociate cell-types and large study designs (5–7).
Importantly, several bioinformatics methods that leverage
scRNA-seq to learn about cell type proportions (RNA-seq
deconvolution) from bulk RNA-seq or leverage bulk RNA-
seq to decrease drop-out in scRNA-seq demonstrate the
highly complementary nature of these two technologies (8–
17).

Single cell RNA-seq experiments readily indicate combi-
nations of genes that are involved in the biological functions
altered in an experiment or clinical condition. The value
of these data is reflected in the growing number of reposi-
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tories containing publicly available reprocessed scRNA-seq
data, such as PanglaoDB (18), scRNAseqDB (19), SCPor-
talen (20), Single Cell Expression Atlas (21) and the Human
Cell Atlas (22), and conquer (5) that allow for a consistent,
tissue-aware reference to the cell-type specificity of individ-
ual genes. These initiatives and compiled datasets are valu-
able resources that can be used to interrogate cell-type spe-
cific gene expression and enhance bulk RNA-seq analyses
in the absence of a matched scRNA-seq experiment.

RNA-seq deconvolution is a powerful tool that can use
scRNA-seq data to infer the relative cell-type proportions
of a bulk RNA-seq sample. Estimated cell-type proportions
can be directly compared between conditions to identify
alterations in cell-type composition (23,24). Bioinformatic
tools, such as csSAM (4) and subsequently released Bseq-sc
(25), utilize estimated cell-type proportions in bulk RNA-
seq data to identify DEGs that were not considered dif-
ferentially expressed from bulk differential analysis alone
(2,3,26). While the de novo discovery of cell type specific
DEGs is powerful, this analysis requires a large number of
samples (e.g., 82 sample were used to identify de novo cell-
type specific DEGs across three cell-types in Baron et al.,
2016) (4,25). Since typical exploratory bulk RNA-seq ex-
periments looking for DEGs do not include as large sample
numbers, there is a need for new methods that can leverage
the growing number of scRNA-seq reference datasets to in-
terpret typical bulk-RNA-seq experiments.

Here we present a bioinformatic method called single-cell
mapper (scMappR). scMappR simultaneously infers which
cell-types are driving the expression of a particular DEG
and uses that inferred cell-type specificity of DEGs to com-
plete cell-type specific pathway analysis. To do this, we first
needed to design scMappR to be a convenient pipeline that
connects established bulk RNA-seq DEG analysis work-
flows to scRNA-seq compendiums. To infer which cell-
types are driving the expression of a particular DEG, the
scMappR workflow begins by using established deconvolu-
tion tools to infer cell-type proportions. With cell-type pro-
portions computed by scMappR and cell-type markers and
bulk DEGs imported into scMappR, our method normal-
izes, scales and integrates these summary statistics. Specif-
ically, scMappR re-weights the fold-change of every DEG
by the cell-type specific expression of each gene and the pro-
portions of each cell-type into values we call ‘cell-weighted
Fold-changes’ (cwFold-changes). scMappR then returns a
matrix of fold-changes re-calibrated to each cell-type, a list
of genes whose differential expression is driven by cell-type
specific changes in gene expression, and cell-type specific
pathway analysis. We first simulate bulk and cell-type spe-
cific RNA-seq samples and show that scMappR both in-
creases the correlation between simulated bulk DEGs and
simulated scRNA-seq DEGs while simultaneously assign-
ing bulk DEGs to their correct cell-type. We then demon-
strate that scMappR can identify validated cell-type spe-
cific gene expression by taking advantage of a reference
data set (27) where bulk RNA-seq was performed on cell-
sorted samples. Finally, we show that scMappR can iden-
tify bonafide differential gene expression changes emanat-
ing from a minority cell population present in the mouse
kidney during regeneration (14,28). Overall, scMappR is a
freely available R package available together with extensive

vignettes on CRAN that provides important cell-type speci-
ficity to a set of user-provided DEGs.

MATERIALS AND METHODS

Rationale behind measuring cell-type specificity in bulk
RNA-seq data

We developed a statistic called cell-weighted fold-changes
(cwFold-change). cwFold-changes incorporate cell-type
specificity and cell-type proportion to infer which cell-types
are likely driving a DEG identified in bulk RNA-seq data
(Supplementary Figure S1). The cwFold-change metric ac-
counts for expression differences driven by cell-type propor-
tion differences in the bulk samples (Supplementary Figure
S1F). Our package, scMappR, measures cwFold-changes
from imported bulk DEGs and identifies which bulk DEGs
may be cell-type specific before sorting them to their ap-
propriate cell-type. scMappR then re-orders DEGs by their
cwFold-change to complete cell-type specific pathway anal-
ysis.

Defining the statistics scMappR uses to re-weight bulk differ-
entially expressed genes

We use cell-type specific gene expression, cell-type propor-
tion of a bulk sample, and the fold-change of a gene’s ex-
pression between conditions to re-weight a bulk DEG in
a cell-type specific manner. We define cell-type specificity
as the weighted sum of cell-type specific gene expression
(Equation 1) and cell-type proportion (Equation 2) because
in bulk RNA-seq, all RNA from a sample is pooled to-
gether. We calculate the relative amount of RNA originat-
ing from each cell-type as the product of cell-type specificity
and cell-type proportion.

Pc = Nc∑C
c=1 Nc

(1)

where P represents proportion, c represents cell-type, Nc
represents the number of cells of type c.

Sc,g = mean
(
Ec,g

)
mean

(
Et �=c,g

) (2)

where S represents specificity, E represents expression,
and g represents gene.

Kc,g = Pc ∗ Sc,g (3)

where K represents cell-type contribution.
The fold-change of a DEG is the ratio of means in gene

expression between conditions (Equation 4).

Fg = mean
(
Eg,y=1

)
mean

(
Eg,y=0

) (4)

F represents the fold-change of a DEG.

Normalizing for the dependence between cell-type specificity
and cell-type proportion

We use RNA-seq deconvolution to estimate cell-type pro-
portions in scMappR; however, RNA-seq deconvolution
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requires cell-type specificity as an input to measure cell-
type proportions in the bulk sample (13,15,16,29–31). In
scMappR, we developed an RNA-seq deconvolution nor-
malization step to allow the expression of each DEG to
be independent from inferred cell-type proportions. We re-
calculate cell-type proportions for each DEG after itera-
tively removing the DEG from the bulk normalized count
matrix and signature matrix. A signature matrix is defined
as a gene-by-cell-type matrix containing the fold-change
difference between a given cell-type and all other cell-types
(Equation 2). This normalization step yields an estimated
cell-type proportion for every DEG, where the proportions
are independent of that DEG’s expression. We could then
assign cell-type specificity to the fold-change of a DEG with
the knowledge that cell-type expression and cell-type pro-
portion are independent.

Correcting for differentially expressed genes driven by
changes in cell-type proportion

scMappR accounts for cell-type composition because a
gene may be detected as differentially expressed due to dif-
ferences in cell-type proportions alone (Supplementary Fig-
ure S1F). We account for differences in cell-type proportion
in scMappR by adding a scaling factor to the cell-type par-
titioning of DEGs. Specifically, for each DEG, we calculate
the average cell-type proportions in each condition, and we
scale the DEG by the reciprocal ratio between the two con-
ditions. Specifically, if the DEG is biased to one condition
(e.g., condition 2), then we scale the DEG by the relative
difference in cell-type proportions between the conditions
(Equations 5–7).

Pc,g|y = 0
Pc,g|y = 1

(5)

F̃c,g = mean
(
Eg,y=1

)
mean

(
Eg,y=0

) ∗ Pc,g|y = 0
Pc,g|y = 1

(6)

F̃c,g represents the cell-type proportion scaled fold-change
of a DEG.

F̃c,g = mean
(
Eg,y=1

)
Pc,g|y = 1

∗ Pc,g|y = 0

mean
(
Eg,y = 0

) (7)

Re-weighing differentially expressed genes by cell-type spe-
cific information by generating cell-weighted fold-changes

After the normalization and scaling steps are complete, we
multiply fold-change, cell-type specificity and cell-type pro-
portions to partition the cell-type specificity of the DEGs
originating within the users’ bulk sample. We call this re-
weighted fold-change of a DEG a cell-weighted fold-change
(cwFold-change, Equation 8, Figure 1).

cwFc,g = F̃c,g ∗ K̃c,g (8)

cwFc,g represents the cwFold-change.
The following criteria are met when calculating cwFold-

changes. If the cell-type specificity of a gene for a cell-type
is <1, then the cwFold-change for that cell-type decreases
in its contribution to the DEG. If the cell-type specificity

is >1, then the cwFold-change for that cell-type increases
in its contribution to the DEG (Supplementary Figure S1
D and E). If the proportion of a cell-type in the bulk sam-
ple reaches 0, then the DEG did not originate from that
cell-type. If the proportion of a cell-type in the bulk sam-
ple reaches 1, then the DEG must originate entirely from
that cell-type.

Estimating cell-type proportions in scMappR

scMappR requires an RNA-seq deconvolution method that
has a signature matrix as input in order to perform the nor-
malization step that allows for cell-type proportions to be
independent of the imported signature matrix. Computa-
tional run-time is also a consideration in the cell-type pro-
portion and normalization steps within scMappR (e.g., if
there are 3500 DEGs, RNA-seq deconvolution is repeated
3501 times). We currently have three RNA-seq deconvo-
lution tools incorporated into scMappR. These deconvo-
lution tools are DeconRNA-seq (16), whole genome cor-
relation network analysis (WGCNA) (30), and the digi-
tal cell quantifier in ComICS DCQ (29) through the orig-
inal and ADAPTS (32) R package. DeconRNA-seq (16)
is a quadratic programming-based deconvolution tool that
minimizes cell-type proportions based on the signature
matrix and normalized RNA-seq counts. DCQ (29) is a
regression-based deconvolution algorithm that relies on
elastic net regularization. WGCNA (30) uses the ‘propor-
tionsInAdmixture’ function and integrates correlation and
linear least-squares regression. In the present study, we used
DeconRNA-seq (16) (Equation 9) as the primary scMappR
RNA-seq deconvolution tool.

min
p

(||PS − X||2) , s. t. {
∑

c Pc=1
Pc≥−,∀c (9)

X represents normalized bulk gene expression.

Identifying cell-type specificity in cwFold-changes

cwFold-changes are evaluated at the level of the gene and at
the level of the cell-type. Evaluating cwFold-changes at the
level of the gene identifies which cell-types may be driving a
DEG. We first normalized the cwFold-change for each gene
so that it sums to 1, allowing for a more interpretable mea-
sure of the contribution each DEG has on a cell-type spe-
cific fold change. The distributions of normalized cwFold-
changes were then tested for a normal distribution with a
Shapiro test (33) within each gene (across cell-types). Cell-
type outliers were measured according to whether the distri-
bution normalized cwFold-change was parametric (Equa-
tion 10) or nonparametric (Equation 11). We ensure that the
cell-types driving these DEGs have a normalized cwFold-
change greater than the cell-type proportion and a uniform
distribution (Equation 12). cwFold-changes for each cell-
type must be less than the cell-type proportion for that cell-
type. This filter prevents genes from being assigned to a
cell-type because the cell-type is very common in the bulk
sample. In this filtration step, we allow the user to import
cell-type proportions (Pc, Equation 12) from any source
(e.g., xCell, CIBERSORT, cell population mapping, Mu-
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Figure 1. Schematic of the data required to run scMappR and the primary functionalities that scMappR provides. scMappR requires input RNA-seq
count data, a list of differentially expressed genes, and a signature matrix (provided by the user or scMappR). For each gene, scMappR then makes
cell-type expression independent of estimated cell-type proportions. scMappR then integrates cell-type expression, cell-type proportion, and the ratio of
cell-type proportions between biological conditions to generate cell-weighted Fold-changes (cwFold-changes). These cwFold-changes are then visualized
(bottom left) and re-ranked before scMappR computes and plots cell-type specific pathway analyses (bottom right).

SiC) (13,15,34,35).

upperBoundg = mean
(

˜cwFg

)
∗ 3 sd

(
˜cwFg

)
(10)

˜cwF represents the normalized cwFold-change

upperBoundg = median
(

˜cwFg

)
∗ 3 mad

(
˜cwFg

)
(11)

Specificc|g = cwFoldChangec|g s.t.

⎧⎪⎨
⎪⎩

˜cwFc,g > upperBoundg

˜cwFc,g > Pc

˜cwFc,g > 1
N

(12)

cwFold-changes are evaluated at the level of the cell-type
by re-ordering each DEG by their cwFold-change in each
cell-type. The rank order of bulk DEGs and cwFold-
changes for each cell-type are measured with a Spearman’s
correlation.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 5

Interpretation of cwFold-changes at the level of the cell-type
through cell-type specific pathway enrichment

Cell-weighted fold-changes are computed for every DEG
in each cell-type. cwFold-changes and endogenous cell-type
specificity are then plotted with the Pheatmap R package
(36). For every cell-type, each DEG on the gene list is re-
ranked by their cwFold-change. We use a cwFold-change
cutoff of a gene in a cell-type as 10−10 to determine if a
gene is within a cell-type. Genes that do not meet this cut-
off are discarded from the pathway analysis for that cell-
type. DEGs that change in expression to a similar degree
may be under a common biological regulator (30,37). Hav-
ing the same list of DEGs but in a different order of sig-
nificance can have a profound impact on which pathways
are enriched. Pathway analysis is subsequently completed
with g:ProfileR package (38). By default, scMappR uses the
following example command: ‘gprofiler(genes, species, or-
dered = TRUE, src filter = c(‘GO:BP’, ‘REAC’, ‘KEGG’),
custom bg = genes in bulk, correction method = ‘fdr’)’
(38,39) (Figure 1). We report precision as the g:Profiler sum-
mary statistic which g:Profiler defined as the proportion of
the DEGs that are present in the gene set (38).

Implementation

We present the R package scMappR to infer cell-type speci-
ficity in bulk DEGs. scMappR can be installed from CRAN
(Supplementary File S1: page 1) and we provide a full work-
flow for a researcher to convert bulk RNA-seq data into
cwFold-changes in Supplementary File S1.

In the context of bulk RNA-seq, scMappR expects that
the normalized data are already pre-processed to account
for any batches, artifacts and read depth. Transcript-based
approaches to counting bulk RNA-seq should be mapped
to their genes as scRNA-seq data are counted at gene level.
These bulk data can be the same input used for most RNA-
seq analyses pipelines including data visualization such as
PCA, RNA-seq deconvolution tools or correlational ap-
proaches such as Whole Gene Network Correlation Analy-
sis (15,16,30,40). We used counts-per-million in Supplemen-
tary File S1 but any pre-processing method is acceptable.
scMappR further expects that the list of imported differen-
tially expressed genes were measured accounting for poten-
tial appropriate factors (e.g. batch). Users should account
for the uncertainty of their bulk DEGs and cell-type mark-
ers by applying relevant multiple-test corrected P-value and
fold-change cutoffs to their DEGs and cell-type markers.
We use an FDR adjusted P-value cutoff of 0.05 and an ab-
solute fold-change cut-off of 1.5 in Supplementary File S1.

Similarly, users should evaluate if the cell-type propor-
tions estimated in scMappR are reflective of their bulk sam-
ples (Supplementary File S1: page 2). Evaluating uncer-
tainty in their cell-type proportion and applying the ap-
propriate P-value cutoffs to imported bulk DEGs and cell-
type markers within the imported signature matrix is an im-
portant step prior to scMappR because the cwFold-change
metric does not inherently contain uncertainty.

With RNA-seq data normalized (Supplementary File S1:
pages 2-3), bulk DEGs are calculated (Supplementary File
S1) and RNA-seq deconvolution methods are compared
(Supplementary File S1: page 3). The user needs to index

which samples are associated with ‘upregulated’ and ‘down-
regulated’ DEGs before calculating cwFold-changes and
cell-type specific pathway enrichment (Supplementary File
S1: pages 3-4).

Finally, the ‘cwFoldChange evaluate’ function is used to
investigate the cell-type specificity of their cell-types and
sort DEGs into different cell-types (Supplementary File
S1: pages 4, 6). While we import cell-type proportions cal-
culated within scMappR, this matrix of cell-type propor-
tions for each sample may be imported from any tool (e.g.
xCell, MuSiC, cell population mapping, CIBERSORT) by
the user (13,15,34,35).

Generating simulated RNA-seq data

Simulated reads were generated using the Polyester R pack-
age (41). Overall, we simulate five cell-types, two conditions
and six simulated replicates summing to a total of 60
simulated samples (Figure 2A). Specifically, each simulated
read was 100 base pairs and each simulated RNA-seq
experiment had 20× coverage. Simulated reads were based
on 20 000 genes from the Gencode human hg38 genome
(release 31) (ftp://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode human/release 31/gencode.v31.transcripts.fa.gz).
We simulated five different cell-types for each simulated
sample. In our simulations, 30% of simulated genes con-
tained a difference in fold-change between one cell-type
and all others; this represented cell-type specificity. The
degree of cell-type specificity (i.e. the fold-change between
cell-types) is a variable that we adjusted in the different
iterations of the simulation. For each cell-type, we simu-
lated two conditions. For each pair of simulated conditions,
we set the estimated fold change to three. We ensure that
the fold-change between conditions does not influence the
cell-type specificity of a gene by increasing the ‘upregulated’
condition and decreasing the ‘downregulated’ condition.
This way, the genes that we simulated to have a difference
in means across conditions do not also have a difference
in means across cell-types unless specified. We set 5% of
simulated genes to be differentially expressed between
conditions in one cell-type, and another 5% of simulated
genes to be differentially expressed between conditions in
all cell-types. Finally, we simulated six replicates for each
cell-type to allow for enough variation to generate DEGs.

Our simulated bulk RNA-seq samples are a weighted sum
of the simulated cell-type specific samples. Each of the sim-
ulated replicates have counts for all five cell-types. The ex-
pression of each bulk gene is described in Equation (13).
Each time we simulate bulk RNA-seq data we designate the
proportion of each cell-type, thus controlling cell-type com-
position.

BulkCountg =
C∑

c=1

Countg,c (13)

Simulated batch effects in bulk RNA-seq data

We generated batch effects using two different strategies be-
cause batch effects may arise from many different reasons.
In both strategies, we simulated six samples, half from each

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/gencode.v31.transcripts.fa.gz
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cell-type, and replicate. (C) Schematic of evaluating scMappR with simulated data. We measure cell-type specific DEGs and bulk DEGs across conditions.
We also measure cell-type specificity by calculating the DEGs between one cell-type and all of the other cell-types. These cell-type specific DEGs become
our signature matrix. We then apply scMappR to the simulated bulk RNA-seq, DEGs, and signature matrix before evaluating our predicted cell-type
specificity against the simulated cell-type specific DEGs. (D) Barplot of the proportion of true/false positives and negatives at different degrees of cell-type
specificity. Cell-type proportions for all five cell-types are fixed at 20%. True positive is red, True negative is blue, false positive is light orange, false negative
is light blue. (E) Average improvement that cell-weighted fold-changes (cwFold-changes) have on cell-type specificity as cell-type specificity increases is
measured with a bar chart. Dark bars are the correlation cwFold-changes with cell-type specific fold-changes. Light = bars are the correlation between
cell-types (left) and a boxplot of the correlations across cell-types (right). (F) Barplot of the proportion of true/false positives and negatives in cell-types
with different cell-type proportions. Cell-type specificity is set to a fold-change of 32 between cell-type markers. (G) Average improvement that cell-weighted
fold-changes (cwFold-changes) have on cell-type specificity for every cell-type is measured with a bar chart.
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of the two simulated conditions. The first strategy repre-
sents simulated reads from two different sequencing plat-
forms, where the first batch had a sequencing bias of ‘rnaf’
and an error model of ‘illumina4’ and the second batch had
a sequencing bias of ‘cdnaf’ and an error model of ‘illu-
mina5’ using the ‘simulate experiment countmat’ function
in Polyester (41). The second strategy represents a batch ef-
fect that had a larger impact on gene expression than the
condition itself. In this second strategy, we randomly se-
lected 20% of all genes to have a fold-change difference of
four (greater than the difference in condition) in either batch
1 or batch 2. In our tests of the influence of batches on
scMappR, we fixed the cell-type specificity between the cell-
types to have a fold-change of 32, and every one of the five
cell-types contained a different proportion of the bulk sam-
ple (cell-type 1 = 1/15, cell-type 2 = 2/15, . . . , cell-type 5 =
5/15).

Generating cell-type specific differential expression in simu-
lated reads

We measure cell-type specific expression as the fold-change
between one cell-type versus all others. We scaled the fold-
change between cell-types as log2(fold-changes). If s = 0,
there is no cell-type specificity. If s < 2, cell-type speci-
ficity has a smaller fold-change than the effect of conditions,
which we are defining as our null process. If s > 2, cell-type
specificity has a larger effect than the effect of the condition.
We considered the effect of cell-type identity to be greater
than the effect of the condition as the true generative pro-
cess. When our simulations tested the influence of cell-type
composition on scMappR, we fixed simulated cell-type spe-
cific genes at a difference in fold-change of 32 (s = 5). We
considered a bulk sample consisting of all five cell-types to
be considered the true generative process. The parameters
of our simulated RNA-seq data are summarized in Supple-
mentary Tables S1 and S2.

Getting output of simulated differential analysis and changes
in parameters

Simulated RNA-seq reads were aligned to the hg38 genome
with the STAR aligner (42) with default paired-end se-
quencing parameters before being filtered for ENCODE
blacklist regions with bedtools (43). Simulated reads were
then counted using the featureCounts (44) tool with param-
eters ‘–s 1 –Q 1 –t ‘exon’. Counted reads were RPKM nor-
malized using edgeR (3). When bulk RNA-seq were sim-
ulated in two different batches (see Supplementary Meth-
ods), then simulated batches were corrected for use of the
Combat-seq within the sva R package (45,46). Differen-
tial expression within each cell-type and bulk sample was
done to measure DEGs across conditions using the Wald’s
test (2). When there were batch effects, differentially ex-
pressed genes were measured with a likelihood ratio test
with ‘batch’ as a reduced variable in DESeq2 (2). Differ-
ential expression between each cell-type and all other cell-
types was completed to identify cell-type markers. These
cell-type markers were made into a signature matrix using
the ‘generes to heatmap’ function in scMappR. We then
generated cwFold-changes of bulk DEGs with the gener-

ated signature matrix. The process of simulating, align-
ing and counting RNA-seq data before measuring cell-type
DEGs, cell-type markers, bulk DEGs, and cwFold-changes
was repeated in each iteration of scMappR’s evaluation.
We altered the cell-type specificity in the simulated cell-type
specific RNA-seq and cell-type proportions in the simulated
bulk RNA-seq in each iteration of scMappR’s evaluation
(Supplementary Tables S1 and S2).

Simulation evaluation parameters

We first define true and false positives and negatives when
we evaluate if bulk DEGs are getting assigned to cell-types
correctly. Every gene assigned to a given cell-type with the
‘cwFold-change evaluate’ function was considered positive
for that cell-type while a gene that did not map to that cell-
type was considered to be a negative. A true positive is a
cwFold-change mapping to a cell-type where the gene is
differentially expressed in the cell-type specific RNA-seq.
A false positive is a cwFold-change mapping to a cell-type
where the gene is not differentially expressed. A true nega-
tive is if the bulk DEG does not map to the cell-type and
the gene is not differentially expressed within that cell-type,
or if the gene is equally differentially expressed in all cell-
types. A false negative is if the bulk DEG does not map to
the cell-type and the gene is differentially expressed in that
cell-type (additional detail in Supplementary Tables S3 and
S4).

We then define how we measured whether the distribu-
tion of DEGs re-ordered by their cwFold-changes better
reflected true simulated cell-type specific DEGs. We corre-
lated simulated bulk DEGs to simulated cell-type specific
DEGs. Simultaneously, we correlated simulated cwFold-
changes to the same simulated cell-type specific DEGs. We
then tested if scMappR improved cell-type specificity by
asking if cwFold-changes improved the correlation between
bulk and cell-type specific DEGs across cell-types. We test
the improvement in correlation between cwFold-changes to
cell-type specific DEGs and bulk DEGs to cell-type specific
DEGs with a one-tailed paired Student’s t-test paired by
cell-type. This test is one-tailed because we are exclusively
testing for the improvement in cell-type specificity.

Generation of cell-type signature matrices from publicly
available scRNA-seq

Consistently reprocessed scRNA-seq samples were ob-
tained from bulk data in the PanglaoDB (18) project (https:
//panglaodb.se/samples.html). Briefly, PanglaoDB (18) au-
tomatically downloads mouse and human scRNA-seq data
before aligning and processing these data in a manner
specific to their sequencing platform (Drop-seq, 10X Ge-
nomics, and Start-seq) (47,48). The scMappR package pro-
vides the bioinformatic pipeline to convert any scRNA-seq
count dataset into a signature matrix with named cell-types
within scMappR’s ‘process dgTMatrix lists’ function. We
use the fold-change (non-log) output in the ‘FindMark-
ers’ function within Seurat V3 (49,50) to populate these
signature matrices. All normalization, clustering, cell-type
marker identification and cell-type labelling steps detailed
below describe the ‘process dgTMatrix lists’ function, and

https://panglaodb.se/samples.html
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how it was applied to the scRNA-seq data stored in the
PanglaoDB database (18). To generate signature matrices
from scRNA-seq count data, we removed cells with abnor-
mally high mitochondrial content (greater than two stan-
dard deviations above the mean in that given sample) (51).
Then, normalization, clustering, scaling and integration of
technical replicates were completed using Seurat V3 with
the integration anchors feature (49,50). Cell-type markers
are identified using the ‘FindMarkers’ function in Seurat
v3 (default parameters) (49,50). This function completes
differential expression (Wilcoxon’s test as default) between
each cell-type and all the other cell-types. Signature matri-
ces are populated with the rank (-log10(P-value)) to measure
enrichment of a cell-type or fold-change output to calculate
cwFold-changes. We further use these cell-type markers to
define cell-types. Cell-types were identified by extracting the
(at maximum) top 30 cell-type markers and converting each
gene symbol to human or mouse symbols when necessary
using Ensembl BioMart (52).

Our automated cell-type identification pipeline is based
on two gene set enrichment methods, namely the Fisher’s
exact test of cell-type markers and Gene Set Variation Anal-
ysis (GSVA) of the average expression of each gene per cell-
type (53–55), against two cell-type marker databases: Cell-
Marker and PanglaoDB (17,18). The CellMarker database
manually curated cell-type markers using a literature search
of over 100 000 papers and is updated four times per year
(17). The PanglaoDB database was generated with a com-
bination of manual curation, co-expression of putative cell-
type markers, and community submission (18). scMappR
automatically labeled cell-types by appending the cell-type
label of the most highly enriched cell-type from the Cell-
Marker database to the most highly enriched cell-type us-
ing the PanglaoDB database using a two-tailed Fisher’s
exact test (17,18,55). Cell-types that do not contain sig-
nificant enrichment of either database with the Fisher’s
exact test (55) were labelled unknown, however all cell-
types (including unknown) have predicted labels from the
GSVA method (53) stored as an output file. Once cell-
types were labeled, signature matrices based on rank and
fold-change were generated. scMappR reprocesses user-
provided scRNA-seq count data with the same pipeline. We
aggregated all the cell-types and cell-type markers into a
gene-set database. Each gene-set is designated with the fol-
lowing notation: ‘SRA ID: tissue: cell-type’. All the cell-
type markers within each gene list are consistently pro-
cessed. This gene-set database can be used for gene-set en-
richment using a Fisher’s exact test (55) within scMappR
and the gene-set database can be downloaded for other
gene-set enrichment analysis tools (39).

The bioinformatic pipeline used to process scRNA-seq
from count matrix data is part of the scMappR R pack-
age. Users can optionally provide their own scRNA-seq
count matrix, which is converted into a Seurat (50) object
that is then processed and converted into a signature ma-
trix using the same methods described above. Users can
additionally choose to save intermediary files generated by
scMappR to process count matrices into a signature ma-
trix. Specifically, scMappR saves the Seurat object, all cell-
type markers, and all possible cell-type labels from both
CellMarker and Panglao (using GSVA and the Fisher’s ex-

act test) (17,18,49,50,53–55). Finally, the vignette stored in
CRAN provides the functions required to convert a Seu-
rat object into a signature matrix. Together, this pipeline
is scMappR’s ‘process dgTMatrix lists’ function. It can be
used as a consistent scRNA-seq processing pipeline from a
count matrix of raw scRNA-seq data.

Processing RNA-seq data from Monaco et al., 2019

All fastq files from the peripheral blood mononuclear cells
(PBMC) dataset and 29 fluorescence activated cell sorted
(FACS) immune cell-types were obtained from GSE107011
(27) using sratoolkit (56). Samples were aligned to the hg38
genome with the STAR aligner (42) using default parame-
ters for paired-end sequencing and filtered for blacklist re-
gions. Reads were assigned to genes using featureCounts
(version 1.5.3) with parameters ‘-s 1 -Q 255 -t exon -O’.
Gene models were obtained from GENCODE v33. Reads
per kilobase per million (RPKM) were then calculated for
each gene using edgeR and principal component analysis
(PCA) was performed (3). Sex differences (N = 9 female, 4
male) were measured across the bulk PBMC dataset. Sex
differences were also measured in the experiments where
RNA-seq was completed after cell-sorting each immune
subtype (N = 2 female, 2 male). In both cases, differen-
tial expression was completed using DESeq2 (Wald’s test;
FDR adjusted P-value < 0.05 and absolute fold-change >
1.5) (2). Cell-type markers were then computed by measur-
ing differential expression of genes in each cell-type against
all others (Wald’s test; adjusted P-value < 0.05 and abso-
lute fold-change > 2). The ‘ggplot2’ and ‘ggfortify’ pack-
ages were used to generate all plots (40,57).

Processing RNA-seq data from Valle Duraes et al., 2020

All fastq files related to RNA-seq on the bulk kidney
were downloaded from ArrayExpress (E-MTAB-7957) us-
ing ‘wget’. All fastq files related to bulk RNA-seq of T-
cells and T-regulatory cells were also downloaded from Ar-
rayExpress (E-MTAB-7961) using ‘wget’. These RNA-seq
bulk kidney samples were aligned to the mm10 genome with
the STAR aligner (42) using default parameters for paired-
end sequencing and filtered for blacklist regions. Reads
were assigned to genes using featureCounts (version 1.5.3)
with parameters ‘-s 1 -Q 255 -t exon -O’. Gene models
were obtained from GENCODE M11. Samples were then
RPKM and PCA was performed (40,57). Differential ex-
pression analysis between condition (naı̈ve vs. Regenera-
tion, and naı̈ve versus Fibrosis) was performed using DE-
Seq2 (Wald’s test; FDR adjusted P-value < 0.05 and abso-
lute fold-change > 1.5) (2).

Cell-type marker enrichment from any imported gene list

When users import a generic list of genes and a tissue of
interest or a signature matrix, scMappR plots the inputted
signature matrix and the signature matrix overlapping with
the gene list using the Pheatmap R package (36). scMappR
then tests the enrichment of cell-type markers that overlap
the user’s list with a Fisher’s exact test (odds ratio > 0, FDR
adjusted P-value < 0.05) (55) while using all cell-type mark-
ers as a statistical background.
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R Package: scMappR

The scMappR R package allows users to interrogate how
different cell-types are driving DEGs within a bulk sam-
ple. scMappR contains the bioinformatic pipeline needed
to process scRNA-seq data from a count matrix to for-
mats compatible with scMappR. The rationale for creat-
ing this pipeline was to ensure scMappR could be widely
used downstream of existing bulk RNA-seq DEG anal-
yses. scMappR is currently stored on CRAN (https://
cran.r-project.org/web/packages/scMappR/index.html). A
stable release of the re-processed scRNA-seq data is
stored on Zenodo (https://zenodo.org/record/4278129#.
X87JuGhKg2w). Later releases of re-processed scRNA-
seq data that are updated with new datasets are stored
in a separate GitHub repository (https://github.com/
wilsonlabgroup/scMappR Data).

RESULTS

Summary of the scMappR R package and functionality

The primary function of scMappR is to integrate cell-type
expression and cell-type proportions to calculate a metric
that we call cell-weighted fold-changes (cwFold-changes).
cwFold-changes can be evaluated at the level of the gene to
determine which bulk DEGs are likely originating from ex-
pression in a specific cell-type. cwFold-changes can also be
evaluated at the level of the cell-type to infer the distribu-
tion of bulk DEGs within each cell-type. Grouping genes
that may be under cell-type specific regulatory control has
the potential to improve functional enrichment analysis us-
ing tools such as GSEA and g:Profiler (37,39).

We calculate and evaluate our cwFold-change metric with
the ‘scMappR and pathway analysis’ function (Figure 1).
Users input a list of DEGs, normalized counts and a sig-
nature matrix into this function. scMappR then re-weights
bulk DEGs by cell-type specific expression from the signa-
ture matrix, cell-type proportions from RNA-seq deconvo-
lution (16) and the ratio of cell-type proportions between
the two conditions to account for changes in cell-type pro-
portion (Figure 1) (see ‘Materials and Methods’ for details).
Genes containing cell-type specific differential expression
are then sorted into the cell-type driving the DEG with
the ‘cwFoldChange evaluate’ function (see ‘Materials and
Methods’ for details). The ‘cwFoldChange evaluate’ func-
tion also measures the difference in distribution between
bulk DEGs are cwFold-changes in each cell-type. Finally,
we re-order DEGs by their cwFold-changes before com-
pleting pathway enrichment (38,39). To better understand
which pathways are most impacted by cell-type specificity,
we re-order DEGs by their difference in fold-change before
and after scMappR is applied before completing pathway
enrichment.

We designed the scMappR package so that users with
DEG list obtained from bulk RNA-seq experiments can
quickly classify their list of DEGs based on the likely
cell type(s) of origin. To make this process simple we de-
signed scMappR so that the users do not need to obtain
and process their own scRNA-seq data. We incorporated
well-established scRNA-seq processing and cell-type iden-
tification packages (17,18,53,54) in databases into a single

pipeline into scMappR (see ‘Materials and Methods’ for
details). We applied this pipeline to uniformly process the
PanglaoDB (18) database, where we converted over 1000 re-
processed human and mouse scRNA-seq datasets into 331
signature matrices across over 100 tissues (Supplementary
Table S5). Users can access these signature matrices with the
‘get signature matrices’ function in scMappR. These signa-
ture matrices are directly compatible with scMappR to gen-
erate cwFold-changes. Users may also use the scMappR R
package to re-process their own scRNA-seq data with the
same pipeline where we processed the 331 signature matri-
ces by applying the ‘process dgTMatrix lists’ function to
their scRNA-seq data. This function provides more flexi-
bility than using Seurat and the Wilcoxon test exclusively
such as choosing different parameters in scRNA-seq nor-
malization (e.g. Seurat or scTransform) (49,50,58) and cell-
type marker techniques (e.g. Wilcoxon test, MAST, bimod)
(59,60).

Testing scMappR using simulated RNA-seq data

We used a series of simulations (41) to evaluate whether
scMappR properly assigns bulk DEGs to their correct cell-
type and if scMappR makes the distribution of bulk DEGs
better reflect the distribution of cell-type specific DEGs
(see ‘Materials and Methods’ section). These simulated data
provide the advantage of evaluating scMappR while con-
trolling for differential expression between conditions, cell-
type specificity between simulated cell-types and the bulk
RNA-seq sample’s cellular composition (Figure 2A–C).
Briefly, we simulated cell-type specific RNA-seq data using
five cell-types, two conditions and six replicates (60 samples
total). Simulated genes could be cell-type specific DEGs,
genes that are differentially expressed across all cell-types,
cell-type markers and genes with no differential expres-
sion (Figure 2A). We varied the degree of cell-type speci-
ficity in different iterations of the simulation. We then simu-
lated bulk RNA-seq data with two conditions and six repli-
cates (Figure 2B). We varied the cell-type proportions of the
simulated bulk samples in different iterations of the sim-
ulation. We measured cell-type specific differential expres-
sion, bulk differential expression, and cwFold-changes of
the bulk DEGs. With each parameter in cell-type specificity,
cell-type proportion, and batching strategy (Supplementary
Tables S1 and S2), we evaluated how accurately cwFold-
changes sort into cell-types with cell-type specific differen-
tial expression and if the distribution of cwFold-changes are
more highly correlated to cell-type specific DEGs than the
distribution of bulk DEGs alone (Figure 2C and Supple-
mentary Table S1).

We first tested the ability of scMappR to correctly map
DEGs when altering the degree of cell-type specificity be-
tween cell-types. We found that scMappR was able to as-
sign DEGs to the correct cell-type with a false positive rate
<5% (0–2.2%, Supplementary File S2) regardless of cell-
type proportion and cell-type specificity (Figure 2D; Sup-
plementary Figure S2A,B and File S2). We were only able
to assign DEGs to cell-types if we set the fold-change of a
cell-type marker to be >2, suggesting that our true positives
are being driven by cell-type specific expression (Figure 2D).
Similarly, the cwFold-changes were more highly correlated

https://cran.r-project.org/web/packages/scMappR/index.html
https://zenodo.org/record/4278129#.X87JuGhKg2w
https://github.com/wilsonlabgroup/scMappR_Data
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to cell-type specific DEGs than bulk DEGs alone (Figure
2E and Supplementary Figure S2C). These findings were
consistent within the bulk sample in cell-types that were un-
common (5–7% of bulk sample) and moderately common
(20–23% of bulk sample; Figure 2D,E and Supplementary
Figure S2A,B).

Our simulations interrogated if scMappR can detect
DEGs when we fix cell-type specificity (s = 5) and vary
cell-type proportions within a bulk sample (Supplementary
Tables S3 and S4). We found that scMappR maintained
similar ratios between true and false positives at all cell-
type proportions except for the rarest cell-type (1/15 of the
bulk sample) that had fewer true positives (Figure 2F). The
decrease in the true positive rate of the rarest cell-type is
likely driven by fewer cell-type specific DEGs being detected
as being differentially expressed in the bulk sample. Sim-
ilarly, the cwFold-changes of simulated bulk DEGs were
more highly correlated to simulated cell-type specific DEGs
compared to the simulated bulk DEGs alone regardless of
cell-type proportion (P paired t-test = 3.91 × 10−4, Rho
increase = 0.0848). (Figure 2G). To determine the impor-
tance of estimated cell-type proportion on correctly assign-
ing DEGs to their cell-type, we tested a null case where the
entire bulk sample originated from cell-type 1. In this in-
stance, the other four cell-types not contained in the bulk
sample had estimated cell-type proportions between 4.04
and 6.34%, and a false positive rate of 7.12% (Supplemen-
tary Figure S2D). This analysis suggests that scMappR can
be used to test the purity of cell-type specific RNA-seq.

To investigate the implications that batch effects in the
bulk RNA-seq data could have on scMappR results, we
simulated bulk RNA-seq data with a batch effect that is
weaker than the condition effect, and a batch effect that is
stronger than the condition effect. Overall, we found that
in both the weaker and stronger batch effect, we did not
find a significant increase in false positives or false nega-
tives compared to when there was no simulated batch effect
in the bulk RNA-seq data (Supplementary Figure S3A,C).
When using a weaker batch effect, we found that the distri-
bution of cwFold-changes remained more highly correlated
to cell-type specific DEGs than bulk DEGs alone (P-paired
t-test = 0.00175, Rho increase = 0.0549) (Supplementary
Figure S3B). When using a stronger batch effect, the distri-
bution of cwFold-changes was not more highly correlated
to cell-type specific DEGs than bulk DEGs alone (P-paired
t-test = 0.111, Rho increase = 0.0129; Supplementary Fig-
ure S3D).

DEG lists re-ranked by scMappR reflect cell-type-specific
differential expression

An ideal benchmark for scMappR is a dataset that con-
tains RNA-seq of a bulk tissue, with at least two conditions,
where DEGs can be calculated from the heterogeneous bulk
tissue, as well as from the purified cell-types comprising the
bulk tissue. Monaco et al., 2019 produced such a dataset
consisting of bulk RNA-seq in peripheral blood mononu-
clear cells (PBMC) (N = 13) together with RNA-seq of 29
cell-types (N = 4 cell-type) isolated from PBMCs (27). This
dataset avoids some of the inherent limitations of calculat-
ing DEGs with scRNA-seq alone such as gene dropout and

batch effects due to the limited number of scRNA-seq repli-
cates per run (6,7). Monaco et al., 2019 used males and fe-
males in the bulk RNA-seq (N = 9 male, 4 females) and in
the cell-sorted RNA-seq analyses (N = 2 males, 2 females),
allowing for cell-type specific measurements of sex differ-
ences (27) (Figure 3A, B). To begin, we built a signature ma-
trix using these cell-sorted RNA-seq data by calculating dif-
ferential expression of each cell-type (sexes combined) ver-
sus all others cell-types with DESeq2 (2) (see ‘Materials and
Methods’ section).

Through bulk RNA-seq analysis, we identified 59 DEGs
between sexes in PBMCs (Wald’s test; FDR adjusted P-
value < 0.05 and absolute fold-change > 1.5) (Supple-
mentary Figure S3A). RNA-seq deconvolution tools in-
cluding DeconRNA-seq function optimally when there are
more samples than cell-types (16,61). Therefore, we tested
scMappR with the top 12 most variable cell-types (one
fewer than the 13 bulk samples). We then tested if the fold-
changes of these 59 sex-biased DEGs were more highly cor-
related to the same 59 DEGs genes in these 12 cell-types
using Spearman’s correlation (Figure 3C). We found that
for every cell-type, scMappR’s cwFold-changes had a higher
or equal correlation with cell-type specific DEGs than the
bulk correlation with cell-type specific DEGs (average rho
increase = 0.0471, one-tailed paired Student’s t-test, P =
2.00 × 10−4) (Supplementary File S3). Applying the ‘cw-
FoldChange evaluate’ function to the 59 sex-biased DEGs
identified 40 genes with cell-type specificity in at least one
cell-type (Supplementary Figure S4). On average, 80% of
the DEGs assigned to each cell-type have an absolute fold-
change > 1.5 in that cell-type (mean assignment = 80.0%,
sd assignment = 18.9%) (Supplementary File S4). Overall,
scMappR significantly increased the correlation between
bulk DEGs and cell-type specific DEGs in a study that al-
ready contained a high correlation between cell-type spe-
cific DEGs and bulk cell-type specific differential expression
(Rho = 0.535–0.777).

We next tested whether genes that are differentially ex-
pressed in every cell-type falsely influence the cell-type
specificity of cwFold-changes. Genes mapping to the Y-
chromosome are inherently male biased, and XIST and
TSIX are inherently female biased. We removed these 18
DEGs, re-calculated cwFold-changes and re-calculated the
correlation between cwFold-changes and cell-type specific
fold-changes versus bulk fold-changes versus cell-type spe-
cific fold-changes. We found the overall correlation be-
tween cwFold-changes and cell-type specific DEGs was still
higher than the correlation between bulk DEGs and cell-
type specific DEGs (average rho increase = 0.0670, one-
tailed paired Student’s t-test, P = 0.00844), showing that
ubiquitously expressed DEGs do not improperly influence
scMappR’s cwFold-changes.

We next tested whether scMappR is robust to any com-
bination of cell-types, and not just the 12 most variable
cell-types. Monaco et al., 2019 contained 13 bulk RNA-
seq (PBMC) samples, allowing us to test scMappR us-
ing 12 cell-types at once (16,61). We randomly sampled
12/29 cell-types and re-calculated the P-value and change
in correlation for 100 permutations to ensure that our re-
sults are not biased by the cell-types that we selected. This
permutation-based analysis showed that regardless of the
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RNA-seq of 29 cell-sorted immune cell-types and 
bulk peripheral blood mononuclear cells (PBMCs)
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cell-types selected, there was always a statistically signifi-
cant increase in cell-type specificity (mean P-value = 1.83 ×
10−4, mean Rho increase = 0.0545) (Supplementary Figure
S5). scMappR’s cwFold-changes had a higher correlation to
cell-type specific DEGs than bulk DEGs had with cell-type
specific DEGs for two reasons. First, scMappR increased
the rank of differentially expressed cell-type markers (Sup-
plementary Figure S5). Second, scMappR decreased the
rank of DEGs that were not expressed in a particular cell-
type (Supplementary Figure S5). Together, this analysis
showed that scMappR can significantly improve the corre-
lation of bulk DEGs to cell-type specific DEGs.

scMappR reveals cell-type specific DEGs during mouse kid-
ney regeneration

After benchmarking scMappR, we tested how scMappR
can be used to identify cell-types that contribute to DEGs
generated from a representative, well-designed bulk RNA-
seq study of a heterogeneous tissue. To do this, we reana-
lyzed data from Valle Duraes et al., 2020 (14) who investi-
gated gene expression changes involved in mouse kidney re-
generation before and after injury (14). Kidney regeneration
involves multiple cell-type specific processes (62–65), and
importantly Valle Duraes et al., 2020 used bulk RNA-seq in
conjunction with histopathology, cell sorting, and scRNA-
seq to implicate T-Cell recruitment as a critical part of the
regeneration process (14). Valle Duraes et al., 2020 used
a bulk RNA-seq study design (14) that contains 50 total
samples split into fibrosis (using wild-type mice) and regen-
eration (using B6.Cg-Foxp3tm2(EGFP)Tch/J mice) mod-
els after injury (days 0, 3, 7, 14, 28 and 42) (N = 3–4 per
condition/timepoint) (Supplementary Figure S6). We rea-
soned that this is an ideal model RNA-seq study to test
scMappR as Valle Duraes et al., 2020 is well-powered, and
includes detailed experimental follow-up of cell-type spe-
cific responses (14).

For simplicity, we focused on the comparison of the ini-
tial two timepoints as these contained the most dramatic
changes (day 0 (‘naı̈ve’) versus day 3 (injury induced ‘re-
generation’). For every comparison, all samples were used
in the RNA-seq deconvolution step of scMappR’s gener-
ation of cwFold-changes (all time periods in regeneration
and fibrosis). In conjunction, a kidney scRNA-seq dataset
from Tabula Muris, 2018 (28) was preprocessed and stored
in scMappR. We then used scMappR to identify which cell-
types are involved in kidney regeneration using both bulk
and scRNA-seq datasets.

After reprocessing data in Valle Duraes et al., 2020 (14),
we identified 2855 DEGs between the ‘naı̈ve’ and ‘regener-
ation’ groups. We found that 394 of these DEGs were kid-
ney cell-type markers in Tabula Muris, 2018 (28) (Figure
4A). Using scMappR, we then asked which cell-types had
the highest cwFold-changes in DEG comparisons between
naı̈ve day 0 and regeneration day 3 groups in the whole kid-
ney. We found clear signatures of fibroblasts, smooth mus-
cle, and endothelial cells, all of which have well-documented
roles in kidney regeneration (62–65) (Figure 4B). A subset
of immune (‘Macrophage, dendritic’) specific DEGs were
also found (Figure 4B, Table 1). The immune-specific DEGs
were less prevalent than other cell-types (Figure 4B), likely

due to a lower proportion of immune cells in the kidney
(66).

The immune ‘Macrophage, dendritic’ cell-type contains
430 cell-type markers that enrich for many immune related
processes (immune system processes: precision = 0.537,
one-tailed hypergeometric test FDR adjusted P-value =
3.65 × 10−87; innate immune response: precision = 0.223,
one-tailed hypergeometric test FDR adjusted P-value =
1.78 × 10−38; adaptive immune response: precision = 0.184,
one-tailed hypergeometric test FDR adjusted P-value =
7.95 × 10−36; T-cell activation: precision = 0.161, one-
tailed hypergeometric test FDR adjusted P-value = 2.10 ×
10−32). Furthermore, the original Tabula Muris, 2018 study
labeled this cell-type population as ‘Macrophage and Nat-
ural Killer’ (28). Interestingly, many cells within this popu-
lation contain a high expression of naı̈ve T-cell markers like
Ccr7 and Nkg7 (14,28). These results are unsurprising as
T-cells are present in the uninjured kidney (67). Therefore,
although this cluster was given the ‘Macrophage, dendritic’
label, it might be better interpreted as a cell-type represent-
ing the heterogeneous immune-cell population in the Tabula
Muris, 2018 (28) kidney.

Overall, the top five most significant pathways of these re-
ranked DEGs showed a common regeneration phenotype
across different cell-types at the pathway level (Supplemen-
tary Figure S7). For each cell-type, between 52 and 59%
of the pathways were shared between the enriched path-
ways derived from bulk differential expression compared to
pathways derived from genes re-ranked by cwFold-changes
(Supplementary Table S6). Pathways that were only iden-
tified in the cell-type specific pathway analyses but not in
bulk pathway enrichment were biologically relevant. One
such pathway is the ‘Immune System’ gene ontology, which
was not significantly enriched with the bulk DEG list but
was highly enriched when re-ranking the same DEGs but
by their ‘Macrophage, dendritic’ cwFold-changes (FDR ad-
justed P-value = 1.62 × 10−6). The top five most significant
pathways identified by ordering genes based on their rank-
change between bulk DEGs and cwFold-changes (Supple-
mentary Figure S8) were related to their cell-type, includ-
ing significant enrichment of immune related pathways in
the ‘Macrophage, dendritic’ cell-type (immune response:
precision = 0.125, intersection of DEGs and pathway =
156 genes, one-tailed hypergeometric test FDR adjusted P-
value = 6.67 × 10−19, cytokine–cytokine receptor interac-
tion: precision = 0.0320, intersection of DEGs and pathway
= 37 genes, one-tailed hypergeometric test FDR adjusted
P-value = 3.01 × 10−7, phagosome: precision = 0.0240, in-
tersection of DEGs and pathway = 30 genes, one-tailed hy-
pergeometric test FDR adjusted P-value = 1.82 × 10−5,
and phagocytosis: precision = 0.126 intersection of DEGs
and pathway = 30 genes, one-tailed hypergeometric test
FDR adjusted P-value = 3.32 × 10−5) (Figure 4C). Taken
together, scMappR increases the rank of cell-type specific
DEGs, thus allowing for biologically relevant cell-type spe-
cific pathway analysis.

We then investigated the potential biological pathways
that the 2855 DEGs between naı̈ve (day 0) and regeneration
(day 3) were assigned to the immune specific ‘Macrophage,
dendritic’ cell-type. Of the 2855 bulk DEGs between naı̈ve
(day 0) and regeneration (day 3), 431 were cell-type specific
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Table 1. Over-representation of cell-type markers of consistently processed scRNA-seq data in over 100 mouse tissues when testing 34 T-cell markers

SRA ID Tissue

Label from
CellMarker

database
Label from Panglao

database

Number of
cell-type
markers

Number of
overlapping

cell-type
markers

Odds
ratio

Adjusted
P-value

SRA653146 Trachea Lymphocyte Nuocytes 122 15 83.1 2.47 × 10–18

SRA667466 Cortex 3 Lymphocyte Nuocytes 122 15 83.1 2.47 × 10–18

SRA653146 Muscle Myeloid cell Natural killer cells 88 13 90.6 1.08 × 10–16

SRA667466 Dorsal midbrain Myeloid cell Natural killer cells 88 13 90.6 1.08 × 10–16

SRA748166 Cardiac tissue T cell Natural killer cells 132 13 60.2 9.58 × 10–15

SRA801845 Cardiac progenitor cells T cell Natural killer cells 132 13 60.2 9.58 × 10–15

SRA638923 Small intestine Immune cell Natural killer cells 92 11 66.9 4.40 × 10–13

SRA711739 Embryonic fibroblasts Epithelial cell Natural killer T cells 60 10 89.5 4.40 × 10–13

SRA757237 Bone marrow Epithelial cell Natural killer T cells 60 10 89.5 4.40 × 10–13

SRA653146 Spleen T cell Thymocytes 68 10 78.9 1.03 × 10–12

in at least one cell-type and 165 DEGs were assigned to
the immune specific ‘Macrophage, dendritic’ cell-type. The
most enriched pathway for these DEGs is the ‘immune re-
sponse’ pathway (immune response: precision = 0.475, in-
tersection of DEGs and pathway = 66 genes, one-tailed hy-
pergeometric test FDR adjusted P-value = 5.73 × 10−36)

and 28 genes were associated with T-cell activation (T-cell
activation: precision = 0.178, intersection of DEGs and
pathway = 28 genes, one-tailed hypergeometric test FDR
adjusted P-value = 3.24 × 10−15). Some of these genes in-
clude immune-system regulators involved in kidney fibro-
sis and regeneration including Ccr7, Ccr2, Vista and Tgfb1
(62,68–70).

In their original manuscript, Valle Duraes et al., 2020
FACS-sorted (71) T-cells and T-regulatory cells (14) with
the naı̈ve and regenerating kidney samples before complet-
ing RNA-seq and differential analysis (Figure 5A). These
experiments allowed us to investigate the extent that their
bulk DEGs that scMappR assigned to the immune cell-
type overlapped with DEGs directly measured in T-cells
and T-regulatory cells (Figure 5B) (Supplementary File 5).
Of the 2855 bulk DEGs between naı̈ve (day 0) and regen-
eration (day 3), 431 were cell-type specific in at least one
cell-type and 165 DEGs were assigned to the immune spe-
cific ‘Macrophage, dendritic’ cell-type. Of these 165 DEGs,
28 were associated with T-cell activation (T-cell activation:
precision = 0.178, intersection of DEGs and pathway =
28 genes, one-tailed hypergeometric test FDR adjusted P-
value = 3.24 × 10−15). Some of these genes include immune-
system regulators involved in kidney fibrosis and regenera-
tion including Ccr7, Ccr2, Vista and Tgfb1 (62,68–70). We
then compared the 165 immune-specific ‘Macrophage, den-
dritic’ mapping DEGs to the DEGs measured in T-cells and
T-regulatory cells directly. We found that 81 DEGs over-
lapped between the bulk DEGs mapped to immune cells
(165 genes) and DEGs measured in T-cells (3074 genes) di-
rectly (odds ratio = 2.76, FDR adjusted P-value = 3.87
× 10−11) (Figure 5C). This overlap is primarily driven by
regeneration biased DEGs Figure 5D). We found that 29
DEGs overlapped between the bulk DEGs mapped to im-
mune cells and DEGs measured in T-regulatory cells di-
rectly (Odds Ratio = 2.35 FDR adjusted P-value = 5.23
× 10−4) (Figure 5D). Similar to what was observed for T-
cells, this overlap is primarily driven by regeneration-biased
DEGs (Figure 5F). Together, we showed that scMappR as-

signed specific bulk DEGs to the correct cell-type in real
RNA-seq data.

We evaluate how bulk RNA-seq sample size, RNA-seq
deconvolution and scRNA-seq normalization can influence
cwFold-changes (see Supplementary Methods and Sup-
plementary Figure S9). Briefly, by re-calculating cwFold-
changes with seven total samples, we found that scMappR
calculated cwFold-changes with the same rank-order of
DEGs within and across cell-types if there are more
cell-types than samples (Supplementary Table S7). We
found that in this dataset RNA-seq deconvolution using
DeconRNA-seq, WGCNA and DCQ had no influence on
the order of DEGs within a cell-type. These differences in
RNA-seq deconvolution approaches did influence the rank-
order of cell-types within a DEG because of the influence
that RNA-seq normalization and RNA-seq deconvolution
have on cell-type proportions. scRNA-seq processing with
Seurat V3 versus scTransform inherently influenced how
scMappR would calculate cwFold-changes because they
identified a different number of clusters (i.e. cell-types). In
conclusion, scMappR allows for DEGs normalized RNA-
seq data, and processed scRNA-seq data from any method,
how these data are pre-processed can influence the gener-
ated cwFold-changes. Proper data-preprocessing is there-
fore important for the most accurate results.

scMappR: projection of a generic gene list onto scRNA-seq
data

We also designed scMappR as tool that can complete
traditional enrichment gene-set enrichment of a list of
genes (e.g. a list of putative genes uncovered by a genome
wide association study for a complex trait). We curated
all of the cell-types and cell-type markers from the 331
signature matrices into a gene-set database. The ‘tis-
sue by celltype enrichment’ function allows for gene set
enrichment of a gene list on scMappR’s curated gene-set
database. This gene-set database has the advantage of using
every cell-type marker originating from a consistent bioin-
formatic analysis. Alternatively, ‘tissue scMappR internal’
and ‘tissue scMappR custom’ provide a more hypothesis
driven approach where users can ask if their list of genes
are more likely to be expressed in one cell-type compared
to other cell-types in the same tissue based on the over-
representation of cell-type markers.
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Figure 5. Comparison of bulk DEGs involved in kidney regeneration mapping to immune cells by scMappR with DEGs involved in kidney regeneration
identified from FACS sorted T-cells and T-regulatory cells. (A) Volcano plots of DEGs between a naı̈ve and regenerating kidney in FACS sorted T-cells and
T-regulatory cells. (B) Overview of cwFold-changes in 2855 DEGs. Rows are cell-types and columns are DEGs. Numbers on the left side of the heatmap
are the number of DEGs significantly mapping to each cell-type. (C) Enrichment of DEGs identified in T-cells on DEGs mapping to each cell-type. (D)
Scatterplot of the cwFold-changes mapping to the ‘Macrophage, Dendritic’ cell-type (y-axis) and DEGs from FACS-sorted T-cells. (E) Enrichment of DEGs
identified in T-regulatory cells on DEGs mapping to each cell-type. (F) Scatterplot of the cwFold-changes mapping to the ‘Macrophage, Dendritic’ cell-type
(y-axis) and DEGs from FACS-sorted T-regulatory cells. Bulk, bulk kidney; MP, Macrophage, Dendritic; JG-S, Juxtaglomerular, Stem; Peri, Pericyte; FB,
Fibroblast; DT2, Distal Tubule 2; U1, Unknown 1; FB-Endo, Fibroblast-Endothelial; DT1, Distal Tubule 1; JG-PT, Juxtaglomerular, Proximal tubule;
U2, Unknown 2; Endo, Endothelial.

In addition to disentangling the cell-type specific role of
bulk DEGs, scMappR can facilitate the understanding of
cell-type specific expression in any list of genes. We tested
the cell-type enrichment for the 2855 DEGs measured be-
tween naı̈ve day 0 and regeneration day 3 in the kidney
across all the cell-types and cell-type markers stored in
scMappR (see ‘Materials and Methods’ section). The top
ten most significantly enriched cell-types were ‘proliferating
cells and gamma delta T cells’ (Supplementary Table S8).
To characterize the CD4+ scRNA-seq dataset, Valle Duraes

et al., 2020 (14) utilized a curated set of 34 T-cell marker
genes (72). We asked if scMappR in combination with our
uniformly processed scRNA-seq data would also consider
these as T-cell marker genes. Of the top ten most enriched
cell-types, all ten were immune cell-types and four out of ten
were from cell-types labelled as T-cells (Table 1).

In addition to testing lists of genes across compendi-
ums of scRNA-seq data, scMappR is useful for interrogat-
ing a specific, biologically relevant tissue. This approach is
valuable when users have a list of genes from a particular
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Table 2. Over- and under-representation of kidney cell-type markers from scRNA-seq data generated by Tabula Muris, 2018 when testing 34 T-cell markers

Cell Type

Total number of
cell-type markers in
Tabula Muris, 2018

Odds
ratio

Adjusted
P-value

Number
of genes T-cell marker genes

Macrophage, dendritic 430 20.9 0.00115 10 Klf2, Rgs2, Ccl4, Cd83, Nkg7, C
cl5, Ccr7, Sell, Ifng, Cd7

Endothelia 560 0.138 0.169 1 Klf2
Fibroblasts 548 0.317 0.793 2 Klf2, Gata3
Distal tubule 48 2.67 0.927 1 Gata3
Proximal tubule, juxtaglomerular 23 0.00 1.00 0
Distal tubule1 111 0.00 1.00 0
Unknown 49 0.00 1.00 0
Pericyte 49 0.00 1.00 0
Fibroblast, endothelia 43 0.00 1.00 0
Unknown1 3 0.00 1.00 0
Stem, juxtaglomerular 23 0.00 1.00 0

tissue but cell-type proportions cannot be integrated with
scRNA-seq expression (e.g. genes mapping to ChIP-seq
peaks) (73,74). As an example, we compared the 2855 DEGs
between naı̈ve kidney and kidney regeneration (3-h post in-
jury) against the Tabula Muris, 2018 (28) kidney scRNA-
seq study. We found an over-representation of the immune
(‘Macrophage Dendritic’) cell-type in the upregulated (re-
generation biased) DEGs (FDR adjusted P-value = 1.43 ×
10−5, odds-ratio = 1.86) and an under-representation of the
same cell-type in the downregulated (naı̈ve biased) DEGs
(FDR adjusted P-value = 4.23 × 10−5, odds-ratio = 0.33)
(Supplementary Table S9). Since the 34 T-cell markers ex-
clusively enriched for the immune (‘Macrophage, dendritic’)
cell-type (FDR adjusted P-value = 0.00115, odds-ratio =
20.9) (Table 2), we suggest that scMappR did detect evi-
dence of T-cell infiltration which Valle Duraes et al., 2020
experimentally validated in their study (14). Overall, our re-
sults show that scMappR can calibrate genes from a rep-
resentative RNA-seq study design and detect biologically
relevant cell-type specific enrichments from gene lists using
compendiums of scRNA-seq data.

DISCUSSION

scMappR is an R package designed for the primary pur-
pose of estimating which cell-types contribute to a list of
DEGs from bulk RNA-seq. scMappR integrates both cell-
type expression and cell-type proportion to generate cell-
type specificity scores (cwFold-changes). We showed using
simulated and real RNA-seq data that scMappR correctly
assigns bulk differentially expressed to a cell-type(s) where
the gene is differentially expressed (Figures 2, 4 and 5).
Re-ranking differentially expressed genes by their cwFold-
changes reflects the distribution of DEGs within a cell-type
and can also improve cell-type specific pathway analysis. We
showed that the distribution of cwFold-changes are more
similar to cell-type specific DEGs in both simulated and
real data (Figures 2 and 3). Computing cwFold-changes on
DEGs across kidney regeneration allowed for the evalua-
tion of the cell-types from the measured bulk DEGs and
for cell-type specific pathway analysis (Figures 4 and 5).
scMappR can be performed in many experimental contexts
and should provide valuable cell-type specificity to a list of
DEGs.

The general usability of scMappR with bulk RNA-seq
analysis is facilitated in two ways. First, scMappR stores
consistently processed mouse and human signature matri-
ces for users to choose from. Second, scMappR contains
the bioinformatic pipelines that allow users to reprocess any
scRNA-seq count dataset into a signature matrix. There are
thousands of viable scRNA-seq processing pipelines (75),
and to accommodate this, scMappR allows users to input
their own signature matrix, scRNA-seq count data or pro-
cessed scRNA-seq dataset. From there, scMappR has func-
tions to convert this data into a signature matrix compatible
with scMappR’s cwFold-change generation.

ScMappR improves the cell-type specificity of DEGs
measured with traditional bulk RNA-seq analysis, but it
is not a tool designed to detect de novo DEGs. Methods
such as BSeq-sc (25) and csSAM (4) aim to identify de novo
DEGs that were not originally detected in bulk RNA-seq
by leveraging estimated cell-type proportions, but not cell-
type specificity. BSeq-sc (25) identifies de novo DEGs by us-
ing estimated cell-type proportions as a covariate of differ-
ential analysis before applying csSAM, a least-squares re-
gression and empirical false discovery rate (4). BSeq-sc (25)
thus requires a larger sample size (e.g. 82 samples for three
cell-types) to detect de novo DEGs. In contrast, scMappR
is designed to work with typically RNA-seq study designs
with the main caveat being that the number of samples used
needs to exceed the number of cell-types used for the decon-
volution analysis. If users need to pre-select cell-types for
scMappR, picking cell-types that are abundant within the
bulk sample and cell-types with large differences in gene ex-
pression from one another may lead to a higher accuracy of
mapped cwFold-Changes (Figure 2).

One limitation of scMappR is that it must use signature-
matrix based RNA-seq deconvolution tools to complete
the normalization step in generating cwFold-changes.
Signature matrix-based RNA-seq deconvolution tools
are also convenient for generating cwFold-changes be-
cause of their computational efficiency. When calculat-
ing cwFold-changes, the number of times we estimate
cell-type proportions is the number of DEGs + 1.
We provide two ways to evaluate if the RNA-seq de-
convolution completed in scMappR is compatible with
the user’s bulk RNA-seq experiment. First, the ‘com-
pare deconvolution methods’ function evaluates the dif-
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ferences in cell-type proportions between the three RNA-
seq deconvolution tools in scMappR DeconRNA-seq (16),
DCQ (29) and WGCNA (30), and optionally user sup-
plied cell-type proportions. Second, cell-type proportions
from any nonsignature matrix based deconvolution method
(e.g. xCell, cell-population mapping) (34,35) or empirically
measured cell-type proportions may be used in the ‘cw-
FoldChange evaluate’ function (Equation 12). This way, a
cwFold-change can only be assigned to a cell-type if its cell-
type specificity passes all thresholds and is greater than the
researcher supplied cell-type proportions.

scMappR leverages scRNA-seq data to characterize the
cell-type specificity of a list of bulk DEGs while providing a
cell-type marker database to test the over-representation of
cell-type markers in any gene list. Currently, single-cell ge-
nomic technologies are evolving and expanding to include
new assays such as a single-cell assay for transposable ac-
cessible chromatin sequencing (scATAC-seq). (76,77) and
single cell DNA methylation (DNAm) (78,79), scRNA-
seq across many biological conditions with replicates, and
single-cell genomics with fewer technical limitations. As
these methodologies improve, tools like scMappR that aid
in integrating bulk and single-cell differential genomics will
become increasingly important.

In summary, we have shown that scMappR can accu-
rately estimate which cell-types contain DEGs identified
from bulk data. scMappR also has the potential to uncover
biological signals that may have otherwise been masked in
traditional bulk differential analysis. The scMappR method
is stored in a user-friendly R package that provides sup-
plementary pipelines to support users with diverse experi-
mental designs and sample sizes. Overall, scMappR should
be easy to incorporate into existing RNA-seq pipelines and
serve as a facile way to incorporate scRNA-seq data into
differential gene expression analyses.

DATA AVAILABILITY

The scMappR R package is available at CRAN (sta-
ble release) https://cran.r-project.org/web/packages/
scMappR/index.html. The scMappR developmental
version is available on GitHub https://github.com/
wilsonlabgroup/scMappR Data. All code and files to
generate figures and tables can be found on figShare
(https://figshare.com/s/3b5cfb597a0b3bc2801c).
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