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Abstract

Objective: Neurodegenerative diseases affect millions of families around the world, while various wearable sensors and cor-
responding data analysis can be of great support for clinical diagnosis and health assessment. This systematic review aims to
provide a comprehensive overview of the existing research that uses wearable sensors and features for the diagnosis of
neurodegenerative diseases.

Methods: A systematic review was conducted of studies published between 2015 and 2022 in major scientific databases such
as Web of Science, Google Scholar, PubMed, and Scopes. The obtained studies were analyzed and organized into the process
of diagnosis: wearable sensors, feature extraction, and feature selection.

Results: The search led to 171 eligible studies included in this overview. Wearable sensors such as force sensors, inertial
sensors, electromyography, electroencephalography, acoustic sensors, optical fiber sensors, and global positioning systems
were employed to monitor and diagnose neurodegenerative diseases. Various features including physical features, statistical
features, nonlinear features, and features from the network can be extracted from these wearable sensors, and the alteration
of features toward neurodegenerative diseases was illustrated. Moreover, different kinds of feature selection methods such
as filter, wrapper, and embedded methods help to find the distinctive indicator of the diseases and benefit to a better diag-
nosis performance.

Conclusions: This systematic review enables a comprehensive understanding of wearable sensors and features for the diag-
nosis of neurodegenerative diseases.
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Introduction
The number of patients affected with neurodegenerative dis-
eases (NDDs) increased rapidly in the last few decades,
which brings an adverse impact on society and the
economy.1 In general, NDDs include Alzheimer’s disease
(AD), Parkinson’s disease (PD), multiple sclerosis (MS),
amyotrophic lateral sclerosis (ALS), and Huntington’s
disease (HD). NDDs tend to be progressive, and there is
no cure for most of them. Accurate diagnosis of NDDs as
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early as possible can help patients to obtain preventive mea-
sures even before the occurrence of irreversible brain
damage.

Each NDD is heterogeneous in clinical representations,
though there are often overlaps.2 Symptoms of NDDs on
motor behavior are as follows3: AD has hypokinesia,
apraxia, and abnormalities in walking and trunk move-
ments4; PD displays the symptoms of resting tremor, rigid-
ity, bradykinesia, and postural instability,5 and the
bradykinesia also existed in eye movement6; MS shows
motor weakness, spasticity, ataxia, and sensory disturb-
ance7; ALS has the perturbations in the fluctuation dynam-
ics, altered gait rhythm, weakness in legs, feet, or ankles8;
HD has uncontrolled movements, emotional problems, psy-
chiatric disorders, and loss of thinking abilities.9 Moreover,
depression symptoms,10 motor disorders,11 as well as
speech alterations are common in NDDs.

Evaluation of health state and diagnosis of NDDs in
most clinics today still rely on the observation-based assess-
ment by clinicians. Thus, the measurement-based diagnosis
and treatment of NDDs have attracted interdisciplinary
research interest. The objective diagnosis approaches of
NDDs are mostly based on neuroimaging, cognitive per-
formance tests, language features, molecular and genetic
data, neurophysiological and morphological biomarkers,
and clinical records.12,13 Utilizing a simple and reliable
wearable system provides a possibility for predicting
NDDs in daily life. In addition, both the lack of resources
for face-to-face medical facilities and the COVID pandemic
requires the remote diagnosis and monitoring of patients
with NDDs in daily life.

Wearable sensors are widely employed for their light-
weight, non-invasive, and real-time monitoring-supported
abilities.14 They provide objective, accurate, and reprodu-
cible measurements that can complement the use of trad-
itional methods.15 Based on data collected from wearable
sensors, machine learning methods were applied for the
detection of pathologies.16 Thus, the recent advances in
wearable sensors for biomedical applications17,18 promise
smart portable, ingestible, and implantable devices for
human health monitoring and disease management.19

The wearable data were illustrated by the features for the
final diagnosis of NDDs.20 Wearable sensors applied to PD
for early diagnosis at home and long-term monitoring were
achieved by features from tremors, body motion analysis,
and motor fluctuations (ON–OFF phases).21 Handwriting
analysis to support the diagnosis of AD, PD, and mild cog-
nitive impairments was organized by modeling, tasks, and
feature analysis.22 During these mentioned diagnoses, fea-
tures were extracted from the wearable data, and then the
distinctive features were selected to feed into the traditional
machine learning model to diagnose the health state. With
the selected features, the performance of traditional
machine learning can be improved since features that are
irrelevant, redundant, or noisy are eliminated.

Prior reviews focused on either wearable sensors, diag-
nosis methods, or specific diseases, respectively, while
the process of how and what features are extracted and
selected from different wearable sensors for the diagnosis
of NDDs has not been reviewed systematically.
Accordingly, the primary objective of this systematic
review is to screen the current studies and provide a com-
prehensive understanding of different wearable sensors
and their feature extraction and selection for the diagnosis
of NDDs. Therefore, three specific questions were
addressed: (1) What kinds of wearable sensors are most fre-
quently used in NDDs diagnosis? (2) Which features are
developed for the recognition of NDDs? (3) How features
are selected for the efficient diagnosis of NDDs?

Method

Search strategy

This review was conducted following the PRISMA state-
ment guidelines.23 Though a protocol for this study has
been prepared internally, it has not been registered else-
where, and the PROSPERO database has been checked to
confirm the originality of the study.

Electronic searches on the Web of Science, Google
Scholar, PubMed, and Scopeswere performed. The database
searches were completed in September 2022. Searched
examples included: “neurodegenerative disease,” “diagno-
sis,” “wearable sensors,” “feature extraction,” and “feature
selection.” The defined search duration includes articles
published between 2015 and September 2022. Additional
studies were also identified by the reference lists of articles.

Eligibility criteria

The identifying, screening, and selecting of studies for
inclusion were conducted as shown in Figure 1. To be iden-
tified for inclusion, studies needed to meet the following
criteria: they had to be original research written in
English, and published in a peer-reviewed journal or con-
ference. Titles and abstracts were screened and excluded
if they: (a) were not relevant to the topic; (b) were dupli-
cates; and (c) were similar to selected studies. Then the
full texts of the identified studies were screened and
studies that used unwearable sensors and without features
were excluded. Finally, the studies were excluded if they
use the same sensors and features. Each reviewer independ-
ently assessed or validated the selected studies. The entire
process was carried out manually, without the use of any
automation tools.

To provide a comprehensive overview of wearable
sensors and their features for the diagnosis of NDDs,
the obtained papers were reviewed and organized in the
way of a computer-aided diagnosis process as shown in
Figure 2. Various wearable sensors collect different
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types of data, and from these data, the features are
extracted and then selected, finally the selected features
are inputted into the machine learning model to recognize
the health state.

Results

Wearable sensors and their application for NDDs
diagnosis

Wearable sensors are generally placed on different parts of
the human body that do not hinder natural movement, and
the captured data are transmitted through wireless connec-
tions or collected on onboard storage devices. With the
rapid development of electronics, biocompatible materials,
and nanomaterials, wearable devices have evolved in the
form of accessories, integrated clothing, body attachments,
and body inserts.24,25 As for NDDs diagnosis and monitor-
ing, various types of sensors can be applied to completely
and continuously obtain human activity signals such as

plantar pressure, lower limb posture,26 joint bending,27

and so on 28 as shown in Figure 3.

Pressure and strain sensors. Wearable force sensors are
flexible or with a flexible substrate to impart mechanical
stability to the active material. Force sensors are divided
into pressure and strain sensors due to the applied compres-
sion or tensile. The transform principles of pressure and
strain sensors are diverse such as piezoresistive, piezoelec-
tric, capacitive, and triboelectric.29

Piezoresistive sensors. Piezoresistivity transforms the
mechanical deformations caused by the applied pressure
or strain to electrical resistance variations. As a typical
piezoresistive pressure sensor generally used, force-
sensitive resistors (FSRs) are ultra-thin, low-cost, pressure
sensors. FSR can be used in biosignal acquisition for the
diagnosis and monitoring of disorders.30 It can be embed-
ded in gloves to measure both the frequency of the
tapping and the force that patients applied in grip.31 FSR
was generally in the shape of radial since the circular

Figure 1. The flowchart of the study selection process.
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Figure 2. The diagnosis process using a wearable system with detailed methods.

Figure 3. Wearable sensors applied to the human body for neurodegenerative diseases (NDDs) diagnosis.
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structure sensor is most suitable for foot pressure measure-
ment. The irregularity of vertical ground reaction force
(vGRF) signals of NDDs caused by gait abnormalities
can illustrate different force pattern variations compared
to healthy controls (HCs),32 and thus gait analysis can be
used for the diagnosis of NDDs.33

Piezoresistive strain sensors were successfully applied
for measuring bending and torsion types of motion such
as knee movement, hand gesture, breathing, phonation
(speech), elbow bending angle, finger bending, wrist
bending, eye blinking, and neck movement.34 Plantar pres-
sures with different NDDs and severity levels were given in
a public dataset named Physionet (www.physionet.org).8,35

One contains the vGRF of different parts of the plantar from
93 patients with idiopathic PD and 73 HC subjects. Another
one contains the total vGRF from 20 HD patients, 13 ALS
patients, 15 PD patients, and 16 HC subjects. These data
were collected when the subjects walked on level ground
at their preferred speeds. It is easy to acquire heel strike
and toe-off moments, then the gait events and even more
complex features can be deduced for NDDs diagnosis.

Piezoelectric sensors. Piezoelectricity is when the mater-
ial is compressed and deformed, the cationic and anionic are
separated from center to surface, thus positive and negative
charges are accumulated on the electrodes and produce
electrostatic potential. Polyvinylidene fluoride (PVDF)
could exhibit a relatively high piezoelectric property after
polarization at a high temperature, and it is widely studied
due to the impact of piezoelectricity on biological systems
and their versatile biomedical applications. It can be used
not only for long-term and stable energy supply but also
to monitor a variety of vital signs such as heart rate, breath-
ing, and blood pressure.36,37 As for motor abnormality
detection, PVDF sensors were arrayed in insoles to
collect plantar pressure in real time.38 Since the plantar
bend of NDD patients tends to be different from the HC,
PVDF strips were taped at insoles to measure plantar
bend and impact force for NDDs monitoring.39 Because
of the wide application of piezoelectric and piezoresistive
sensors in measuring plantar pressure, their wearable gait
monitoring techniques were compared.40

Capacitive sensors. A capacitive sensor composes of
dielectric material sandwiched between two electrodes or
a structured air gap in the middle of the two electrodes.
The electrical energy is stored by transforming it into the
electrostatic field. It is widely applied in knee jerks, joint
movements, wrist and finger bending, throat motion, and
so on as reviewed in Homayounfar and Andrew.34

Moreover, stretchable and wearable capacitive electro-
physiological sensors are applicable for long-term health
monitoring.41

As for diagnosis and monitoring application to NDDs,
capacitive sensors also have potential. A capacitive eye
tracker was developed to monitor eye movement. This
hybrid capacitive sensor made of fibrous and rectangular

electrodes had the highest sensitivity since the initial cap-
acitance was reduced and capacitance change was increased
when the eyeball was presented.42 Since PD has abnormal
eye movement, this device can be applied to diagnosis
and monitor of PD.

Triboelectric sensors. Triboelectric sensors transform
mechanical deformation to electricity through the triboelec-
tric effect, which is contact electrification followed by elec-
trostatic induction. Except for the application in cell
modulation, drug delivery, circulatory system, hair regener-
ation, neural prosthesis, biodegradable electronics, gene
delivery, microbial disinfection, and implantable devices,
TENG is employed for healthcare monitoring by heart
and respiratory monitoring, joint motion sensing, sweat
and gait phase detection, hearing aid, throat phone, and
CO2 detection.

43 Triboelectric transducers which are alter-
native stretchables and sensitive to muscles/tendons move-
ments were placed on the forearm for PD monitoring by
examining not only tremor but also bradykinesia and rigid-
ity same as required by the Unified PD Rating Scale
(UPDRS).

Inertial sensors. As motor symptoms predominate and
cause considerable functional impairment in patients with
NDDs, quantifying gait, and postural control helps the
understanding of neurological conditions. Therefore, accel-
erometers, gyroscopes, and inertial measurement units
(IMUs) were widely employed.44

Accelerometers. The accelerometer measures the accel-
eration of objects. For NDDs diagnosis by postural meas-
urement of the whole body, the progression markers in
the premotor phase of PD were investigated by an acceler-
ometer placed at the back.45 An accelerometer can also be
placed at the center of mass at the lower spine to quantify
the sway during a quiet stance with eyes open and closed
for the detection of prodromal PD.46 Accelerometers
attached to hips and ankles can be used in gait and
balance assessment, and the results show that dual-tasking
will help dissect the cognitive and motor contribution in
mobility and cognitive decline and future adverse outcomes
including falls and mortality.47 Linking acceleration gait
measures to motor skills of walking proved useful in quan-
tifying declines due to aging and other neuromotor
factors.48 Absolute fall incidence was high in NDDs, thus
an accelerometer measuring physical activity such as
lying or sitting, standing, and walking was used to figure
out the fall risk.49 Especially, an accelerometer-based
system that records acceleration signals in 3 dimensions
(3D) for intelligent fall detection was developed and it
was fastened to the subject’s chest.50

For local part measurement, an accelerometer equipped
at the middle finger was far more accurate than at the
thumb and center hand to diagnose the stage of PD since
the intensity of the PD is related to the amplitude of
tremor signals.51 A wrist-worn accelerometer with the
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support of a disease-specific cut-point may be further used
to measure activities across the continuum during 24 h
period in PD.52 A wireless accelerometer applied with
iPhone was used to characterize the tremor of PD.53 A
smartphone accelerometer placed at the wrist using a
random forest classifier achieved a high diagnosis accuracy
of PD, but moderate accuracy of essential tremor (ET) and
poor accuracy of dystonic tremor.54 Accelerometers can
also be tapped at the neck to differentiate between swallows
from healthy people and people with NDD.55 Moreover, it
can be employed in handwriting analysis.56 A device based
on an array of four accelerometers connected to an embed-
ded development board was developed to monitor tremor/
movement and accidental falls, it can track the Alzheimer
subjects’ geographical position.57

Gyroscope. A gyroscope measures angular velocity or
acceleration, and it is sensitive to shocks. It can be
employed to detect the tremor at the finger, hand, wrist,
and so on. A gyroscope mounted on the hand or head can
acquire the tremors since tremulous rotation at the wrist,
elbow, or neck will induce tremors.58 By evaluating
angular velocity data recorded by mobile phones’ built-in
gyroscope, HC, PD, and ET can also be differentiated.59

The gyroscope equipped on the shank with a standard devi-
ation algorithm was also developed to prevent falls of PD
patients.60

Magnetometer. The magnetometer can find the orienta-
tion of an object by measuring the earth’s magnetic field.
The bio-magnetometer can enhance the image and elimin-
ate the limitation of conventional magnetoencephalogra-
phy.61 In human motion measurement, the magnetometer
usually appeared with an accelerometer and gyroscope
together.62 Since the magnetic disturbances contained the
magnetometer data for indoor applications, a linear
Kalman filtering-based magnetometer-free sensor had
been designed for motion capture.63

Inertial measurement unit (IMU). IMU is a combination
of accelerometers, gyroscopes, and occasionally magnet-
ometers, thus it can calculate the angle, velocity, orienta-
tion, and gravitational force of the subject. IMU was
utilized for gait analysis generally, instrumented clinical
tests, upper body mobility assessment, daily-life activity
monitoring, and tremor assessment.64 Wearable IMU has
become a solution with the advantage of higher sensitivity
and specificity for remote health monitoring since it can not
only assess the movement disorders induced by NDDs, but
also can evaluate frailty and falls, and promote active
living.65

IMU consists of an accelerometer, gyroscope, and mag-
netometer incrusted in an ergonomic glove equipped with a
module for a micro SD card and Bluetooth adapter. It is
portable and wireless with mobility acceptable to the user
when testing in different environments.66 IMU composed
of a triaxial accelerometer, a gyroscope, and a magnetom-
eter was placed at the feet dorsum, shanks, thighs, chest,

and the back side on the lumbar zone for PD diagnosis.
Results indicate that diagnosis accuracy does not directly
relate to sensor number.67 IMU placed at a subject’s
lower back with gait parameters estimating algorithm can
be used for quantifying the progression of PD and assessing
medication administration.68 Four IMUs were attached to
the subject’s lower limbs to obtain continuous relative
phases for distinguishing PD and PD group division.69

Moreover, to supplement the electrooculogram sensor that
measures the eye movement for early diagnosis of NDDs,
IMU sensors were embedded in an eyeglass to measure
the head movement and tremors.70

With the development of smartphone techniques, smart-
phones can provide an inexpensive measurement platform
with built-in sensors (acceleration and gyroscope) for
health state assessment. For example, accelerometer and
gyroscope data collected from a smartphone can be used
for PD detection.71 It can be attached firmly to the subject’s
waist in a bag during a 20-step walking test.72

Electromyography sensors. Electromyography (EMG) signal
is the electrical current generated in muscles during neuro-
muscular activities, and it indicates the degree of muscle
activation and fatigue. Surface EMG is the non-invasive
electrodes applied on the skin, and it is affected by the
noise from the nearby muscle. The fine wire electrode is
more accurate and precise since it is inserted into the
muscle using a hypodermic needle, thus it is also called
needle EMG.73 Surface EMG provides significant practical
and analytical flexibility compared to invasive techniques in
ALS.74 It was widely employed in the diagnosis of NDDs
by sleep disorders, motor (gait, posture, facial expression,
and handwriting) impairments, and other biomarkers. The
EMG signals of antagonist muscles surface can investigate
PD patients, ET patients, and HC.75 To obtain an accurate
diagnosis of gait disorders, 10 bipolar surface EMG electro-
des were attached to five muscles of each leg.76

Surface EMG signals from the upper extremities, such as
the arm and wrist, would be an efficient way to assess
neuromuscular function in the detection of PD.77 To clas-
sify different severity levels of PD, surface electrodes
were placed over flexor carpi radialis and biceps brachii
muscles to record EMG signals during selected upper arm
movements: elbow flexed at 90°, elbow flexed at 90° with
1 kg load, wrist pronation, and touching the shoulder.78

High-density surface EMGs at the vastus lateralis muscle
were collected when the participants performed ramp-up
and sustained contractions at 30% of their maximal volun-
tary contraction and then decomposed into individual motor
unit firing behavior using a convolution blind source separ-
ation. This is an important physiological index for under-
standing the pathophysiology of ALS.79

In addition, surface EMG sensors were also employed
for NDDs diagnosis in some tasks. The UPDRS can be pre-
dicted by surface electrodes of EMG attached to a wristband
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in a tapping task.80 EMG signals from eight different points
of the forearm during handwriting were acquired by the
Myo™ Gesture Control Armband (www.myo.com) for
the PD diagnosis.56

Tonic but not phasic EMG activity may serve as stable
biomarkers for predicting the progression of neurodegen-
eration in idiopathic rapid eye movement (REM) sleep
behavior disorder.81 Assessed by excessive transient
muscle activity in the chin or limb EMG in REM sleep,
idiopathic REM sleep without atonia may be accepted as
a risk factor in the development of PD or other types of
NDDs.82 It is worth mentioning that when EMG was
used with transcranial magnetic stimulation to measure
the invoke muscle responses, robust measures of function
in a variety of cortical network components will be
measured.83

Electroencephalography sensors. Electroencephalography
(EEG) was collected by sintered Ag/AgCl electrodes
attached to the scalp. EEG signals contain rich information
related to the functional process of the brain. It promised to
study the relationship between functional impairment and
the neural circuit. The influences of PD on brain activity
differ from the healthy person’s activity.84

The EEG for NDDs diagnosis was generally collected
during resting state 85 with the eyes open or closed to
reduce the influence of noise related to artifacts such as
blinks, heartbeats, cranial muscle activity, and electrode
movements caused by head movements.86 With the mini-
aturization of EEG equipment, portable wireless headsets
sprout and it helps the utilization in daily life activities.87

There are many public EEG datasets collected from
NDD patients. University of California San Diego
Resting State EEG dataset recorded 15 PD patients and
16 HC subjects.88 EEG signals from 25 PD patients and
25 HC subjects were recorded during a three-stimulus audi-
tory oddball paradigm both with and without medication.89

Neuronetrix dataset collected the EEG signal from 103 sub-
jects with probable mild AD and 101 HC subjects under
clinical tests.90

Acoustic sensors. Abnormal voice patterns indicate the
health state to some degree. For example, PD patients
lack intensity modulation,91 while the progression of HD
relates to speech alteration.92 Acoustic analysis is a valu-
able and objective tool supporting the diagnosis of NDDs,
especially in remote medical examinations during pan-
demic durations. For capturing voice and speech signals,
microphone sensors are appropriate since they are tiny,
low-cost, portable, and readily configurable with embedded
electronics. An omnidirectional microphone was utilized to
collect phonation of sustained vowels /a/, /e/, /i/, /u/ from 39
HC subjects, 60 patients affected by PD, and 54 patients
affected by MS.93 The bulk acoustic wave or quartz
crystal microbalance was also employed for breath analysis

in NDDs.94 The speech acoustic and articulatory movement
data were collected by electromagnetic articulagraph
attached to the subject’s tongue, lips, and head, and they
could improve the performance of ALS detection
significantly.95

Except for speech signals, body sounds (e.g. breathing,
clearing throat, and swallowing), which can be collected
from the subject’s phone usage (e.g. calling, voice
message, voice mailbox, and voice chatting) in daily life
can also assess the health condition using a customized
residual network.96 Smartphones may provide an increasing
number of longitudinal vocal samples from a given individ-
ual in an easy and inexpensive way.97 It has been proved
that PD can be predicted early even through voice record-
ings recorded on smartphones.98 Voice signal collected
from the smartphone can be conveniently uploaded and
then transmitted to the cloud, and the noise and size of
the signal were reduced to store as history information.
Experts or doctors can then detect and monitor patients
from remote areas.99

There are some acoustic datasets such as the dataset from
the University of California at Irvine Machine Learning
Repository. The data were collected from 20 healthy indivi-
duals and 20 patients with PD.100,101 DementiaBank con-
tains speech data from 167 AD and 97 HC subjects.102

Optical fiber sensors. Though optical array sensors are
highly advantageous for the early detection of AD with
multi-biomarkers,103 it is chemical and not wearable.
Optical fiber sensors are developed based on the change
in light transmittance as follows: the light beam generated
by a light source travels through an optical fiber, and then
the intensity-attenuated light beam is received by a photo-
detector. By simple calculation of the light intensity attenu-
ation, the bending angle of the optical fiber can be obtained,
thus it can monitor the human joint angle.104 Since optical
fiber sensors are stretchable and highly sensitive, they were
assembled into clothing or mounted on skin surfaces for
monitoring human activities such as wrist pulses, joint
bending, and hand gestures.105 In addition, it can even non-
invasively quantify the analytes or physiological events
under the skin.106

Optical fiber Bragg grating (FBG) sensors attached to
the biocompatible tape were used to monitor the knee
angular flexion/extension during walking, and it is even
possible to detect the muscle’s peak activity moments.107

Moreover, the sensing network of FBG sensors was multi-
plexed (in series) in one single optical fiber cable, thus it can
simultaneously monitor plantar pressure, peak muscle
activity, and the ankle and knee sagittal range of motion,
without the need for any synchronization or delay adjust-
ments.108 Though optical fiber sensors emerged in recent
years, their application in joint bending and activity moni-
toring can be further put into use in the diagnosis and mon-
itoring of NDDs.
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Global positioning system. Global positioning system (GPS)
and similar technologies in commercial wearable devices
such as smartphones, navigation systems, and smart
watches can collect precise locations at any time, thus
they can assess daily mobility patterns.109 Though there is
a paucity of published studies about wearable GPS, some
NDDs-related work had been conducted. Wearable
GPS-derived measures had been validated and may apply
to NDDs.110 Wearable GPS was also compared to self-
reported measures in recording mobility outcomes and
proved promising for research and clinical measure of
real-life mobility in PD patients 111 and healthy older
adults. The mobile phone’s built-in GPS distinguished
mild-to-moderate AD patients from controls.112 Moreover,
GPS driving may serve effectively for identifying preclinical
AD among older adults.113

Multi-sensors. These mentioned wearable sensors have dif-
ferent applications, strengths, and drawbacks as shown in
Table 1. To take full advantage of these sensors and
acquire more NDDs-related information, multi-sensor
systems have been devised and tested for NDDs diagnosis
propelled by the development of integrated electronics.
The sensor network with a complex array is better suited
to the diagnosis of PD while the arrangement can be simpli-
fied for quantification and tracking once the diagnosis is
determined.114 The combination of EMG and EEG
signals can achieve the highest diagnosis accuracy than
they singly used.115 It was observed that heterogeneous
sensor-based health monitoring is the most effective way
because of its ability to combine multiple sensors from
various domains. This also indicates that the fusion of mul-
tiple sensors provides reliability, credibility, and better
accuracy for human health monitoring by multiple para-
meters.116 Versatile wearable sensors can be integrated
into smartphones, tablets, smart watches, eyeglasses even
masks facilitated to healthcare in daily life.

Features extraction

Features are the key to distinguishing the type of NDD, it
also determines the classification performance. To illustrate
the underlying differences between NDDs and HC as well
as the differences among NDDs themselves, various kinds
of features were extracted as displayed in Figure 4.

Physical features. Time domain features. Physic-related fea-
tures that can directly illustrate the appearance of the
motion are extracted from the time domain. There are
many different physical features on the account of the ver-
satile signal obtained by various sensors.

Several gait features that characterize vGRF patterns
were extracted including gait duration, peak value, and
peak delay.117 Spatiotemporal gait features indicate time

and distance-related gait events, for example, the stride
time, stance time, swing time, step length, stride length,
gait speed, and cadence.118 Step velocity and step length
were found to be the best and most stable gait characteris-
tics defining progression during the prodromal PD phase.
Moreover, the asymmetry of step, swing, and stance time
and step length are higher for PD patients than HC.119

The speed, stride length, swing time, and hip excursion
were found reduced in patients with PD compared to HC
during normal walking. Additionally, PD patients presented
higher cadence and double support time.5 The postural
sway can also be characterized by: total sway area and
95% ellipse sway area. While anticipatory postural adjust-
ment was represented by durations, first-step length
(degree), and first-step latency.120 The amplitude and
peak-to-peak value of the plantar bend signal were found
lower for PD patients than HC.39

Range of motion refers to the minimum to the maximum
angle between two adjacent articular segments within one
gait cycle. Range of motion of the ankle, knee, and hip
was found reduced for PD patients, and they help to
higher diagnosis accuracies when combined with spatio-
temporal features.67 The estimated tremor amplitude
showed a high correlation to the UPDRS subscores.121

Execution time is the time interval(s) during the hand-
writing task, it can be extracted from the EMG signal
with the adaptive threshold. This dynamic feature was
important to different PD patients from HC.122 The motor
unit number index of limb muscle for ALS patients was
found consistently lower than HC, while the muscle fiber
conduction velocity was increased in ALS.74

When tackling dysarthric-like speech of NDDs, duration
of pause intervals, rate of speech timing, articulatory rate,
change in interval length, period of onset of vocalization,
and vowel keeping time were extracted.123

As for GPS data, features such as “hourly frequency”
(number of trips taken outside of the home per hour
sampled) and “daily duration” (percentage of total time
sampled per day individuals were outside of the home)
were significant.111 Location and activity features are
active time ratios, steps per recording, time at the home
ratio, trips out, destination trips, and max distance; transit
and community mobility features are distance or time in
the vehicle, distance or time on foot, ellipse max distance
or area.113

Frequency domain features. Frequency analysis com-
pletes the information of time domain features. Frequency
spectra (obtained by fast Fourier transform) and power
spectral density of left stride, right stride, and left swing
signals, which were derived from the vGRF signal were
effective to differentiate patients with ALS, HD, or PD
from HC subjects.124 Features of power spectral density
such as peak amplitude, peak delay, and area under the
curve were extracted.117 Higher-order spectra have the
ability to preserve useful information due to deviations
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Table 1. The sensors used for diagnosis of NDDs.

Sensors Principle/kind Positions Applications Strengths Drawbacks

Pressures/
strain
sensors

Resistance
change

Planta, finger,
radial artery,
waist, thigh,
shank

Phonation (speech),
breath, joints
movement, and
bending

Flexible, easy-to-acquire
gait features

Poor
temperature characteristics

Piezoelectric
effect

Planta, finger,
joints, limbs

Artery pulse, joint or limb
bending, respiration

Superior dynamic
response ability

Can’t sense the static force,
influenced by temperature
change

Capacitance
change

Finger, hand,
wrist, elbow,
knee

Tactile pressure, joints
movement

Stable to temperature Poor load capacity, nonlinear
output

Triboelectric
effect

Hand, knee,
arm

Sleep monitoring,
respiration, and joint
angle

Efficient transformation Easy to wear and tear

Inertial
sensors

Accelerometer Hand, back,
waist, limbs

Tremor analysis Non-invasive with
minimal participant
preparation time,
cheap

Rigid, requires complex
algorithms, sensitive to
shock, free-living
measurements may be
limited

Gyroscope Finger, hand,
wrist,

Detect tremor and
bradykinesia

Free of gravitational
artifact

Sensitive to gravity and linear
acceleration

Magnetometer Same with
others

Combined with an
accelerometer and
gyroscope

Tolerant to noise Contained by magnetic
disturbances

IMU Limbs, waist,
head, hand,
ankle

Detect falls, tremors, and
bradykinesia

Cheap, stable Offsets, zero drift, rigid

EMG Surface EMG Muscles of
limbs

Detect muscle activity,
muscle force

Non-invasive Effect by near muscles

Needle EMG Muscles of
limbs

Detect muscle activity Precise Invasive

EEG Potentials of the
cerebral cortex

Scalp Describe cognitive activity Strong adaptability,
cheap, non-invasive

Sensitive to noise

Acoustic — Near lip Phonation (speech) No burden Environment noise

Optical fiber — Joints Detect joints bend Immunity to
electromagnetic
noises

Low sensitivity, expensive

GPS — Mobile phone,
smart watch,
vehicle

Mobility, hour frequency
and daily duration
outside home, life
space size

Precise, objective for
position obtaining

Need longer battery lives

NDD: neurodegenerative disease; IMU: inertial measurement unit; EEG: electroencephalography; EMG: electromyography; GPS: global positioning
system.
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from Gaussianity and nonlinearities in the time series such
as EEG and EMG.125

EEG signals either for AD or HD detection were ana-
lyzed by Fourier transformation. AD patients display a
slow characteristic EEG frequency band than HC.123 The
average magnitude of the fast Fourier transform coefficient
extracted from the EEG signal can classify AD patients
from HC participants, and it gains new insights into how
the location of channels and frequency bands correlate to
AD classification accuracy.126

When comes to the speech signals, the main frequency
of vocal cord vibration or pitch, jitter, shimmer,
noise-to-harmonics ratios, formant frequencies, pitch and
amplitude perturbation quotient, Mel frequency, and cep-
strum coefficient were extracted.123

Time-frequency domain features. Time-frequency ana-
lysis is a generalization and refinement of Fourier analysis.
Continuous wavelet transform, short-time Fourier trans-
form, and wavelet synchro squeezed transform were
applied to obtain time-varying frequency spectrum charac-
teristics based on a vGRF signal.32 The six-level discrete
wavelet transforms with different wavelets were employed
to extract detailed components of force signals for both left
and right feet for the NDDs classification.127 Using wavelet
coherence to the visualized time-frequency spectrogram of
plantar force signals helps to differentiate between the gait
phenomenon of patients with NDD and HC.128 Intrinsic
mode functions calculated by empirical mode decompos-
ition have been extracted for PD detection based on the
Euclidian distance of vGRF signals after phase space
reconstruction.129

The local maxima of the wavelet spectrum from EMG
and acceleration data at the tremor side in the 1–3 Hz and
3–7 Hz frequency bands are promising for the early diagno-
sis of PD.130 Mel-frequency cepstral coefficients and the
tunable Q-factor wavelet coefficients obtained from voice
signals achieved high accuracy when classifying PD
patients and HC.131

Statistical features. Statistical features describe the statis-
tical characteristics of signals. Traditional statistics such
as mean, standard deviation, skewness, and kurtosis can
deal with the time domain features and frequency domain
features further for more distinctive markers.

To identify distinct features of PD gait, the mean, stand-
ard deviation, and even coefficient of variance (the ratio of
standard deviation to the mean) of physical features were
extracted.132 Step width variability was found significant
for the diagnosis of PD, while stride width variability and
step double support time variability were found related to
the PD severity level.133 The longitudinal assessment of
gait impairments found that gait variability and asymmetry
characteristics seem to be the best predictors for PD conver-
sion. For example, higher step time variability and asym-
metry of all gait characteristics were associated with a

shorter time to PD diagnosis in Del et al.119 On the contrary,
a lower variability of wrist movement was found compared
to HCs.134 Mean, variance, skewness, and kurtosis based on
sparse matching pursuit decomposition of vGRF were
found more efficient in ALS detection.135

Maximum amplitude, mean, and standard deviation of
EMG signals at biceps brachii muscles were strategically
quantified, and they were larger for ALS patients compared
to HC subjects.136 Stockwell transform was applied to the
EMG signal to extract features such as energy, mean, and
standard deviation for the detection and classification of
healthy and neuropathy.137 Skewness and kurtosis of
EEG spectra were utilized to detect mild cognitive
impairment.138

Nonlinear features. Nonlinear dynamic features such as cor-
relation dimension, Largest Lyapunov exponent, Hurst
exponent, Lemplel–Ziv complexity, approximate entropy,
and sample entropy extracted from the time series of the
gait signals were explored for the diagnosis of PD.139 The
time series of multiple gait fluctuations can be embedded
into the phase space, and then the topological signatures
of barcodes were extracted by persistent homology.140

Multifractal detrended cross-correlation analysis was also
applied to study the autocorrelation and cross-correlation
of the vGRF for both feet. It found that the multifractality
and degree of correlation are generally more for HC than
the NDDs.141 For speech signal, the fractal jitter that
explores the self-similarity of the variations in the funda-
mental frequency, as well as the multivariate fractal
scaling exponent was extracted for better diagnosis of
ALS.142

Entropy measures the uncertainty and randomness of the
system. Multiscale approximate entropy was calculated
from the vGRF of both feet to the diagnosis and long-term
assessment of NDDs.143 Sample entropy was determined
for the stride time, with vector length and threshold para-
meters optimized PD, and it found that PD patients had
higher sample entropy stride time than older adults, indicat-
ing reduced gait regularity.144 Sigmoid entropy of EEG
signal was found to be better and computationally efficient
when compared to other entropy methods.145 Shannon
wavelet entropy, Renyyi wavelet entropy, Tsallis wavelet
entropy, permutation entropy, and fuzzy entropy of both
IMU and speech data can detect PD as well as their severity
level.146 Shannon entropy, permutation entropy, dispersion
entropy, fluctuation-based dispersion entropy, slope
entropy, bubble entropy, increment entropy, and bispectral
entropy were extracted from the EEG signal for the PD
diagnosis.147

The amount of divergence between the left and right
stride, swing, and stance intervals was quantified by the
dynamic gait series warping, Euclidean, Manhattan,
Minkowski, Chebyshev, Canberra distances, and cosine
function.148 Hidden Markov models were used to encode
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the IMU gait sequences to extract their dynamics and
provide a fixed-length representation.149

To create meaningful quantitative descriptions of behav-
ioral characteristics of cerebellar ataxias, data collected
from inertial sensors were analyzed by autoregressive
hidden Markov models complied with a time-frequency
approach.150 Furthermore, a bag-of-words feature engineer-
ing method was developed: dividing each time series into
subsequences, similar patterns are identified and a vocabu-
lary was generated using the identified patterns. Then, word
features were calculated based on the similarity of each sub-
sequence to the vocabulary patterns. It outperforms the
epoch-based statistical feature engineering method in the
diagnosis of PD.151

Features extracted from networks. Features also can be
extracted from networks. A deep convolutional neural
network, referred to as a gait segmentation network had
been developed and trained with the purpose of improving
traditional gait segmentation from IMU at the fifth lumbar
vertebrae and the ankles.152

Sets of vocal (speech) features were passed to the paral-
lel input layers which are directly connected to convolu-
tional layers, and deep features from each parallel branch

were extracted simultaneously before combining in the
merged layer.153

The latent factors of EEG were extracted by variational
auto-encoders, and they can be mapped to the three-
dimensional state space, thus the transient rotation of a
neural state, which indicates the dynamic characteristics
of latent factors can be found.154

Features selection

The extracted features may be redundant and some irrele-
vant features may overfit the diagnosing model as the
sample size is limited. Thus, features selection processes
have been designed to select discriminative features or
discard redundant ones. Generally, depending on the rela-
tion to the latter diagnosing method, feature selection strat-
egies can be divided into filter methods, wrapper methods,
and embedded methods155 as displayed in Figure 5.

Filter methods. Filter methods are independent of the classi-
fication process. They are effective in computation and
robust to overfitting but key features may be missed.
Moreover, they can provide interpretable and direct indica-
tions of disease influence.

Figure 4. Various features applied to the detection of neurodegenerative diseases (NDDs).
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Relevance indices. A good feature should not correl-
ate to other features already selected. The correlation
coefficient is the simplest approach to measure their rele-
vance. The Spearman correlation coefficient to select the
optimal feature set was applied with a stepwise regres-
sion method for PD diagnosis.156 Mutual information
(MI) between each of the features and the class label
was determined based on the dependence of the target
feature. Features with higher MI were retained since
the high MI value represented less randomness and a
higher correlation between the feature and its class.157

Fisher score which measures the relevance between
each dimension of the feature vectors and their assigned
class labels, as well as Relief which reveals the depend-
encies of features and class labels were employed to
reduce the dimensionality of speech features for PD clas-
sification.158 Correlation feature subset selection has
higher accuracy than the information gain and gain
ratio for the AD prediction.159 ReliefF algorithm com-
puted the feature importance weights to detect PD
from voice recordings.160 There were also many multi-
variate techniques in filter methods for biomedical
feature selection,161 for example, a consistency-based
filter selects subsets of features based on the degree of
consistency with the class.

Significant difference analysis. Significant difference
analysis aids to find out the distinctive features, and they
may be the most commonly used approach in feature
ranking or selection for NDDs diagnosis. Parametric
tests such as analysis of variance (ANOVA) or Student’s
t-test analyze the data which conform to the Gaussian dis-
tribution (normally distributed variables), while non-
parametric tests such as the Kruskal-Wallis test and
Mann–Whitney U test deal with data that do not obey
the Gaussian distribution.

ANOVA with recursive reduction was used to improve
the dimension reduction and it reduced the number of
sensors from 16 to 2 for plantar FSR.162 For longitudinal
data, variances tend to increase with time and covariances
decrease with increasing intervals in time. Thus, ANOVA
is not proper since it assumes the measured outcome
saves equal variances and covariances over time.
Therefore, multivariate ANOVA models that treat repeated
observations as a vector had been utilized to detect HD
progression.163

Student’s t-test was applied to features extracted from
vGRF to recognize how significant each feature was in
terms of differentiating PD and control subjects.164

Independent t-tests were employed to examine the differ-
ence between PD and HC, moreover, Pearson’s correlation
between gait characteristics was also evaluated to see the
independence and redundancy.165

Wilcoxon rank-sum test (p < 0.01) proved that the
approximate entropy, normalized symbolic entropy, and
signal turns count are significantly larger for PD patients

than HC.166 Mann–Whitney U test observed some gait
alteration in PD patients.132

Principal component analysis (PCA). Features dimen-
sionality will sometimes be reduced by PCA. The PCA
was used for feature enhancement of the recurrence plots
transformed from the time-domain vGRF data.167 PCA
was implemented to reduce the dimensionality and select
the most appropriate features from eight parameters
namely mean, standard deviation, variance, skewness, kur-
tosis, energy, entropy, and correlation of each seven-gait
feature (left stride interval, right stride interval, left
swing interval, right swing interval, left stance interval,
right stance interval, and double support).168 For gait
classification of NDDs, PCA removed correlated fea-
tures within each symmetric measure (being involved
in more than one time series for feature extraction).148

PCA reduced the dimension of handwriting features,
and the most representative features were found related
to surface EMG.56 Moreover, it can identify the differ-
ences in gait (e.g. hip and knee kinematics) from PD
patients to HC.169

Wrapper methods. Wrapper methods need a learning
model to evaluate candidate subsets and provide feedback.
They have high accuracy and can identify key features in
the cost of high time complexity, low operating efficiency,
and poor generalization ability. Wrapper approaches aim
to enhance the performance of the specific diagnosing
model. The sequential feature selection method was uti-
lized to reduce the number of features such as multiscale
sample entropy values combined with statistical values
extracted from the differential transformation of the
vGRF signal.170

Regression approaches select or remove features based
on the output of predictors. Stepwise regression models
were proved to have superior convergent validity than
PCA.171 Evolutionary algorithms were applied to feature
selection for AD diagnosis.172 A generic algorithm is also
a wrapper method, and it also belongs to the evolutionary
algorithms. The best feature was selected using a fitness
function and delivered to the next generation by a crossover
operator.173 Genetic algorithms and a binary classifier
(X-ROC) were used to select the best combinations of
EEG features for PD diagnosis.174 Multiple ranks with a
majority vote-based relative aggregate scoring model
were proposed to select key features for PD analysis.175

Embedded methods. Embedded methods perform feature
selection and classification simultaneously since features
were selected in the training process. They were divided
into regularization-based embedded feature selection and
tree-based embedded feature selection.176 A new feature
selection method was developed by embedding the rela-
tional information inherent in the observations (sample–
sample relation, feature–feature relation, and response–
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response relation) into a sparse multi-task learning frame-
work for the diagnosis of AD diagnosis.177 A joint kernel-
based feature selection approach was proposed to best
benefit the classification scheme in the kernel space for
the early diagnosis of PD.178

Hybrid method. There was no universal feature selection
and classification method for medical datasets, different
feature selection methods combined with different classifi-
cation methods had been tried to find the best perform-
ance.179 The mentioned three feature selection methods

Figure 5. Feature selection methods utilized for the diagnosis of neurodegenerative diseases (NDDs).
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were tested by speech features, ANOVA as filter method,
sequential feature selection as wrapper method, least abso-
lute shrinkage, and selection operator act as an embedded
method, and both of them selected the jitter and
shimmer.180

Wrapper methods combined with the filter method, such
as Fisher’s score and recursive feature elimination
methods.181 Pearson correlation coefficient and ReliefF
were both applied to calculate the feature weight and then
inputted into the discrete artificial bee colony algorithm
for PD diagnosis.182 Correlated feature selection combined
with particle velocity clamping swarm optimization takes
advantage of both the filters and the wrappers.183 A
hybrid MI gain and recursive feature elimination method
selected 40 features out of 754 speech features, and it
achieves the highest accuracy in classification than other
standard feature selection approaches.184 Features selected
by filter and embedded methods were inputted to a wrapper-
based approach optimizing both stability and predictability
for AD prediction.185

Discussions

Applications for diagnosis

Feature extraction and selection aim to find distinctive fea-
tures and they help an interpretable diagnosis of NDDs
since most machine learning methods are limited by con-
genital observations. As mentioned, feature values of differ-
ent NDDs were separated, and these discrepancies can be
utilized as prior knowledge for the early diagnosis of corre-
sponding NDD.186 Machine learning based on handwritten,
voice, and gait datasets was utilized for the diagnosis of PD
in clinical decision-making.187 Separate multivariable
linear regression models and proportional odd regression
models were applied to evaluate the relation of the Kinect
measures to UPDRS motor and postural instability and
gait difficulty scores.188 Moreover, bradykinesia severity
was measured by the frequency content of strides from a
waist-worn sensor based on UPDRS scores estimated by
support vector regression model.189 Decision tree, random
forest, K-nearest neighbor, Naïve Bayes, and support
vector machine (SVM) were widely applied to various
data for NDDs classification based on features.123 SVM
can produce efficient classification accuracy when feed dir-
ectly with the features extracted by the wavelet transform-
ation from the vGRF signals.190 SVM was also the most
used classification algorithm for the detection of AD, PD,
HD, and ALS, respectively.123 However, there are still chal-
lenges in the current applications of traditional machine
learning in the diagnosis of NDDs domain. It is of great
importance to properly address these issues in facilitating
the clinical diagnosis and treatment strategy with the wear-
able system.

Influences of data collection

Sensors used in health monitoring and diagnosis that have
reached an industrial level or that are at least at the stage
of advanced field trials have been reviewed. Although the
majority of works reported are not clinically and exten-
sively validated for effectiveness confirmation, wearable
sensors still present a promising impact on the diagnosis
and monitoring of NDDs. On one hand, wearable sensors
can achieve high accuracy when compared with videos of
routine exercises, and the results show that sensor data ana-
lysis has the highest f1-score while handwriting is the most
convenient.191 On the other hand, the evaluation of PD
developed from the in-lab devices such as force plate and
needle EMG transitioned to wearable accelerometers/gyro-
scopes, and finally to phone and mobile applications in
home monitoring.192

Evaluation of the health state or diagnosis of NDDs does
not rely only on a single index or measurement even for
clinic experts. Therefore, the wearable system should
have the ability to collect different types of signals for
more symptoms. With the rapid development of the smart-
phone, some sensors integrated into the phone and smart
watches can collect versatile data such as speech signals,
inertial signals, location data, and so on. In addition, the
relationship of the signal obtained by the multisource
sensors should be explored in the future. It is also worth
noting that various tasks during data collection display dif-
ferent even contrastive effects on NDDs diagnosis.
Self-selected walking speed conditions without dual
tasking perform better for prodromal PD detection.119

While some studies state that gait abnormalities were
evident in dual cognitive tasks for PD patients.193 To
figure out the inherent influence of task effects on NDDs
diagnosis, collecting more wearable data with more differ-
ent tasks will be desired.

Challenges and prospects

This review will facilitate the research of wearable sensors
as a noninvasive, less expensive, and potentially portable
technique for NDDs’ study, assessment, and diagnosis, par-
ticularly for low- and middle-income countries, which lack
access to costly neuroimaging equipment. But there are still
some challenges: (1) For wearable sensors, there remain
considerable variability and lack of standardization in the
wearable sensor technology platforms, type of clinometric
data acquired, and remote monitoring resolution as it
relates to the sensor location.194 Using wearable sensors
for the diagnosis of NDD is still in the exploration stage.
Therefore, there are some limitations of existing research
in the future clinical applications for the diagnosis of
NDDs. The long-term test of the wearable sensors applica-
tions to patients has not been conducted for most of these
wearable sensors. This is mainly limited by the personal
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privacy of users, moreover, the long-term and low-burden
ability of the power supply. (2) As for feature extraction
and feature selection for diagnosis, most of the existing
research mainly focuses on the analysis of signals based
on the public dataset to find out the significant features
and diagnosis method. The amount of public data collected
from the wearable sensors is rare and thus lacks individual
diversity, this lead to the mined information being limited
and lack of generability. To deal with this issue, more
data collected from wearable sensors are required and to
be published in the future. (3) For the used dataset itself,
most of the studies are cross-sectional studies, the NDDs
and HC samples are independent even for some NDDs
severity level studies, and the individual differences
between each subject may submerge the alteration
induced by the NDDs and their progression. Therefore,
studying the NDDs progression with the longitudinal
study will be helpful though it is challenging. (4) The sum-
marized feature extraction and feature selection methods are
fundamental procedures for diagnosis with the traditional
machine learning method. With the development of deep
learning methods, they have been introduced to the diagno-
sis of NDDs despite the lack of interpretability and transpar-
ency. Corresponding application and development in the
diagnosis of NDDs should also be summarized in the
future. In summary, to overcome these issues and develop
an entire wearable system with NDDs diagnosis method
based on machine learning in a complex space such as
daily life, more longitudinal studies, and more cross-
disciplinary training projects are needed. In addition, a col-
laboration between experts in biomedicine and machine
learning is required.

Conclusions
This study provides a comprehensive examination of wear-
able sensors and features for the diagnosis of NDDs. The
study includes 171 articles that were chosen after a thor-
ough screening process. Crucial aspects of NDDs diagnosis
were grouped under three main categories: wearable
sensors, feature extraction, and feature selection. Such
aspects have been reviewed, compared, and discussed,
with the final goal of providing an overview of the
state-of-the-art on wearable sensors for NDDs diagnosis
and assessment. The application details such as principle,
applied position, detecting events, strengths and drawbacks
of force sensors, inertial sensors, EMG, EEG, acoustic
sensors, optical fiber sensors, and GPSs have been illu-
strated and compared. Based on the wearable data, physical
features, statistical features, nonlinear features, and features
from the network have been illustrated and their alteration
toward diseases have been displayed. Among these
extracted features, feature selection methods including fil-
tering, wrapper, and embedded methods have been illu-
strated to select discriminative features and achieve an

efficient diagnosis. This review provides researchers with
a complete view of the use of wearable sensors, feature
extraction, and feature selection in NDDs diagnosis and
monitoring. In the future, the wearable system can quantifi-
cationally evaluate the health state with interpretable results
and records to help determine the need for medication
changes in telemedicine applications further.
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