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Abstract: Metal-based drugs represent a rich source of chemical substances of potential interest for
the treatment of COVID-19. To this end, we have developed a small but representative panel of nine
metal compounds, including both synthesized and commercially available complexes, suitable for
medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed
that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III)
complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties
and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational
study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the
metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc,
SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys
and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these
findings are discussed.

Keywords: SARS-CoV-2; COVID-19; antiviral drugs; metallodrugs; gold; ruthenium; antimony;
titanium; auranofin; viral infection

1. Introduction

The outbreak and rapid spread of COVID-19, sometimes associated with severe symp-
toms requiring hospitalization, and, less frequently, with lethal complications, are posing
dramatic problems to health systems worldwide [1], with serious consequences to social
relationships and economic growth. Although vaccines are now available and have demon-
strated high efficacy in decreasing the severity of SARS-CoV-2, reducing hospitalizations
and deaths, vaccination does not prevent SARS-CoV-2 transmission [2]. The discovery and
rapid implementation of effective antiviral drugs against SARS-CoV-2 would thus repre-
sent an extremely important synergistic approach for fighting this pathogen [3]. Indeed,
recent evidence indicates that treatment with the nucleoside analogue Molnupiravir
reduced the risk of admission to hospital and death in non-hospitalized adults who had
mild to moderate COVID-19 symptoms [4]. To this end, expanding the chemical space of
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the tested compounds by including a variety of metallic compounds is highly desirable.
Several gold, bismuth, antimony, and mercury compounds have been used to treat a variety
of diseases, mostly infectious ones, including tuberculosis and syphilis, and many parasitic
diseases. Even arsenicals, despite being real poisons, were employed in clinics at low doses
for various therapeutic purposes with some positive results [5–7].

Some inorganic drugs are still in use in current clinical practice for a few specific
applications [7,8]. The known inorganic drugs contain a wide array of metals or metalloids
imparting specific chemical properties, which arise from the electronic structure of the
metal, its coordination sphere, the characteristic of the ligands, the redox properties, etc.
It is evident that these chemical features cannot be completely reproduced by simple
organic compounds. Accordingly, the unique chemical and biological properties of the
various metal (metalloid) centers—in several cases, non-physiological metals—should
be considered for medical testing against various disease models [9–13]. This approach
might lead to positive pharmacological and therapeutic outcomes, as is the case for several
inorganic compounds employed against a variety of diseases (see Figure 1 for examples of
inorganic drugs with established or potential medicinal applications).
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Generally, metal compounds are believed to exert their cellular and biological effects
through the direct inhibition of enzymes; the alteration of transcription factors; their in-
teraction with a variety of biological substrates through coordinative bonding; enhanced
lipophilicity; the alteration of cell membrane functions; interference with the cell cycle,
and several other key cellular pathways. Medicinally used metal compounds often pos-
sess a soft metal center, e.g., gold(I), platinum(II), or silver(I), according to the Pearson
HSAB theory, featured by a strong affinity for proteins and enzymes containing accessible
and functionally relevant thiol or selenol groups [14–17]. These arguments support the
importance of the systematic exploration of the potential of metal compounds in drug
discovery programs for COVID-19 therapeutics. Several representative metal compounds
must be considered in the current chemical libraries for screenings. As a matter of fact,
over the last year, a few interesting studies concerning inorganic compounds as potential
anti-SARS-CoV-2 agents have appeared, with some important results and observations. We
refer, for instance, to the studies carried out by various authors on bismuth, gold, and rhe-
nium compounds [18–21]; moreover, various laboratories—including ours—proposed the
clinically established antiarthritic drug Auranofin as an effective antiviral drug candidate
through a repurposing strategy [22,23]. More recently, Ingo Ott and coworkers carried out
a systematic screening on a large panel, including more than 100 inorganic compounds, for
their ability to inhibit the S/ACE2 interaction and the Papain-like Protease PLpro [24]. In
any case, no truly effective metal-based drug of straightforward clinical use for COVID-19
treatment has been identified so far. Starting from these considerations, we have prepared
a small but representative panel of metal compounds of medicinal interest with the aim of
evaluating their efficacy in vitro against SARS-CoV-2. The panel compounds were screened
for their anti-SARS-CoV-2 properties according to an experimental protocol established at
the University of Siena [25]. As the screening highlighted the favorable anti-SARS-CoV-2
properties of three panel compounds, we decided to perform a computational study to
better understand the likely origins of their antiviral properties. The combined experimen-
tal and theoretical approach allowed us to unveil some relevant chemical aspects for the
action of these metal compounds, which might be advantageously exploited for the design
and testing of metallodrugs against SARS-CoV-2.

2. Results and Discussion
2.1. Construction of the Panel

Owing to our long experience in the field of metal-based drugs, we could quite
straightforwardly establish a small panel of representative metal compounds that included
many different metal centers, such as ruthenium, gold and titanium [23]. The general
criteria that have guided the formation of the panel are the following:

1. A significant chemical diversity, even in the nature of the metal centers.
2. An acceptable stability (i.e., under the applied experimental conditions, panel com-

pounds do not undergo degradation or any other transformation affecting the phar-
macological activity, or the interpretation of the results).

3. An acceptable solubility in an aqueous environment.
4. Where possible, an already established role and use in medicinal chemistry.

The chemical structures of the panel compounds are shown in Figure 1.
These compounds are of different origins: some are commercially available, others

were previously prepared and characterized. A few, e.g., Auranofin, NAMI-A, KP1019,
TiCp2Cl2, are clinically established or have entered clinical trials [6,26–30].

2.2. Screening of the Panel Compounds for Their Antiviral Properties: The Selection of the Best
Drug Candidates

Despite their small size, the compounds on the panel were chosen to ensure a rather
large chemical diversity. The panel compounds indeed bear a variety of metal (or metal-
loid) centers, such as gold, ruthenium, antimony, and titanium. The choice of compounds
was driven by chemical and biological considerations (e.g., hard–soft properties of the
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metal/metalloid center capable of binding specific viral targets; stability; acceptable tolera-
bility/toxicity) [7,23].

First, the investigated compounds were screened to determine their half-maximal
cytotoxic concentration (CC50) in the Calu-3 cell line model. Once the CC50 value had
been determined, the highest non-toxic dose was used as the starting drug concentration
in the subsequent antiviral assays for each compound. Afterwards, the metal complexes
that showed an acceptable cytotoxicity were tested for their antiviral properties against
SARS-CoV-2 (Table 1).

Table 1. Cytotoxicity and antiviral activity of metallic compounds. All compounds were tested
by the direct yield reduction assay (DYRA) protocols. The compounds not active in DYRA were
subsequently screened using the secondary yield reduction assay (SYRA) to evaluate possible activity
in the late phases of viral replication not detectable with DYRA.

Compound CC50 (µM) 1 IC50 (µM) 2 Selectivity Index 5

Auranofin 3.7 Not active 3 —

Au(Pet3)I 12 Not active 3 —

AuL12 19 Not active 3 —

AuOXO6 40 Not active 3 —

Aubipyc 67 6.3 ± 3.1 10.6

NAMI-A >200 Not active 3 —

KP1019 60 8.8 ± 1.5 6.8

SbCl3 200 31.1 ± 15.3 6.4

TiCp2Cl2 >200 47.3 ± 1.4 4 >4.2

Remdesivir 97 0.2 ± 0.05 485
1 CC50: half-maximal cytotoxic concentration; 2 IC50: half-maximal inhibitory concentration; 3 compound not
active with both DYRA and SYRA. 4 Determined with SYRA while not active in DYRA. 5 Calculated as the
CC50/IC50 ratio. When not soluble in water, DMSO was used to solubilize compounds. The use of organic solvent
was kept as low as possible (<1%) and the relative blank sample was used to avoid bias.

The selectivity index (SI) of the three compounds active in the DYRA was 10.6, 6.8
and 6.4 (for Aubipyc, KP1019 and SbCl3, respectively). The TiCp2Cl2 compound, active
only in SYRA, had an SI above 4.2. Differently from other active compounds, the observed
inhibitory activity of TiCp2Cl2 in SYRA, but not in DYRA, might indicate a mechanism of
action exerted in the late phases of viral replication, e.g., assembly, maturation, and/or
the infectivity of viral particles. We did not observe any effect of Auranofin on viral
replication, in contrast with previous data, although the cytotoxicity was comparable in
both studies [31]. The reasons for this discrepancy might be due to the different cell lines
used to evaluate antiviral activity (Calu-3 vs. Huh-7), and the different approaches adopted
to measure viral replication (quantification of the expression of viral proteins vs. viral RNA
in cell supernatant). In addition, the IC50 value measured in Huh-7 cells was close to the
CC50 value (1.4 µM and 5.7 µM, respectively), indicating that the dose–response curves of
antiviral activity and cytotoxicity were almost overlapping.

2.3. Mechanistic Studies: The Reactions of the Best Drug Candidates with Selected Biomolecular
Targets Analyzed In Silico

The recently characterized RNA genome sequence of SARS-CoV-2 offers the possibil-
ity to hypothesize which are the most likely protein targets for effective treatments. The
most important are: the spike protein responsible for virus binding to the host cell sur-
face receptor, i.e., angiotensin-converting enzyme 2 (ACE2); coronavirus main proteinase
(3CLpro) and papain-like protease (PLpro), which perform the proteolytic cleavage of the
polyproteins essential for the production of new mature virions; RNA-dependent RNA
polymerase (RdRp), responsible for replicating the RNA genome; and nsp12 polymerase
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and nsp13 helicase [32–35]. Currently, there is a lot of interest in uncovering the detailed
mechanisms of interaction of antiviral drugs and metallodrugs with the likely biomolecular
targets of SARS-CoV-2 [23]. In the present work, based on the above screening procedure,
we found that three panel compounds (i.e., Aubipyc, KP1019, and SbCl3) possess a quite
favorable biological and pharmacological profile. To characterize the possible mechanisms
of interaction of these metal compounds with their likely biomolecular targets, we studied
the thermodynamics of their interactions with suitable metal-coordinating sites on viral
proteins (cysteine Cys, selenocysteine Sec, histidine His) or nucleobase strands (guanine G,
adenine A).

In particular, the binding affinities of the selected metal complexes with endogenous
nucleophile sites, such as Cys, Cys−, Sec, Sec−, His, and the nucleobases guanine and
adenine, were estimated. Both neutral and deprotonated Cys and Sec were considered
because, at a pH of 7.2 (typical of physiological conditions), the fractions of deprotonated
Cys and Sec equal 5% and 98%, respectively (calculated with the pKa values of side
chains of Cys and Sec, 8.3 and 5.2, respectively). Among these coordinative sites widely
diffused in many protein and DNA targets, Sec proteins are found in the viral families
Herpesviridae (Epstein–Barr virus, dermatotropic poxvirus [36]), Poxviridae (fowlpox
virus [37]), Picornaviridae (Coxsackieviruses B3 and B4 [38]), Flavoridae (Hepatitite C
virus [38,39], West nile virus, Japanese encephalitis virus [40]), Filoviridae (Ebola virus [41]),
Paramyxoviridae (Measles virus [38]), Retroviridae (HIV-1 [41–43], HIV-2 [38], Murine
Leukemia virus [36]), and Hepadnaviridae (Hepatitis B [36]). The effects of the environment
were considered by performing the calculations in chloroform; indeed, the 4.81 dielectric
constant of this solvent is close to the range of 6–7 estimated for a protein environment [44],
tentatively assuming the same dielectric constant for either DNA or RNA environments. A
preliminary assessment of the possible aquation affecting both KP1019 and SbCl3 showed
that the substitution of a chloride ligand with one water molecule is thermodynamically
disfavored, with calculated Gibbs free energies of aquation > 9 kcal/mol. Thus, we presume
that both complexes react with the nucleophilic targets in their administered forms via the
substitution of a chloride ligand. The reaction free energy values for the binding of Aubipyc,
KP1019, and SbCl3 at selected protein or nucleobase sites are reported in Table 2. As shown,
Aubipyc and SbCl3 displayed similar binding profiles, with highly endergonic coordination
at neutral nucleophile sites (Gibbs free energies > 20 kcal/mol), while detecting remarkable
exergonic coordination at Cys− and Sec− (Gibbs free energies <20 kcal/mol) (Table 2).
Thus, both Aubipyc and SbCl3 can be considered as selective protein binders capable of
targeting the deprotonated forms of Cys and Sec, which are expected to be formed at high
pH, or at specific protein locations inducing a decrease in the pKa values. It should be also
noticed that Sec protein sites have lower pKa compared to Cys. Indeed, Sec protein sites
are more often found in their deprotonated forms, making them more suitable for metal
coordination [45]. On the other hand, the KP1019 complex disclosed a slightly different
binding profile compared to Aubipyc and SbCl3. Indeed, the exergonic coordination of this
complex was detected for Cys−, Sec−, His, and guanine, while only a slight endergonicity
(Gibbs free energies in the range of 0–11 kcal/mol) was detected for coordination at the
other nucleophile sites (Table 2). The free energy for the coordination of KP1019 at the
neutral Sec was estimated to be less than 1 kcal/mol, thus corresponding to a slightly
left-shifted equilibrium. Above all, the ruthenium-based complex KP1019 was less selective
towards binding to nucleophilic sites, while Aubipyc and SbCl3 showed a well-defined
preference for the anionic forms of either Cys or Sec protein sites.
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Table 2. Gibbs free energies for the binding of the selected metallodrugs at possible target nucleophile
sites in SARS-CoV-2 proteins or nucleobase strands via the substitution of a chloride ligand. All
values are reported in kcal/mol.

Nucleophiles Aubipyc KP1019 SbCl3

Cys 52.4 10.6 42.6

Cys− −23.8 −32.0 −36.1

Sec 49.1 0.4 40.4

Sec− −27.8 −24.4 −30.4

His (chain at position 1) 37.0 −10.1 21.2

His (chain at position 2) 37.5 −12.6 19.0

Guanine 34.1 −7.8 25.0

Adenine 50.4 11.4 31.0

Water 68.0 9.1 44.7

In this frame, our calculations evidenced that the metalation of nucleophilic sites
in SARS-CoV-2 proteins or nucleobase strands caused by Aubipyc, SbCl3, and KP1019
is possible, although only the deprotonated forms of Cys and Sec residues were found
to favorably react with all the three metal complexes. Therefore, the pH of the milieu at
which the druggable target is situated, as well as its bulk exposure, are expected to play an
utmost important role in determining the occurrence of metalation. In turn, this suggests
that the therapeutic efficacy of these metal complexes may be crucially affected by the
physico-chemical conditions that are experienced by the SARS-CoV-2 virus.

3. Materials and Methods
3.1. Preparation of the Metallodrugs Panel

All the tested compounds were well-known inorganic drugs. Auranofin and SbCl3
were supplied by Merck (codes A6733 and 215783, respectively; purity ≥ 98%). The iodo-
analogue of Auranofin, AuL12, AuOXO6, Aubipyc, NAMI-A, KP1019, and TiCp2Cl2 were
synthesized as reported in the literature with a purity ≥ 95% [6,26–30].

3.2. Computational Methods

All calculations were performed with the Gaussian 09 A.02 [46] quantum chemistry
package. Geometrical optimizations were carried out in solution by usingωB97X [47], in
combination with the basis sets def2SVP for optimization in chloroform, and def2TZVP for
the single-point electronic energy evaluations of the optimized structures [48,49]. Frequency
calculations were performed to verify the correct nature of the stationary points as well as
to estimate zero-point energy (ZPE) and thermal corrections to thermodynamic properties.
Indeed, Density-functional Theory DFT gives a good description of geometries and reaction
profiles for transition-metal-containing compounds [50,51], including Au- and Ru-based
metallodrugs [16,52]. The density functionalωB97X is known to yield accurate geometrical
structures and was reported to have reached a high accuracy in the calculation of electronic
energies [53,54]. The polarizable continuum model (PCM) using the integral equation
formalism variant (IEFPCM) was used to describe the chloroform (ε = 4.81) solvation [55].
For increased accuracy, the experimental values of −74.5 and −104.7 kcal/mol were used
for the solvation energies of Cl− and OH− [56].

3.3. Cells and Viruses

The SARS-CoV-2 strain, belonging to lineage B.1 (EPI_ISL_2472896), was kindly
provided by the Department of Biomedical and Clinical Sciences Luigi Sacco, University
of Milan [57]. African green monkey kidney epithelial VERO E6 cell line (ATCC® CRL-
1586) was used to propagate and titrate virus stock and to perform the SYRA, adapting a



Biomolecules 2021, 11, 1858 7 of 11

previously published method [58]. Human epithelial lung cancer Calu-3 (ATCC® HTB-55)
cell line was used to determine the antiviral activity of candidate compounds in the direct
yield reduction assay (DYRA). Both VERO E6 and Calu-3 cell lines have been shown to
support SARS-CoV-2 replication [59]. VERO E6 cell line was maintained in high-glucose
Dulbecco’s Modified Eagle’s Medium with sodium pyruvate and L-glutamine (DMEM;
Euroclone, Milano, Italy), while Calu-3 was maintained in Minimum Essential Medium
Eagle (EMEM; Sigma, Darmstadt, Germany) supplemented with 2 mM L-glutamine (L-
glut, Euroclone, Milano, Italy). Both culture media were supplemented with 10% Fetal
Bovine Serum (FBS; Euroclone, Milano, Italy) and 1% Penicillin/Streptomycin (Pen/Strep,
Euroclone, Milano, Italy). The same medium with a lower FBS concentration (1%) was
used for the viral propagation and drug susceptibility testing. Cells were incubated at
37 ◦C in a humidified incubator supplemented with 5% CO2. All the virus stocks were
titrated by plaque reduction assay (PRA), as previously described [60]. Briefly, VERO
E6 cultures were infected with SARS-CoV-2 and monitored by microscopy every 24h. In
the presence of large cytopathic effects induced by viral replication, cell cultures were
subjected to one cycle of freezing and thawing, with cellular debris then being cleared
through centrifugation for 30 min at 1300× g, and virus stock titrated through PRA. Viral
titer was expressed as plaque-forming units (PFU)/mL.

3.4. Drugs and Cytotoxicity Assay

The cytotoxicity of the investigated metal compounds was determined by CellTiter-
Glo 2.0 Luminescent Cell Viability Assay (Promega) according to the manufacturer’s
protocol. The luminescence values obtained from Calu-3 cells exposed to investigational
compounds or dimethyl sulfoxide (DMSO) control for 48h were measured through the
GloMax® Discover Multimode Microplate Reader (Promega, Madison, WI, USA) and
elaborated with the GraphPad PRISM software version 6.01 (La Jolla, San Diego, CA, USA)
to calculate the CC50 and the CC20. Remdesivir (MCE®, Monmouth Junction, NJ, USA, cat.
HY-104077), used as reference compound, was supplied as powder, and dissolved in 100%
DMSO.

3.5. Antiviral Assays

To determine the antiviral activity of candidate compounds against SARS-CoV-2, a
DYRA, based on the infection of cells in the presence of serial drug dilutions, was performed
as previously described, with minor modifications [25]. Briefly, 25,000 Calu-3, pre-seeded
in the 96-well plates, were treated with serial dilutions of each tested compound, and
incubated for 30′ at 37 ◦C with 5% CO2. The virus stock was added at a concentration of
250 PFU/well, then, after 1 h of adsorption, the medium was removed, and fresh dilutions
of each tested compound were added to the cells. After an incubation of 48h at 37 ◦C with
5% CO2, the antiviral activity was measured on the cell monolayers by an immunodetec-
tion assay (IA), consisting of the fixation and permeabilization of cells, followed by 1 h
incubation with a monoclonal SARS Nucleocapsid Protein Antibody (Novus, Milano, Italy,
cat. AP201054), diluted 1:1000 in blocking buffer (PBS containing 1% BSA and 0.1% Tween
20) [61]. After washing, monolayers were incubated for 1 h with a polyclonal HRP-coupled
anti-mouse IgG secondary antibody (Novus Bio, Milano, Italy, NB7570), diluted 1:5000 in
blocking buffer. After cell washing, the 3,3′,5,5′-Tetramethylbenzidine substrate (Sigma
Aldrich, Darmstadt, Germany) was added to each well and the reaction was stopped with
one volume of 0.5 M sulfuric acid. Absorbance was measured at 450 nm optical density
(OD450) using the Absorbance Module of the GloMax® Discover Multimode Microplate
Reader (Promega).

Compounds not active in DYRA were then analyzed in SYRA to characterize late
antiviral effects. SYRA was performed, adapting to SARS-CoV-2 a protocol already pub-
lished [61]. Supernatants containing viral particles produced during DYRA were briefly
harvested from each well, diluted, and used to infect pre-seeded 10,000 VERO E6 cells.
After 1 h of adsorption, viral supernatants were removed, fresh medium was added, and
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cells were incubated for 24 h at 37 ◦C with 5% CO2. The IA was performed on the cell
monolayers as described above. The half-maximal inhibitory concentration (IC50) was
calculated through a non-linear regression analysis of the dose–response curves generated
with GraphPad PRISM software version 6.01. In each test, Remdesivir was used as a
reference compound against SARS-CoV-2. Infected and uninfected cells without drugs
were used to calculate the 100% and 0% of viral replication, respectively. Selectivity Index
(SI) was calculated as the ratio between CC50 and IC50. In principle, the higher the SI value,
the more efficacy and safety should be observed during in vivo treatment.

4. Conclusions

Metal compounds offer a rich variety of chemical structures and reactivities that
merit to be considered in the screening libraries of chemical substances for new drug
discovery [23]. Indeed, drug repurposing is a time-saving and cost-efficient approach for
speeding up the process of the clinical evaluation of candidate drugs against novel diseases,
such as COVID-19 [62].

There are already some good indications in the literature that a few metal compounds
might perform reasonably well in the treatment of COVID-19. This observation led us to
expand this kind of study and to prepare a small panel of metal compounds to be tested
as potential anti-SARS-CoV-2 agents. The screening revealed that three out of the nine
metallodrugs belonging to the panel, i.e., Aubipic, KP1019 and antimony chloride, possess
promising properties against SARS-CoV-2, although the low selectivity index suggests that
these molecules are not the most appropriate for in vivo testing.

Based on the previous literature available on these metal-based drugs, it is highly
probable that these compounds characterized by very soft metal centers may interact
preferentially with selected residues of proteins [6,63–65]. A computational study revealed
that these compounds indeed manifest a good selectivity for thiol and selenol groups of
proteins. The affinity is much greater when thiols and selenols exist in their deprotonated
anionic form. These considerations may help the search for the actual biomolecular targets
for the above mentioned metallodrugs. Such mechanistic information may turn out to be
useful in the design and development of improved metallodrugs against SARS-CoV-2.
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