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Abstract

The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial
literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing.
Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed
at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation
phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these
stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may
occur during sleep, neocortically based memories are not readily established during deep sleep.
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Introduction

Sleeping organisms show a much-reduced responsiveness to

external stimuli, indicating a relative disconnection of their brains

from the environment. While this daily recurring suspension of

‘online’ processing comes at a risk, it also allows brains to perform

’offline’ tasks they cannot carry out during the constant sensory

bombardment of wakefulness. In particular, the last decades have

demonstrated the various effects that sleep has on memory

stabilization and reorganization [1,2], processes that depend on

the replay of previously learned information [3], the temporal

coupling of various brain rhythms [4], and the gradual redistri-

bution of memory traces from temporary to more permanent

stores [5]. Such findings have instilled the realization that

important information processing may be ongoing during sleep.

Yet, how the sleeping brain reprocesses stored information is an

issue largely distinct from whether and how the sleeping brain

processes incoming stimuli. Particularly notable in this respect are

some recent reports indicating the retention of information

presented during sleep, that is, sleep-learning [6,7]. However,

stimulus processing during sleep has been examined from a

number of research angles.

One recent line of evidence for the sleeping brain’s lingering

receptiveness to stimuli comes from studies using external cues to

reactivate memory traces [8,9], leading, in some cases, to

improved memory performance [10,11]. Other studies have

evaluated sleeping subjects’ brain responses to novel input, usually

simple auditory or tactile stimuli. A number of human studies

investigated evoked potentials in response to stimulus presentation

during sleep (for a review see [12]). The general tenet from this

body of work is that, while the sleeping brain responds differently

from wakefulness, it retains some residual capacity for performing

simple processing relating to stimulus salience, novelty and

significance, as indicated by differential brain responses to stimuli

varying in these respects. At the same time, such electrophysio-

logical responses depend on the particular sleep stage the subject is

in, and at a more fine-grained level, on the momentary presence of

specific brain oscillations [13–16].

In particular, the phase of ,1 Hz slow oscillations (SOs) during

deep, or slow wave sleep (SWS), appears to affect stimulus

processing. During SOs, membrane potentials of neocortical

circuits alternate between depolarized up and hyperpolarized

down states. In line with the notion that most faster activity occurs

in the up state [17–19], and the brain is generally more excitable

during this SO phase [20], a recent study found evidence that

auditory stimuli arriving during the upward going SO slope (i.e.,

towards the up state) lead to greater hemodynamic responses in

auditory association cortex, as compared to tones presented during

the negative-going wave (i.e., towards the down state) [16]. In the

same study, tones presented towards the up state elicited a greater

evoked potential positivity ,300 ms post-stimulus than tones

presented towards the down state. In contrast, somatosensory

evoked potentials to brief tactile stimuli were largest in the down

state and became progressively smaller towards the up state [15],

complicating the question as to which phase of the SO is most

conducive to stimulus processing.

As alluded to above, perhaps most intriguing is whether novel

information, processed during sleep, can leave lasting memory
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traces discernible during ensuing wakefulness. Older studies found

either no evidence for sleep-learning of verbal material [21,22] or

had methodological difficulties [23]. However, recent evidence

demonstrated that classical conditioning can take place during

sleep [6], as can fear extinction learning [7]. A possible

explanation for these inconsistencies may have to do with the

neural networks likely involved in forming memories for the

presented materials. While the successful conditioning and

extinction attempts probably relied on subcortical and hippocam-

pal brain circuitry, the failure to establish memories for verbal

material may be related to their dependence on neocortex. In

particular, the precise timing of stimulus delivery may be of crucial

importance. If indeed SOs, with their neocortical basis, regulate

windows of opportunity for stimulus processing, it may be that

stimuli processed in large part by the neocortex need to arrive

sufficiently often in the right SO phase in order to be encoded

properly and leave a permanent mark on brain circuitry.

Thus, if one were to assess the role of SOs in auditory stimulus

processing and memory formation, complex, real-world sounds

with semantic meaning (’sound objects’) may be preferred over

simple tones. Importantly, the buildup of lasting memory

representations is a function of the number of times stimuli have

been encountered. As such, the ability to present stimuli repeatedly

and consistently in a specific SO phase would be highly useful and

maximize the opportunity to demonstrate SO phase-dependent

learning. A related benefit of such a capability would be that

meaningful sound stimuli, which are usually of longer duration,

will not end up along different SO phases, thereby preventing a

straightforward examination of up and down state-related

processing.

In this study, we examined how cortical networks respond to

real-world sound stimuli as a function of SO phase. In order to

achieve this, we developed a novel algorithm for performing real-

time phase prediction in the SO frequency range. Using this

algorithm, we repeatedly presented sound stimuli directed at up

and down states to sleeping subjects. Importantly, by consistently

targeting particular stimuli at a specific SO phase, we putatively

engendered the gradual buildup of a memory trace. We evaluated

brain-wide SO phase-dependent brain responses to stimuli in both

the time and time-frequency domain. We analyzed time-frequency

power responses because time-varying spectral responses may be

affected even when time-averaged signals are not [24]. Finally, to

assess whether lasting memory traces were formed, we adminis-

tered all presented, as well as novel, sounds during a post-sleep

waking session, and explored neural and behavioral indices of

memory formation.

Materials and Methods

Ethics statement
This study was conducted in accordance with the principles of

the Declaration of Helsinki, procedures were approved by the

University of Amsterdam, Department of Psychology ethics

committee, and all participants provided written informed

consent.

Subjects
A total of 12 young, healthy participants (age range 18–23; 11

female), for whom algorithm-based stimulus delivery was success-

ful (see Results), were included in this study. Subjects were

compensated either monetarily or with credits to fulfill course

requirements.

Procedure
Participants arrived at the sleep laboratory at 8 PM. After filling

out of informed consent forms, subjects were prepared for

polysomnographic registration (see Data acquisition). Participants

went to bed between 9 PM and 9.30 PM, when they were

provided with a 2 to 2.5 h sleep opportunity in a dark and quiet

environment. Speakers placed approximately 50 cm from the

subject’s head played white noise continuously at an unobtrusive

level; subjects had been informed the goal of the experiment was to

learn about sound processing during sleep. The real-time

polysomnographical signals were constantly monitored by the

experimenter from the control room adjacent to the subject’s

bedroom. The experimenter turned the phase prediction algo-

rithm on and off to coincide with the presence of SWS. When

several criteria were met (see Algorithm), the algorithm triggered

playback of a sound stimulus, while temporarily pausing the white

noise. Out of a total of 60 sounds, 20 were directed at the SO up

state, and 20 at the down state. The remaining 20 stimuli were

kept separate for later testing during wakefulness. The algorithm

was allowed to predict and play sounds for as long as the

participant remained in SWS. Some subjects woke up after an

initial period of successful stimulus presentation and did not show

signs of falling asleep again. In that case, they were disconnected

from the polysomnography setup after lying awake for 45 min.

Subjects who slept steadily were woken up from light or REM

sleep after 2 to 2.5 h.

After a period of 30 min to recover from sleep inertia, subjects

were asked to fill out the Stanford Sleepiness Scale and answer

questions regarding general sleep characteristics (not pertaining to

the nap). In addition, they were asked whether they had noticed

anything out of the ordinary during sleep, and, more specifically,

whether they had noticed anything about the background noise.

Subjects were then informed that sounds other than the white

noise had in fact been played. After rechecking electrode

impedance levels, participants performed a waking memory test

with EEG registration (see Memory task), during which sounds

from the three conditions (up/down/novel) were presented in

pairs. Subjects were required to indicate which sound of each pair

sounded most familiar, using a forced choice design. In this way,

we could assess whether memories had been formed during sleep

that could guide behavioral choices, either consciously or

subconsciously. In particular, one might expect that up and down

sounds will be consistently chosen over novel sounds, indicating

’generic’ sleep-learning. Alternatively, up sounds might be chosen

over both down and novel sounds, suggesting sleep-learning occurs

particularly in the SO up state. Lastly, an exit questionnaire

assessed subjects’ confidence regarding their provided answers.

Total duration of experimental procedures was between 3.5 and

4.5 hours.

Stimuli
We selected a total of 60 sound stimuli representing real-world

objects (door bell, barking dog, footsteps, etc.). Some of these

stimuli have been used previously [8,11], others were found

through the Internet. The maximum duration of the sounds was

500 ms, so that they would ’fit’ into individual up or down states.

Our goal was to have the middle of each sound clip coincide with

the SO peak or trough. In order to deal with different sound

durations, for sleep presentation, sound files were edited to be

500 ms in length by zero-padding them symmetrically to the

required length. Thus, the effective stimulus was always centered

in the middle of the 500 ms sound clip. We also employed a white

noise stimulus, which, during playback, was constantly looped.

Empty padding was not performed for stimuli presented during
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wakefulness testing. Sound levels of all sounds, including the white

noise, were equalized using the ’account for perceived loudness’

option in Adobe Soundbooth. All sounds were stereo waveform

files with a sample rate of 44.1 kHz. Sound levels during sleep

were set at an unobtrusive volume, ranging from 35 to 45 dBA for

individual sounds, which was sufficiently soft to not awake the

participant but still be perceptible. During wake testing, sound

volume ranged between 60 and 80 dBA.

Data acquisition
EEG was acquired using a 64-channel WaveGuard cap (ANT,

Enschede, the Netherlands) and two additional fixed mastoid

electrodes. Horizontal and vertical electrooculography and chin

electromyography were monitored with bipolar derivations.

Signals were sampled at 512 Hz using a 72-channel Refa DC

amplifier with a low-pass filter at one fifth of the sample rate (TMS

International, Enschede, the Netherlands), and stored on a

recording pc. EEG was acquired with an average reference and

impedance levels were kept below 10 kV. During sleep, a second

amplifier provided the bipolar Fpz-M1 signal to the algorithm pc,

which carried out phase prediction.

Algorithm
In order to present stimuli in a specific phase of the SO in real-

time, we developed a novel algorithm. The algorithm runs in the

Event IDE (http://okazolab.com) environment on a dedicated pc,

receiving the signal of a selected EEG channel (bipolar Fpz-M1),

through a dedicated amplifier. The last 5,000 samples (,10 s)

were buffered and used for analysis. In a continuous fashion, a Fast

Fourier Transform (FFT) was applied to the moving window of

these most recent samples to analyze the spectral composition of

the signal. We designated the frequency with the highest

amplitude coefficient in the 0.6–1.2 Hz range as the center

frequency, serving as an estimate of the momentary SO frequency.

Next, we band-pass filtered the signal in the SO band (order 1

Butterworth, 1 Hz bandwidth around center frequency). Then,

using the Hilbert transform, the analytic signal was derived.

Because the analytic signal is phase-shifted 90 degrees with respect

to the original signal, it was shifted back. An important feature of

the analytic signal is that its cycle-to-cycle maximum amplitude is

constant; amplitude differences from one SO to the next are thus

eliminated. Using the previously determined center frequency, a

sine wave was fitted to the analytic signal and extrapolated into the

future. Importantly, for fitting we only used the period between 80

and 95% (,1.5 s) of the analytic signal. We used this smaller piece

of data to use only the most recent bit of data for extrapolation.

However, because of edge artifacts when filtering, we were forced

to stay clear of the most recent ,0.5 s. For a given target phase,

the first occurrence of that phase along the extrapolated sine wave

was used to estimate its expected occurrence.

Without any further requirements, however, this would lead to a

near-continuous stream of predictions, since there was always an

extrapolated signal. Therefore, we enforced a number of

additional criteria. First, in order to minimize predictions in the

absence of SOs, we set a power threshold that power in the SO

band was required to exceed. Specifically, power in the SO band

should be at least a factor 0.6 of the total power. While this does

not guarantee the presence of deep sleep (e.g., eye movements at

the right periodicity could also result in crossing the power

threshold), this approach severely reduced the occurrence of phase

predictions in non-desired vigilance states. Second, we set a fitting

threshold parameter, which determined how good the fit between

the sine wave and the analytic signal should minimally be. This fit

was calculated using a least squares approach, and was required to

be smaller than 0.1. As soon as power and fitting criteria were met,

the algorithm was allowed to predict the next occurrence of the

targeted phase. It would then temporarily halt online analyses and

wait for the predicted time point before sending a trigger to the

stimulus pc, leading to stimulus presentation. However, this

momentary lapse in signal fitting meant that the most recent

information was not utilized, possibly leading to less accurate

performance. Therefore, as a third criterion, we set a time

constraint such that predicted phases could not be more than

250 ms away from the present moment. In this manner we

balanced the need for a high prediction rate, with the need for

accurate predictions based on the most current information. In

rare cases, sound presentation led to arousals or waking up.

Therefore, after each prediction and ensuing stimulus presenta-

tion, we enforced a 10,000-sample (,20 s) ’time-out’ period,

during which no predictions were made, allowing the operator to

manually disable algorithm functioning if necessary. Given that

there were two phases of interest (up and down state), the

algorithm was continuously looking for both. Whichever phase

was predicted to occur first, was the one used for stimulus

presentation.

Stimuli were presented by a dedicated stimulus pc, also using

Event IDE as the presentation platform. Per subject, stimuli were

randomly assigned to one of three categories (up/down/novel).

Sounds assigned to the up and down conditions were presented in

random order. Constant white noise was played at low volume

while the input port was monitored for pulses from the algorithm

pc indicating the prediction of an up or down state. Upon pulse

detection, noise playback was muted and the sound next in line

(from the appropriate condition) was presented. White noise was

then restored to the normal volume. Note that up- and down-

targeted sound presentation was intermixed, as it depended on the

algorithm’s predictions. Following the presentation of a full block

of 20 presentations from a condition, sounds in that condition

were reshuffled for the next presentation block. The operator had

the option to adjust sound levels in case sound presentation led to

arousals or signs of waking up. For two subjects this was the case,

and volume levels were lowered by about 5 dBA.

Note that, contrary to another recently described ’closed-loop’

algorithm for delivering sounds in phase with SOs [25], our

algorithm is capable of targeting any desired phase. Indeed, we

made full use of this capacity not only because some stimuli were

directed at the up state and others at the down state, but also

because we took into account the dominant SO frequency when

computing at what exact phase sound playback should commence.

That is, a slower SO frequency meant that stimulus presentation

should start slightly later and in a different phase compared with a

quicker SO frequency.

Memory task
Right before wake testing, subjects were informed that sounds

had been played during their nap. They were then seated

approximately 50 cm in front of a pc screen and speakers, for a

memory task with EEG recording. Subjects were required to

perform a 2-alternative forced choice task as to which sound of a

pair appeared most familiar to them. Participants were requested

to sit still and look directly at the screen in front of them. They

were presented a sequence of sound pairs, in which each pair

consisted of sounds from two distinct categories (up/down/novel).

Every ’pair condition’ (up/down; up/novel; down/novel) occurred

equally often. Each of the 60 sounds was presented twice, both

times in a different pairing. That is, 30 pairs were presented in

round 1, and 30 different pairs (but constructed from the same

sounds) in round 2. Furthermore, every sound was paired with
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sounds of both remaining categories over the two rounds. That is,

an ’up’ sound that was matched with a ’down’ sound in round 1,

was paired with a ’novel’ sound in round 2. Finally, the order of

presentation of pairs within each round was randomized, as was

the order of sounds within each pair.

After presentation of a few instruction screens, sound pairs were

presented. A single trial commenced with a blank-screen pre-

stimulus period jittered between 1000 and 1100 ms, before the

first sound of a pair was presented. Then, there was a silence

(jittered between 5000 and 5100 ms), before the second sound was

presented. A 4000 ms pause ensued, followed by the appearance

of a question on the screen: ’which sound appears more familiar to

you?’ Subjects could indicate their choice by selecting one of two

buttons on the keyboard. Then, a message ’the next two sounds

will be presented shortly’ was displayed for 2000 ms, and the next

trial commenced. Following presentation of the first 30 pairs, a

short 30 s break was provided. The waking test took about 15 min.

Preprocessing
Sleep stages were scored offline using Galaxy software (PHIi,

Amsterdam, the Netherlands) with an epoch size of 30 s in

accordance with standard criteria [26]. In addition, periods of

arousal were marked in accordance with the AASM guidelines

[27]. Stimuli presented within a 2 s range around these intervals

were excluded from the analyses, both for sleep and waking EEG

data. Custom Matlab scripts were combined with several freely

available toolboxes for all subsequent analyses. Functions from the

EEGLAB toolbox (http://sccn.ucsd.edu/eeglab) were used to

high-pass (0.1 Hz) and notch filter (50 Hz) the raw EEG data,

interpolate channels displaying artifacts, and re-reference the EEG

to linked mastoids.

Next, eye blinks, eye movements and muscle artifacts were

removed from the waking EEG data using independent compo-

nent analysis. For both sleep and wakefulness, continuous EEG

was initially epoched into intervals from 1000 ms before until

2500 ms after sound onset. Trials were visually inspected for

artifacts and noisy trials were discarded. For ERP analysis, data

was then low-pass filtered at 35 Hz; for time-frequency analysis

this step was not performed. All data were then baseline-corrected

using an interval from 2750 to 0 ms. For time-frequency analysis,

a family of complex Morlet wavelets was used to decompose all

multi-channel epoched time series into time-frequency represen-

tations, according to ei2ptfe(2t ‘2)/(2s ‘2), where i is the imaginary

operator, t is time, f is frequency (35 logarithmically spaced

frequencies between 5 and 100 Hz), and s is the width of each

wavelet. We defined width s as l/(2pf), where l is the number of

wavelet cycles, increasing from 4 to 12 in 35 logarithmically

spaced steps corresponding to the number of frequency bins.

These settings resulted in a temporal precision (2s) of 255 ms at

5 Hz and 38 ms at 100 Hz, and a spectral precision [1/(ps)] of

2.5 Hz at 5 Hz and 16.7 Hz at 100 Hz. The resulting time-

frequency representations were downsampled to 100 Hz to reduce

the amount of data. Power was defined as the squared complex

magnitude of the convolution result, while phase was defined as

the angle of the convolution result, bound between -pi and pi.

Power estimates were decibel normalized according to dB power

= 10*log10(power/baseline), where for each channel and

frequency, the baseline was the average from -200 to 0 ms over

all epochs. For sleep, we used separate baselines for the up- and

down-targeted conditions, because of widely different pre-stimulus

amplitudes and power levels in various frequency bands between

up and down states. For wakefulness, pre-stimulus amplitudes and

power could be assumed to be highly similar across conditions and

we used the same baseline for all conditions (namely, the average

baseline across all trials in all three conditions).

Statistics
Algorithm performance was assessed offline by first processing

the channel used for predictions in a manner closely resembling

the processing steps employed by the real-time algorithm. That is,

we band-pass filtered channel Fpz (0.5–1.5 Hz, zero-phase shift

Butterworth) and used the Hilbert transform to extract the

instantaneous phase. We used functions from the CircStat toolbox

for circular statistics [28] to analyze the phase distributions of

presented sounds. Permutation-based statistical analyses on time-

channel data (for ERPs) and on time-frequency-channel data (for

time-frequency power responses) were performed with Fieldtrip

(http://fieldtrip.fcdonders.nl/) using cluster correction [29]. EEG

statistics were performed on an interval from 2200 ms to 1500 ms

around stimulus presentation. We set the clusteralpha parameter

to 0.01 and used 1000 iterations for all tests. Using a significance

level of 0.05, clusters were considered significant at P,0.025 for

two-sided testing.

Results

Sleep characteristics
Subjects spent an average 135611 min (mean 6 SD) in bed, of

which they slept a total of 103623 min. Proportions spent in

individual sleep stages were, for S1: 1769%; S2: 4469%; S3:

1064%; S4: 27612%; only two subjects showed signs of REM

sleep (7 and 14 min, respectively). Total time spent in SWS (S3 +
S4), during which sound presentation was intended to occur, was

37612 min (range: 20–61). Indeed, algorithm predictions took

place overwhelmingly during deep sleep (9366%), with only a

minority occurring during S2 sleep (666%), and negligible

amounts during wakefulness and S1 sleep (0.5 and 0.2%,

respectively). Number of arousals was 21.4617.0 (range: 4–66),

although only four of these were associated with sound presen-

tation (four subjects with one arousal each). The pertaining sounds

were excluded from all EEG and behavioral analyses. Following

sleep, subjects answered questions as to whether they had noticed

anything about the background sound. None of the participants

had noticed that the continuous noise had been intermittently

replaced with other sound stimuli.

Sleep: algorithm performance
The algorithm was allowed to predict as many up and down

states as possible while deep sleep continued. The mean number of

up state predictions and ensuing sound presentations was

63.3624.3, while for the down state there were 59.8623.2

presentations. These amounts did not differ significantly [paired t

test: t(11) = 0.98; P = 0.35], indicating the algorithm was not

biased. Given that a full round of presentations consisted of 20

stimuli per condition, each sound was played three times on

average.

For a given participant, algorithm performance needed to be

sufficiently accurate before we could include that subject and

sensibly compare up- with down-targeted sounds. Therefore, we

analyzed the phase distributions of markers designating the middle

of the sound stimuli with respect to the SO phase. In particular, we

assessed whether distributions were significantly non-uniform

using the Rayleigh test, and whether up- and down-targeted

distributions were significantly different with the Watson-Williams

test. Overseeing all subjects’ algorithm performance, we included

participants when 1) the average up-targeted phase deviation from

the up state (90 degrees) was ,45 degrees; 2) the up-targeted
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distribution was significantly (P,0.05) non-uniform; and 3) up-

and down-targeted distributions differed significantly (P,0.05).

Note that we did not explicitly require down-targeted stimuli to be

,45 degrees from the down state (270 degrees), or significantly

non-uniform. While for many subjects these conditions were still

met, down state prediction was evidently more difficult for the

algorithm than up state prediction. Nonetheless, we reasoned that

with the above three requirements in place, up- and down-

targeted distributions should still be sufficiently distinct to

demonstrate differential brain processing. Indeed, adding all

predictions from all twelve included participants together, both

up- and down-targeted stimuli were presented very close to the

intended phase (up-targeted: 78.7665.6 degrees, Rayleigh test

Z = 90.5, P,10240; down-targeted: 236.8675.8 degrees, Rayleigh

test Z = 11.5, P,1024; Watson-Williams test F = 395.2, P<0).

Figure 1 shows algorithm performance both for individual subjects

and across subjects.

Sleep: up- and down-targeted responses
In a first step, we compared ERP and time-frequency power

responses between the up- and down-targeted stimuli across all

electrodes. Note that these contrasts reflect putative stimulus-

evoked responses against a backdrop of differential SO phases in

the two conditions. For these and subsequent analyses, we time-

locked all responses to actual sound onset, stripped of empty sound

padding. Evoked potentials demonstrated up-targeted sounds were

presented on an upward going slope, while down-targeted sounds

occurred against a negative-going wave (Figure 2A). This is

consistent with the differential SO phase targeting, since the

contribution of SOs to ERPs would be expected to produce

inverted waveforms in the two conditions. Consequently, up-

targeted ERPs were significantly more positive than down-targeted

ones from 240 to 580 ms (P,0.001), and more negative in the

pre-stimulus period (-200 to 260 ms, P = 0.008). These effects

occurred in clusters encompassing all channels, although they were

most pronounced in frontal regions, closer to the site that phase

prediction was based on.

Considering the entire segment, the up-targeted ERP showed a

regular periodic wave in the SO frequency range. The down-

targeted waveform, on the other hand, displayed a positive

deflection around 350 ms, which seemed to interrupt the

downward going wave and to delay its negative peak. Interestingly,

the waveforms in the two conditions more or less realigned in the

second part of the segment, from ,600 ms onwards, suggesting

that the sound presentations consistently altered the time course of

the slow oscillation dynamic, in one or both conditions.

Evoked power responses demonstrated a borderline significant

increase in the spindle frequency range (10–19 Hz) for up-targeted

stimuli, relative to down-targeted ones, in a window from -50 to

480 ms (P = 0.039, Figure 3A). This effect could again be observed

across most of the scalp (69% of channels), but was most

pronounced over frontocentral areas. This observation is consis-

tent with findings of enhanced fast spindle activity in the SO up

state [30]. Together, ERP and time-frequency data provide

additional confirmation that our algorithm succeeded in present-

ing stimuli in the desired phase. Moreover, they suggest stimulus

presentation altered SO dynamics. This notion is further explored

in the next section.

Sleep: stimulus-evoked responses
In order to demonstrate stimulus-related activity unrelated to

spontaneous SOs, we defined fake events with the same SO phase

distribution as presented stimuli, without actual stimulus presen-

tation. That is, for every presented stimulus, we searched the

band-pass filtered signal for the same phase in the 3 s preceding

that stimulus, and labeled the corresponding time point as a fake

event. We did this for up- and down-targeted stimuli separately,

creating fake-up and fake-down events. Note that all fake events

occurred during SWS and during ongoing SOs. By comparing up-

targeted trials with corresponding fake-up trials, and, analogously,

Figure 1. Circular histograms showing algorithm performance for up- (blue) and down-targeted (red) sound stimuli, both within
single subjects and across all trials (right). Arrows indicate average phase angle; 90 degrees corresponds to the peak of the up state, 270
degrees to the trough of the down state.
doi:10.1371/journal.pone.0101567.g001
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by comparing down-targeted trials with their corresponding fake-

down trials, we could isolate stimulus-evoked activity from

spontaneous SO-related brain dynamics.

Looking at ERPs, up-targeted and corresponding fake-up events

were highly similar during the baseline period and immediately

after, suggesting we were successful in selecting comparable waves

(Figure 2B). However, relative to fake-up events, sound presenta-

tion led to a slightly enhanced positivity around 300 ms post-

stimulus, a more negative and somewhat phase-advanced wave

around 600 ms, and a more pronounced positive wave thereafter

(860 to 1230 ms, P = 0.028). The cluster showing the latter effect

had a frontocentral distribution encompassing 50% of electrodes.

This pattern is consistent with the literature on vigorous, stimulus-

evoked K-complexes [31]. Additionally, the phase-advancing

effect suggests up-targeted stimuli may be able to increase the

dominant SO frequency.

Down-targeted stimuli and fake events at corresponding phases

also showed high similarity in the baseline period, again suggesting

these waves were physiologically comparable (Figure 2C). How-

ever, compared to fake-down events, sound stimulation led to an

initial positivity from 90 to 400 ms post-stimulus (P = 0.022, 81%

of channels), followed by a pronounced negative peak (390–

860 ms, P = 0.012, 94% of channels), possibly also indicating a

stimulus-induced K-complex. This stimulus-related negative peak

and the ensuing positive wave were phase-delayed compared to

the baseline SO, which proceeded smoothly from down state to up

state.

The spectral responses to sound events relative to fake events

were highly similar for up-targeted and down-targeted stimuli

(Figure 3BC). Specifically, an early theta response was maximally

apparent between 200 and 800 ms post-stimulus (up-targeted: 5–

11 Hz, 140–950 ms; down-targeted: 5–10 Hz, 180–1170 ms; both

P,0.001), while a later broadband response, covering the spindle

and gamma range, occurred from around 700 to 1500 ms post-

stimulus (up-targeted: 9–35 Hz, 620–1500 ms; down-targeted:

11–29 Hz, 710–1500 ms; both P,0.001). All these effects were

Figure 3. Time-frequency power difference plots for frontal electrode Fz. Conceptually, panels A-C are similar to Figure 2 A-C. (A) Up-
targeted minus down-targeted sound presentation reveals an early enhancement in spindle power in the up state. (B) Up-targeted stimulus delivery
compared with fake-up events results in an initial theta response, followed by a later spindle/beta response. (C) Similarly, down-targeted sounds elicit
theta and spindle/beta activity relative to fake-down events.
doi:10.1371/journal.pone.0101567.g003

Figure 2. Grand-average event-related potentials during sleep for frontal channel Fz. Error shading indicates standard error of the mean.
Dashed colored lines near bottom signify time period of significant difference at cluster-level, with color indicating the more positive waveform (+ P,
0.05; * P,0.025; ** P,0.01; *** P,0.001). (A) Up-targeted (blue) and down-targeted (red) waveforms. (B) Up-targeted (blue) and fake-up events
(turquoise). (C) Down-targeted (red) and fake-down events (gold).
doi:10.1371/journal.pone.0101567.g002
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widespread, involving between 90 and 100% of electrodes.

Timing-wise, the theta responses occurred just prior to the ERP

negative peaks, at 600–650 ms, that were shared by the up- and

down-targeted conditions. In contrast, the later high frequency

responses aligned well with the ensuing, equally shared, positive

ERP peaks.

Taken together, these findings suggest that sound presentation

led to reliable brain responses. Relative to spontaneously occurring

SOs, both up- and down-targeted sound presentation resulted in

ERPs compatible with induced K-complexes. Interestingly, these

effects combined such that around 600 ms post-stimulus up- and

down-targeted waveforms were in phase again (Figure 2A). In the

power spectral domain this was matched by sound-related theta

responses around the peak negativity at 600 ms and, around the

time of the next positivity (,1000 ms), by an enhancement of

activity in a frequency range spanning the spindle, beta and lower

gamma bands.

Sleep: SO phase-dependent stimulus processing
Having established stimulus-evoked brain responses corrected

for the activity associated with naturally occurring SOs, we directly

compared these responses for up- and down-targeted stimuli. That

is, we calculated [up-targeted minus fake-up] and [down-targeted

minus fake-down] for every subject, and compared these up- and

down-evoked responses in the time and time-frequency domains

across all electrodes.

ERP analyses revealed that both up- and down-targeted stimuli

elicited an initial positivity around 300 ms post-stimulus, followed

by a downward wave around 600 ms, and a later positivity.

However, relative to down-targeted sounds, stimulus-related

activity to up-targeted stimuli was reduced for the early and

intermediate responses, but much enhanced for the late positive

wave. This resulted in a significant difference from 460 to 1170 ms

post-stimulus (P = 0.004, Figure 4A). This effect was topograph-

ically widespread, involving 76% of electrodes, although the

frontal-most channels were not part of the significant cluster.

For power spectral analysis, we did not observe any time-

frequency-channel clusters indicating differential stimulus-related

activity during the up and down states. Therefore, we decided to

take a more focused approach and directed our attention to two

windows of interest where stimulus-evoked activity was greatest.

We determined the extent of these windows by first averaging

stimulus-evoked responses for the up and down states; that is, we

averaged [up-targeted minus fake-up] and [down-targeted minus

fake-down]. Then, we looked for clusters showing significant

power modulations compared to zero, indicating brain responses

to this undifferentiated stimulus category. We observed two

significant clusters of stimulus-related power enhancements

encompassing the entire scalp: an early theta response and a later

spindle/beta response (both P,0.001). We then generated time-

frequency heat maps of the number of involved channels in these

two significant clusters (Figure 5AB). We visually inspected these

plots and averaged power values within two selected windows of

interest (theta: 5–10 Hz, 200–800 ms; spindle/beta: 11–27 Hz,

700–1200 ms). While the early theta-window did not reveal

differential neural processing for up- and down-targeted stimuli

(Figure 4B), there was significantly greater spindle/beta band

activity in response to up-targeted stimuli as compared to down-

presented sounds in a right frontotemporal area (P,0.001), and

additionally, in a smaller left occipital area (P = 0.025) (Figure 4C).

We note, however, that t values for this spindle/beta effect were

positive across the entire scalp, suggesting that these differences

may have been more global than the observed localized clusters

indicate. Interestingly, in terms of timing, the spindle/beta

response corresponds with the timing of the ERP effect. In

summary, when accounting for activity associated with spontane-

ous SOs, up state-presented stimuli elicit a greater positivity and

more spindle/beta activity than down state stimuli. Intriguingly,

these effects are rather delayed with respect to stimulus onset,

seemingly occurring in the up state after the one in which the

stimulus was presented.

Wake: memory
After allowing participants 30 min to overcome the effects of

sleep inertia, they were informed that sounds had been presented

during their nap. Then, all 40 sleep-presented, as well as 20 novel

sounds were played to the fully awake subjects. Sounds were

presented in pairs (one sound at a time), each pair containing

Figure 4. SO phase-dependent stimulus processing. Reliable differences are indicated with: * P,0.025; ** P,0.01; *** P,0.001. (A) Differential
stimulus-evoked waveforms for up (blue) and down (red) state presented sound stimuli for frontal channel Fz. (B) Early stimulus-evoked theta power
did not differ reliably between up- and down-targeted stimuli. (C) Late spindle/beta power was higher for up-targeted sounds than for down-
targeted stimuli across the entire scalp, reaching significance in a right fronto-temporal area (electrodes Fp2, F8, FC6, T8, AF8, F6 and FT8), and a left
parietal region (P7 and PO7).
doi:10.1371/journal.pone.0101567.g004
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stimuli from two different conditions (up/down/novel). Subjects

were asked to perform a two-alternative forced choice as to which

sound in a pair appeared most familiar to them. Each sound was

presented twice, both times paired with a different sound (see

Methods - Memory task). Results did not show indications that any

category was chosen over any other category consistently (Table 1).

We also performed these analyses based on just the first

presentation of every sound, in case the first round of presentations

had rendered sounds from the different categories more similar in

terms of familiarity. However, results were very similar. That is,

the SO phase during which sounds were presented during sleep

did not appear to drive behavioral responses in any way.

Additionally, we checked whether up and down categories

combined were chosen more often than novel sounds, suggesting

sleep-learning independent of the SO phase. However, this did not

appear to be the case either [t(11) = 20.50; P = 0.62]. Subjects also

evaluated their confidence in the responses they had provided on a

5-point scale. Ten subjects reported being ’very unsure’ or ’unsure’

about their choices, one reported being ’sure’, and one did not

provide an answer. However, scores of the ’sure’ responder did not

indicate above-chance performance.

During the waking test session EEG was also recorded. As

during sleep, we analyzed both ERP and time-frequency power

responses across all electrodes for the different stimulus categories

(up/down/novel). ERP responses did not provide indications of

time-channel clusters of differential neural responses for the

different stimulus conditions, neither with an F test across the three

conditions, nor with pairwise t tests (Figure 6). Similarly, power

responses were highly consistent among conditions (Figure 7), and,

again, neither an F test across all conditions, nor pairwise t tests

resulted in time-frequency-channel clusters showing reliable

differences (closest to significance was a very late [1100–

1500 ms] cluster of higher theta power in the up vs. down

condition, P = 0.075; all other P.0.5).

We repeated these analyses focusing on windows of interest

where there were significant waking stimulus-related power

modulations. Similar to our approach during sleep, we determined

the extent of these windows by first averaging across all three

conditions, assessing clusters showing significant stimulus-related

activity, and plotting for every cluster the number of electrodes

involved at each time-frequency bin. Stimulus-related power

effects were apparent as early theta enhancements (P,0.001),

medium-latency alpha decreases (P = 0.004), and late gamma

decreases (P = 0.015) across the entire scalp (Figure 8). We

designated windows of interest for these theta (5–14 Hz, 50–

300 ms), alpha (7–15 Hz, 500–800 ms), and gamma effects (55–

75 Hz, 750–1100 ms). However, comparing power values, aver-

aged within each of these windows, among the three conditions

did not yield reliable results, again neither using F tests nor

pairwise t tests. In other words, there were no indications that

prior sound presentation in a specific SO phase during sleep led to

altered neural processing during subsequent wake testing.

Table 1. Behavioral performance in a forced choice task.

up vs. down up vs. new down vs. new

percentage [mean 6 SD] 48.368.3 49.6610.1 47.9611.8

statistics [t(11); P] 20.69; 0.50 20.14; 0.89 20.61; 0.55

Indicated is the percentage of choosing the first category over the second. One-sample t tests against 50 (chance level) suggest reported sound familiarity during
wakefulness did not depend on whether sounds were novel, or had been presented during SO up or down states of the preceding nap.
doi:10.1371/journal.pone.0101567.t001

Figure 5. Heat maps of clusters showing significantly elevated power relative to baseline. Indicated is the number of channels involved at
each time-frequency point. Black box indicates window of interest used for averaging. (A) Cluster showing extent of early theta response. Window
from 5–10 Hz, and 200–800 ms. (B) Cluster showing extent of late spindle/beta response. Window from 11–27 Hz, and 700–1200 ms.
doi:10.1371/journal.pone.0101567.g005
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Discussion

Using a novel algorithm to deliver sound stimuli to the desired

phase of SOs during sleep in real-time, we here demonstrate

differential neural processing for auditory information arriving in

the SO up and down states. This effect was evident both in time-

averaged responses and in time-frequency power modulations.

However, subsequent probing during wakefulness with these, as

well as novel, stimuli did not reveal neural indices of differential

brain responses, nor was behavior affected. Thus, while the SO

phase importantly co-determines immediate stimulus processing,

this effect does not appear to carry over into wakefulness,

suggesting our paradigm did not allow the formation of stable

long-term memories during deep sleep.

First, our findings show that both up- and down-targeted

stimulus presentation result in evoked potentials distinct from

naturally occurring SOs. More specifically, stimuli in both

conditions elicited an early (,300 ms) positive response

(Figure 4A), which, in terms of timing and amplitude, is in line

with auditory evoked potentials during wakefulness (see also

Figure 6). Furthermore, in both conditions, this early response was

followed by a sharp, high-amplitude, down state-like deflection

around 600 ms, and an ensuing up state-like positivity. Relative to

spontaneous up states, up state-presented sounds evoked, first, an

enhanced up state, second, a more rapid and sharper down state,

followed by, third, an enhanced late positivity (Figure 2B).

Compared with naturally occurring down states, down state-

delivered stimuli led to, first, a small positive-going deflection,

followed by, second, a delayed, and more pronounced, down state

(Figure 2C). Notably, these ERP patterns in both the up- and

down-targeted conditions are consistent with a large literature on

stimulus-evoked K-complexes, discussed in more detail below

[12,31].

Power responses to stimuli directed at both up and down states

encompassed an early theta response, maximal around 500 ms,

followed by a delayed spindle/beta response around 1000 ms post-

stimulus (Figure 3BC). The first effect is centered right before the

trough of the ERP down state-like deflection, while the timing of

the latter effect appears to correspond to the late ERP positivity,

Figure 6. Event-related potentials during wakefulness to novel sounds and to sounds previously presented in SO up and down
states. Responses to these three conditions were highly similar across frontal (A), central (B) and posterior (C) channels.
doi:10.1371/journal.pone.0101567.g006

Figure 7. Stimulus-related time-frequency power responses during wakefulness for central channel Cz. Responses to sounds originally
presented in the SO up state (A), down state (B), and to sounds not previously played during sleep (C).
doi:10.1371/journal.pone.0101567.g007
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which is in line with the grouping influence of up states on faster

brain activity [17,19].

Comparing up- and down-targeted stimuli directly, our data

show that, when correcting for spontaneous SOs, up-targeted

stimuli lead to a large and sustained positivity from 500 ms

onwards (Figure 4A). Timing-wise, this effect matched with

robustly enhanced spindle/beta activity for up-targeted stimuli

(Figure 4C), relative to down-targeted ones. Combined, these

findings suggest sound delivery in the up state elicits a second up

state that occurs sooner in time, has higher amplitude, and features

more prominent fast brain oscillations, than with stimulus

presentation in the down state.

It is interesting to compare our findings to another study

relating sound-evoked brain responses to the SO phase [16]. In

that study, simple tones presented in a 300 ms window after the

peak negativity led to a greater evoked positivity around 200 –

500 ms post-stimulus than tones presented in the 300 ms before

the down state. This ERP effect occurred alongside increased

hemodynamic activity in secondary auditory cortex, possibly

suggesting enhanced stimulus processing for up state-presented

stimuli. In our data, we observed ERP responses with similar early

peaks around 300 ms, but these were not different for up- and

down-targeted stimuli (Figure 4AC). Rather, we observed a much

later difference (500–1200 ms) seemingly related to the succeeding

up state, constituting a different effect altogether. These discrep-

ancies may be due to many factors, such as differences in stimulus

material, analysis methods, and scanner noise. One other study

investigated somatosensory evoked potentials as a function of SO

phase [15]. However, all reported effects are on evoked

components occurring ,150 ms after stimulus onset, making it

problematic to compare these authors’ findings and ours sensibly.

Comprehending the functional relevance of our findings is

challenging. First, it appears both up- and down-targeted stimuli

elicit K-complexes, in particular the late, positive aspect thereof,

along with associated spindle and beta activity. In addition, this

effect appears more vigorous for up-targeted stimuli. The

physiological importance of K-complexes is still a matter of

contention. Some have suggested that K-complexes impose

periodic excitatory and inhibitory effects on cortical and thalamic

neurons, essentially equating K-complexes with SOs [32]. Indeed,

it has been shown that SO down states and K-complex troughs are

highly similar in terms of their cortical generators [33]. Others

suggest the dependence of K-complex morphology on sensory

stimulation characteristics is more in line with a sleep-protective

role [34], a notion supported by findings relating K-complexes

with hemodynamic cortical deactivations [35]. In a similar vein,

functionally distinct roles have been proposed for thalamocortical

spindles. On the one hand, spindles have been thought to suppress

the transmission of auditory information to cortex, as suggested by

altered event-related responses [13,14] and reduced hemodynamic

activity [16,36] following sound presentation in the presence of

spindles. On the other hand, strong links between spindles and

memory performance have been described [37,38]. While some of

these ties might be explained in terms of trait correlations between

spindle characteristics and learning ability [39], other findings

clearly link spindle responses to specific memory reactivations [9]

and memory retention [38], implicating spindles in processes of

memory consolidation.

Taken together, several interpretations of our findings are

possible. First, more pronounced K-complexes and spindle activity

following up state stimulus presentation may reflect the sleep-

protective function of both these signature brain waves. Perhaps

the need to suppress sensory processing and prevent waking is

stronger in the up state, when neuronal networks are relatively

depolarized. Second, given the aforementioned relevance of sleep

spindles in memory consolidation, enhanced spindle and beta

activity following up state sound stimulation may reflect height-

ened immediate reprocessing of that stimulus. In this respect it is

noteworthy that the stimulus-evoked increase in spindle activity

appeared not in the up state when sound playback occurred, but in

the next up state. Thus, stimulus reprocessing, in terms of spindle

and beta activity, may have been postponed until the next up state

permitted it. Finally, the algorithm’s phase predictions were better

for up than for down states. Thus, the possibility should be

entertained that greater phase variability in the down-targeted

condition may have led to greater variability in responses, less-

defined average evoked responses, and, consequently, reduced

activity compared to the up-targeted condition. We believe this to

be unlikely, however, since down-targeted stimuli also elicited a

more negative peak than up-targeted sounds around 600 ms, a

finding clearly arguing against the idea that phase variability

resulted in dampened responses.

Figure 8. Heat maps of clusters showing significantly modulated power relative to baseline during wakefulness. Indicated is the
number of channels involved at each time-frequency point. Black box indicates window of interest used for averaging. (A) Cluster showing extent of
early theta increase. Window from 5 - 14 Hz, and 50–300 ms. (B) Cluster showing extent of medium-latency alpha decrease. Window from 7–15 Hz,
and 500–800 ms. (C) Cluster showing extent of late gamma decrease. Window from 55–75 Hz, and 750–1100 ms.
doi:10.1371/journal.pone.0101567.g008
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Considering the post-sleep testing session in more detail, we did

not observe indications that stimuli were processed differently

depending on whether they had been presented during sleep or

were entirely new, or depending on whether they had been

presented in the SO up or down state. This lack of an effect was

apparent for both behavioral performance and EEG-based

measures. For behavioral testing, we made use of a two-alternative

forced choice test. Importantly, this paradigm does not require

subjects to consciously remember previous encounters with the

stimulus material. Rather, because participants are forced to make

a decision, any kind of memory, regardless of its nature, can

potentially bias behavior. Thus, it is generally viewed as a very

sensitive way of determining whether information (i.e., memories)

is present [40].

Regarding EEG measures during wakefulness, these did not

reveal any differential neural processing either. In the absence of

behavioral evidence of memory, a neural effect could still have

been construed as a sign of sleep-learning because of the

persistence of differential stimulus processing from sleep into

wakefulness. For example, the right hemisphere has been shown to

be able to track the presentation history of sound objects over a

2 h period [41]. This effect was manifested as repetition

suppression of the auditory evoked response, in which repeated

encounters with a stimulus elicit progressively weaker responses.

Similar effects have been observed in the visual domain as reduced

gamma oscillatory activity to repeated stimuli [42]. These

phenomena are thought to rely on the gradual ’sharpening’ of

neural stimulus representations [43]. Such repetition mechanisms

might have been expected to be influenced by the SO phase,

resulting in residual differential neural responses during wakeful-

ness. However, neither ERPs nor time-frequency power responses

distinguished among stimulus categories during the waking test.

A few recent studies reported it is possible to establish new

memories during sleep. One report demonstrated that sounds

could be conditioned to odors of positive and negative valence, as

assessed by discriminant sniff responses lasting into wakefulness

[6]. Another one showed fear extinction learning during sleep is

possible [7]. A major difference between these studies and ours

regards the neural structures likely to be involved. Whereas

classical conditioning and fear extinction rely heavily on deep-

lying regions (hippocampus, amygdala, brain stem), any behav-

ioral effect in our design would likely have to arise through

neocortical involvement. That is, complex auditory representa-

tions, such as the ones engendered by our stimuli, are known to

have a cortical basis [44]. Consequently, both behavioral and

EEG-based effects during wake testing would largely have to rely

on memory formation in neocortical circuits. Indeed, our entire

approach was aimed at investigating the role of SOs in the

processing and encoding of neocortically based information, since

one would not expect the phase of neocortical SOs to be very

relevant for learning-related processes taking place at the

subcortical level.

For these reasons, one suggestion is that while it may be possible

to acquire new information during sleep, the type of memories that

can be formed are limited to those that do not rely on neocortical

networks. This may be due to the vastly different cortical

neuromodulatory levels during sleep, in particular during SWS,

when the availability of certain neurotransmitters and hormones is

markedly reduced. Both low levels of acetylcholine [45] and

cortisol [46] are known to affect encoding adversely, possibly

rendering SWS a state incompatible with neocortical memory

formation. Another reason may be that while up- and down-

targeted stimuli were neurally differentiated during sleep, individ-

ual sounds were not. That is, brain responses during sleep to both

stimulus categories may have been different, but nonspecific,

without individual sounds being processed by the corresponding

semantic networks. Consequently, memories for individual stimuli

would also not have been formed. Alternatively, learning of

neocortically based information might be possible in principle, but

we may simply not have presented sounds sufficiently often to

leave a permanent mark on neural circuitry. Thus, implementing a

longer sleep period, with more SOs, would allow many more

repetitions of individual stimuli. On the other hand, with three

sleep-presentations per sound on average, one would expect the

brain to be able to express signs of repetition suppression. As a

final possibility, it may be that our null-results during wakefulness

reflect waking interference effects unrelated to sleep. That is, in the

interval between waking up and testing, participants experienced

regular auditory input, potentially neutralizing effects that were

present immediately following waking. However, such interference

would have to be very general, since, prior to the memory task,

subjects did not encounter stimuli in our quiet laboratory

environment similar to the ones played during sleep.

Regarding the technical aspects of this study, we employed a

sophisticated, novel algorithm able to predict any desired phase of

the SO. The algorithm we developed was quite successful at phase

prediction, although up states were predicted more accurately

than down states. While we do not know the definitive cause, it

may be surmised that the difference in morphology between up

and down states is a factor. Specifically, down states are generally

‘sharper’ than the more gradual, ‘rounder’ up states. As a result,

the algorithm’s sine fitting procedure may be less ideal for down

state prediction, and alternative fitting approaches may be

considered. Nonetheless, we observed highly distinct phase

distributions for up- and down-targeted stimuli, attesting to the

algorithm’s validity. Naturally, the algorithm can be employed in

numerous experimental designs where stimulus delivery is desired

to occur consistently in a specific phase of a selected frequency

band. For SOs, this could involve other approaches for

investigating sleep-learning, or protocols for reactivating previous-

ly encoded memory traces [47]. While in the current study we

used a prefrontal electrode to base our phase predictions on, it is

possible to use SOs from any electrode deemed theoretically

relevant for phase prediction, permitting the pursuit of a multitude

of research questions.

Indeed, in the present study, an alternative approach would

have been to base phase predictions on an electrode site over

auditory cortex, which may have been more sensitive a region for

SO phase-dependent sound processing and retention. However,

given the ongoing development of our algorithm, we opted for the

brain area with the most pronounced SOs (i.e., frontal cortex

[48]). Another complexity is that individual SOs are known to

have a unique traveling profile [48–50], implying that SO phase

relations between pairs of electrodes vary across SO cycles. Thus,

SO propagation trajectories likely impacted our results in that up-

and down-targeted stimuli may have had a consistent relation with

the phase of frontal SOs, but probably a more variable one with

SOs over cortical areas further away. However, the fact that most

effects encompassed the majority of electrodes, including scalp

regions far removed from frontal cortex, suggests we capitalized on

rather global SOs.

In conclusion, we show that the phase of the slow oscillation in

deep sleep has a decisive influence on immediate stimulus

processing. However, differential neural processing did not carry

over into wakefulness or affect behavioral decisions, suggesting the

possibility for sleep-learning is limited.
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