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This study examines the effects of focused-attention meditation on functional brain

states in novice meditators. There are a number of feature metrics for functional brain

states, such as functional connectivity, graph theoretical metrics, and amplitude of low

frequency fluctuation (ALFF). It is necessary to choose appropriate metrics and also

to specify the region of interests (ROIs) from a number of brain regions. Here, we use

a Tucker3 clustering method, which simultaneously selects the feature vectors (graph

theoretical metrics and fractional ALFF) and the ROIs that can discriminate between

resting and meditative states based on the characteristics of the given data. In this

study, breath-counting meditation, one of the most popular forms of focused-attention

meditation, was used and brain activities during resting and meditation states were

measured by functional magnetic resonance imaging. The results indicated that the

clustering coefficients of the eight brain regions, Frontal Inf Oper L, Occipital Inf R,

ParaHippocampal R, Cerebellum 10 R, Cingulum Mid R, Cerebellum Crus1 L, Occipital

Inf L, and Paracentral Lobule R increased through themeditation. Our study also provided

the framework of data-driven brain functional analysis and confirmed its effectiveness on

analyzing neural basis of focused-attention meditation.

Keywords: mindfulness, breath-counting meditation, focused-attention meditation, fMRI, Tucker3 clustering,

functional network, graph theoretical analysis

1. INTRODUCTION

Mindfulnessmeditation is said to be influential in physicality, cognition, andmentality, and also has
positive effects on well-being (Carmody and Baer, 2008; Chiesa and Serretti, 2009). Mindfulness-
based stress reduction (MBSR) (Grossman et al., 2004) and mindfulness-based cognitive therapy
(MBCT) (Teasdale et al., 2000) are clinical interventions based on mindfulness meditation, and
it has been reported that these interventions alleviate symptoms of disorders, such as anxiety
disorders (Roemer et al., 2008; Hofmann et al., 2010), depression (Teasdale et al., 2000), and
substance use disorders (Bowen et al., 2006). Furthermore, it has also been reported that the practice
of meditation contributes to improvement of well-being, quality of life (Carmody and Baer, 2008;
Chiesa and Serretti, 2009), immune function (Davidson et al., 2003; Carlson et al., 2007), and
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cognitive function (Jha et al., 2007; Ortner et al., 2007; Pagnoni
and Cekic, 2007; Slagter et al., 2007), not only for unhealthy
people but also for healthy ones.

On the other hand, the biological mechanisms of
mindfulness meditation have also been studied. In particular,
the neural basis of mindfulness meditation has been
investigated using noninvasive neuroimaging methods such
as electroencephalography (EEG) (Davidson et al., 2003; Slagter
et al., 2007) and functional magnetic resonance imaging (fMRI)
(Farb et al., 2010; Goldin and Gross, 2010). For example,
Short et al. have reported that expert meditators showed higher
activation in the anterior cingulate cortex (ACC) and dorsolateral
prefrontal cortex (dlPFC) during meditation (Baron Short et al.,
2010), indicating that long-term practice of meditation affects
brain function through effects on neuroplasticity. Hasenkamp
et al. have revealed that there were four cognitive states during
meditation: FOCUS (representing maintenance of attentional
focus on the breath), MW (representing mind wandering or
loss of focus), AWARE (representing the awareness of mind
wandering), and SHIFT (representing shifting of focus back to
the breath). They also found that the different brain regions
were activated in each cognitive state (Hasenkamp et al., 2012).
Their proposed model has been widely used to interpret the
dynamics of the cognitive states during meditation. They have
also reported that the functional connectivity between the dlPFC
in the central executive network (CEN) and the right insula in
the salience network (SN) was higher in experienced, long-term
meditators compared with short-term meditators (Hasenkamp
and Barsalou, 2012).

Most previous studies have focused on expert meditators
and studied these two effects by comparing them with novices.
Otherwise, most of the studies focusing on novice meditators
have studied long-term effects by measuring brain activities of
participants simultaneously with clinical intervention such as
MBSR and MBCT (Chiesa and Serretti, 2009; Kilpatrick et al.,
2011). However, difference in brain activity between resting- and
meditative states in novice meditators has not been sufficiently
studied. This is because meditating correctly is not easy for
novices and it is believed that repeated practice for at least several
weeks is necessary to achieve a proper meditative state.

Here, we investigate the differences in resting- and meditative
states on brain function in novice meditators. Mindfulness
meditation mainly includes focused attention (FA) meditation,
which keeps attention to specific objects, and open monitoring
(OM) meditation, which monitors current experience without
value judgments. Practicing FA meditation is easier than OM
meditation, and sustaining attention with an intention is one of
the most important components of mindfulness, which is why FA
meditation is the first method taught inmanymeditation training
programs (Wallace, 2006; Lutz et al., 2008; Gunaratana, 2010). In
addition, it has been reported that breath-counting meditation,
which is a kind of FA meditation, improved psychological state
and also reduced MW in novice meditators (Levinson et al.,
2014). Therefore, FA meditation is one of the best methods for
novices and is also used in this study.

In this study, the graph theoretical metrics of function
networks are analyzed for novice meditators only, and the

difference in network properties between resting and meditative
states are compared each to investigate how the short-term
practice of FA meditation affects the functional network.
However, since there are a wide variety of graph theoretical
metrics, such as degree centrality, betweenness centrality, and
clustering coefficient, it is necessary to select the most suitable
ones, such that the effects on the functional brain network are
appropriately represented.

In addition, not only indicators showing relationships
between brain regions, such as functional connectivity, but
also those representing local activity, such as brain activation,
are important for investigating brain function. Incidentally,
in resting-state fMRI studies, the amplitude of low frequency
fluctuations (ALFF) (Yu-Feng et al., 2007) that represents
blood-oxygen-level-dependent (BOLD) signal power within the
frequency band of interest (0.01–0.1 Hz) has been used as the
indicator of local brain activity, and its correlation with the brain
activation has also been reported in recent years (Kalcher et al.,
2013). Thus, in this study, in addition to the graph theoretical
indicators, fractional ALFF (fALFF), which is a modified version
of ALFF, was used as the local activity indicator.

Although definition of brain region depends on the brain
parcellation method, it is important but difficult to determine
the region of interests (ROIs), because there are about 100 or
more brain regions to be analyzed (e.g., 116 regions defined
by automated anatomical labeling). Therefore, in this study,
Tucker3 clustering (T3Clus) (Rocci and Vichi, 2005; Vichi
et al., 2007), which simultaneously selects the feature vectors
(graph theoretical metrics and fALFF) and the ROIs that best
discriminate between resting and meditative states based on the
characteristics of the given data, was used. T3Clus is a clustering
method based on three-way principal component analysis using
the Tucker3 model (Tucker, 1966) and classifies data while
eliminating irrelevant features by reducing the dimension of data.

Here, we explain the outline of this study. First, the brain
activities of the novice meditators were measured during a 5-
min resting state and 5-min breath-counting meditation using
functional magnetic resonance imaging (fMRI). Then, three
graph theoretical metrics and fALFF, calculated for each brain
region of all participants in both of resting and meditative states,
were projected to 2D space by T3Clus, and the brain regions
and feature indicators characterizing the difference between the
two state were extracted. This difference was regarded as the
effects of FA meditation in the novices, and its characteristics
were investigated based on the selected feature vectors and ROIs.

2. MATERIALS AND METHODS

2.1. Overview of the Proposed Method
Here we propose method to extract the meaningful feature
vectors to distinguish between two experimental conditions,
resting and meditative states. First, BOLD time courses during
the two conditions were measured for all participants using
fMRI. Second, three network feature vectors: degree centrality,
betweenness centrality, and clustering coefficient (Bullmore
and Sporns, 2009), and one local activity measure, fALFF,
representing the intensity of spontaneous brain activity (Zou
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et al., 2008), were chosen and calculated to quantify the
brain states. Finally, T3Clus was applied to classify the two
experimental conditions, simultaneously decomposing original
feature space into low dimensional space to maximize the
classification accuracy. Here, we used the supervised T3Clus
method, where the experimental conditions are used as the class
label. The reason why T3Clus was chosen for the analysis was
that it could deal with the mutual relationship among brain
regions, network feature vectors, and local activity measure.
It can consider all mutual dependencies between the different
dimensions and provides a compact representation of the original
tensor in lower- dimensional spaces (Fanaee-T et al., 2014).

2.2. Participants
Twenty-nine healthy adults (aged 22.9 ± 2.3 years, 6 females,
all right-handed) participated in this experiment. Total hours
of the meditation practice for each of them were less than 30
h, and none of them experienced daily meditation training. All
participants were informed about the experimental method and
the risk and signed written informed consents. This study was
carried out in accordance with the research ethics committee of
Doshisha University, Kyoto, Japan (approval code: 15098).

2.3. Data Acquisition
Whole-brain imaging data were acquired with a 1.5 T MR
scanner (Echelon Vega, Hitachi, Ltd., Tokyo, Japan). Functional
images were obtained using gradient echo-echo planer imaging
(TR = 2,500 ms, TE = 40 ms, flip angle = 90◦, FOV = 240 mm,
5.0-mm thick slices, matrix size = 64 × 64, number of slices =
25). We also employed an Rf-spoiled steady state gradient echo
(RSSG) sequence to obtain T1-weighted structural images (TR=

9.8 ms, TE = 4.0 ms, flip angle = 8◦, FOV = 256 mm, 1.0-mm
thick slices, matrix size= 256× 256, number of slices= 192).

2.4. Experiment
The experiments consisted of a 5-min resting state block (pre-
rest), a 5-min meditation block, and a 10-min resting state
block (post-rest) as shown in Figure 1. Most of well-known
mindfulness-baed interventions, such as MBSR, also have a
minimum of 1–5 min of meditation practice (Carmody and
Baer, 2008), and it is thought that sustained meditation practice
at least for several minutes is necessary to achieve a stable
meditative state. That is why we choose the 5-min meditation.
Start and stop of meditation was informed by an auditory
signal via headphones. The total duration of the experiment was
20 min. Participants practiced a simple-guided breath-counting
meditation for a few minutes before entering the fMRI scanner.
After the fMRI measurement, they were asked to rate (1) how
correctly they could perform breath-counting meditation and (2)
how frequently their attention wandered from breathing, on a
scale of 1 (not at all) to 5 (did so successfully/wandered very
frequently). If one rated 1 on the correctness of meditation,
he/she was excluded from the analysis.

In the breath-counting meditation block, participants were
asked to breathe through their nose and to try not to change the
breath interval. They counted their breath silently from one to
ten. They were also instructed to restart counting from one if they

FIGURE 1 | The experimental design. The block labeled with the symbol “*”

contains the dummy six volumes (with the duration of 15 s) acquired before

the start of the first resting block. They were excluded from the analysis in

order to eliminate the non-equilibrium effects of magnetization.

got to ten, or if their mind got distracted. Their eyes were kept
closed consistently in the scanner. In the rest block, they were
instructed to stay relaxed without focusing on their breathing.
The dummy six volumes were acquired before the start of the
first resting block and also excluded from the analysis in order
to eliminate the non-equilibrium effects of magnetization.

We focused on the pre-rest and meditation blocks to see the
differences in brain states induced by meditation. The post-rest
block will be used to study another hypothesis, but was excluded
for the current study.

2.5. Data Preprocessing
The fMRI data were preprocessed using SPM12 (Wellcome
Department of imaging Neuroscience, London, UK) on
MATLAB (MathWorks, Sherborn, MA). All functional images
were corrected for motion effects using a six-parameter rigid
body linear transformation and slice-time corrected to the
middle slice. Then, T1-weighted anatomical images were
coregistered to the mean of the corrected functional images.
These functional images were normalized to the Montreal
Neurological Institute/International Consortium for Brain
Mapping (MNI/ICBM) standard and spatially smoothed using
an isotropic Gaussian filter (FWHM = 8 mm). To minimize
global drift effects, the signal intensities in each volume were
divided by the mean signal value for the run and multiplied
by 100 to produce percent signal change from the run mean.
Participants showing head movements greater than 2 mm during
each rest/task block were excluded from all subsequent analyses.

In addition to preprocessing through SPM12, the following,
additional, preprocessing was performed. First, the whole brain
was divided into gray matter, white matter, and cerebral spinal
fluid (CSF). Then, nuisance regression was performed based
on an anatomical component-based noise correction method
(aCompCor) (Behzadi et al., 2007) to regress out the mean BOLD
signals from the white matter and CSF and also remove head-
movement and physiological confounding effects. Here, the main
task effect from the meditation block (modeled as a canonical
hemodynamic-response-function-convolved response) and its
first order derivative were also regressed out to remove any
potential confounding effects of shared task-related responses.
Finally, a band-pass filter (0.008–0.09Hz) was applied to reduce
the effects of physiological and low-frequency noise.
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The preprocessed functional images were parcellated into 116
regions defined by automated anatomical labeling (AAL) and the
mean BOLD time course was calculated for each region. These
116 time-courses were used to calculate the feature vectors.

2.6. Graph Theoretical Functional Network
Analysis
Functional connectivity analysis is used to measure statistical
interdependence (mutual information), without explicit
reference to causal effects, by measuring correlation/covariance,
spectral coherence, or phase-locking of time series brain activity
between each brain region (Sporns et al., 2004). In this study,
Pearson correlations were calculated between ROI-wise BOLD
time courses during pre-resting and meditation blocks, and 116
× 116 functional connectivity matrices (FCMs) were obtained
for each participant in each of the two conditions. The obtained
FCMs were transformed to convert the sampling distribution
of the Pearson correlation into a normal distribution. They
were also binarized to determine the presence or absence of
functional connections between the 116 regions. Determination
of the appropriate thresholding method and its threshold value
is one of the most crucial issues in graph theoretical functional
network analysis. We used cost-based thresholding where the
ratio of the connections with the strongest connectivity values
out of the possible number of connections are preserved (e.g.,
cost 0.100 means the strongest 10% of possible of connections
exist in the thresholded matrix). For threshold determination,
we calculated the different threshold settings (from 0.050 to
0.500, increments: 0.025), and, then, the following three criteria
were applied to them to choose the single threshold setting for
the analysis.

1) Small-world characteristics: Based on the assumption that
small world topology are seen in the functional networks (Achard
et al., 2006; Honey and Sporns, 2008; Lynall et al., 2010),
we calculated the global and local efficiency measures for all
threshold settings, and then found that the cost range: 0.050–
0.425 satisfied the small-world network criteria: higher global
efficiency than a lattice graph but lower global efficiency than a
random graph.

2) Similarity to the average characteristics: We aimed to
determine the single threshold that can extract the network with
group average characteristics between the different threshold
settings (cost: 0.050–0.425). Therefore, we calculated the degree
centrality measure for each brain region, for all participants,
in each condition. Then, we averaged the degree centrality at
different cost thresholds for each region within each participant,
which were used as average characteristics of the degree centrality
distribution. This processing was performed for each participant
and each condition. To determine the single threshold that
was the most similar to the average characteristics, for each
participant, Pearson’s correlation between the average degree
distribution and the degree distribution of the FCM, thresholded
by a certain cost value, were calculated for each cost setting.
The correlation at each cost threshold was averaged between
participants, and the cost value with the highest average
correlation with the average degree distribution was chosen.

3) Stability in the community structure: If the network
structure are stable across the cost, the number of communities
existing in the thresholded network should be also stable (Brandl
et al., 2017). Therefore, we used the number of communities
detected by Newman clustering (Girvan and Newman, 2002)
on the thresholded network as a cost criterion. The community
clustering was performed for all the participants, all cost settings,
in each condition. The standard deviation of the number of
communities across participants was calculated for each cost.
The cost setting with the smallest deviation was chosen for the
stable cost threshold. Here, we set the parameter γ of Newman
clustering to 1.0. If γ > 1, the smaller modules are detected while
the larger modules are detected at 0 < γ < 1. We chose γ = 1 as
a standard setting because we did not intend to bias the module
size in stability analysis.
According to these three criteria, we got reasonable setting: cost
= 0.225, and we reported results for the cost determination
in Figure S1. Three graph theoretical metrics: degree centrality,
betweenness centrality, and clustering coefficient were calculated
as the indicators quantifying the network characteristics of each
region (Bullmore and Sporns, 2009).

2.7. Fractional ALFF Calculation
We used fALFF measure to quantify the intensity of spontaneous
brain activity induced or altered through meditation. ALFF is
derived by calculating the sum of amplitudes of low-frequency
of a specific frequency range, which is regarded as including
spontaneous brain activity (i.e., 0.008–0.09 Hz was chosen for
this study). It has been reported that the ALFF of the DMN is
significantly higher in the resting state (Yu-Feng et al., 2007).
The fALFF, used in this paper, is the modified form of ALFF
obtained by dividing ALFF by the sum of the amplitudes of all the
possible frequency bands to reduce the influence of noise (Zou
et al., 2008). In this paper, fALFF were calculated for all voxels
using CONN toolbox and then averaged within the brain region
defined by AAL.

2.8. Tucker3 Clustering for Brain State
Classification
T3Clus is a clustering method that simultaneously performs
three-way principal component analysis and k-means clustering
on the principal component scores (Tucker, 1966; Rocci and
Vichi, 2005). Three-way data means that multiple objects were
observed on multiple variables in multiple occasions. Here, a set
of observation variables, X, are is organized as I×J×K three-way
array, where I, J, and K denote the number of objects, variables,
and occasions, respectively. With an increase of dimensionality
of each of the three modes (objects, variables, occasions), the
difficulty of the objects (data) classification will be increased
(Milligan, 1996). In conventional approaches, one of the easiest
ways to tackle this problem is to reduce the dimensionality
by principal component analysis etc., and then perform the
clustering. However, such an approach can result in loosing
important prominent information which that contributes to
classification through dimensionality reduction (Desarbo et al.,
1991; De Soete and Carroll, 1994). In this case, T3Clus, in which
the dimensionality of the variables and occasions are reduced so
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that the objects are the most classified by combining three-way
principal component analysis and k-means clustering, is effective.

The Tucker3 model is represented by

XI,JK = UYG,QR(C⊗ B)T + EI,JK (1)

where XI,JK(I × JK), YG,QR(G × QR), and EI,JK(I × JK) denote
the “matricized” versions of the X(I × J × K), the centroid
array Y(G × Q × R), and the residual array E(I × J × K),
respectively. U(I × G), B(J × Q), and C(K × R) denote an
indicator matrix defining a partition of the objects into G classes,
a component loading matrix for variables, and ca component
loading matrix for occasions, respectively, and ⊗ denotes the
Kronecker product of matrices. Besides, G, Q, and R denote
number of classes, components for variables, and components for
occasions, respectively.

T3Clus solves the following optimization problem:

Minimize FT3C(B,C,U,Y) = ||XI,JK −UYG,QR(C⊗ B)T||2 (2)

subject to B and C column-wise orthonormal and U binary and
row- stochastic.

In this study, functional neuroimaging data were treated
as three-way data consisting of 29 participants, 116 brain
regions, and four regional functional metrics, degree centrality,
betweenness centrality, clustering coefficient, and fALFF. Here,
generally, indicator matrix U is constrained to have only one
nonzero element per row to indicate which class each row
belongs to, and it is optimized for solving the above optimization
problem. However, in this study, we determined each element of
U without the optimization process because it was obvious which
experimental conditions (i.e., resting or meditative states) each
data belonged to.

It should be noted that T3Clus leads to derivation of
linear transformation from the original data space into low-
dimensional space by optimizing the Kronecker product of C and
B. Therefore, the component scores after executing T3Clus can be
obtained by:

YI,QR = U(UTU)−1UTXI,JK(C⊗ B) (3)

The schematic illustration of T3Clus on functional neuroimaging
data is indicated in Figure 2. In this study, the 29 participants’
data were classified into two classes, simultaneously with
reducing the number of brain regions from 116 to 2 and the
number of functional metrics from 4 to 1 dimension using
T3Clus (i.e., G = 2, Q = 2, and R = 1). As a result, the
two-dimensional component scores of the neuroimaging data
during the resting and meditative states of the 29 participants
were obtained and were plotted in two-dimensional space.

2.9. Finding Discriminating Brain Regions
and Their Features
Since the component scores are obtained by Equation (3), the
Kronecker product C ⊗ B can be regarded as a weight vector
to the observation data. Thus, its elemental value can also be
treated as the metric indicating the importance of each row or
column of the three-way array. In the meditation dataset, the

higher elemental value indicates that the corresponding feature is
important for to discriminating between the brain states between
under resting- and meditation conditions.

Here we aim to elucidate the essential combination of the
brain regions and their functional brain metrics by analyzing the
component loadingmatrixC⊗B. That is, discriminating features
are extracted from the elements of the component- loading
matrix whose values are necessary to discriminate between
resting- and meditation conditions.

In order to achieve this, we applied the permutation tests
(Bullmore et al., 1996; Holmes et al., 1996; Tegeler et al., 1999;
Nichols and Holmes, 2002; Mourao-Miranda et al., 2005) to the
component- loading matrix. The class labels of the state were
randomly permuted 10,000 times and T3Clus was applied to the
data set of each permuted label. The probability that loading with
a larger absolute value than the loading obtained from original
data set was given was the p-value. The significant brain regions
and feature values were extracted under p-values < 0.05.

2.10. Performance Comparison With the
Conventional Approach
To ensure the effectiveness of applying T3Clus to our study in
terms of finding the prominent features to discriminate different
cognitive conditions, the paired t-test was applied between
resting and meditative state in each of four feature values, and
then the brain regions whose feature values were significantly
different between two conditions were extracted (p < 0.05, FDR-
corrected) and compared with the results obtained by T3Clus.

2.11. Verification of Dependence of the
Computational Results on the Network
Threshold
We described how to choose the single network threshold
to extract the representative network structure in a given
experimental condition, in section 2.6. However, the
computational results would vary depending on the choice
of network threshold. Here, we investigate whether the results
of the specific threshold stable or not if a different threshold
was chosen. To examine this, T3Clus was performed at different
threshold settings (from 0.050 to 0.500, increments: 0.025),
and then the obtained results were compared between the
different thresholds.

3. RESULTS

3.1. Subjective Ratings
Average rating of the correctness of meditation was 3.6 ± 1.1 (1:
not at all, 5: did so successfully) and nobody rated 1 so that all the
participants’ data were used for the following analysis. Besides,
average rating of the mind wandering was 3.2± 0.7 (1: not at all,
5: very frequently).

3.2. Paired t-Test
The paired t-test performed on each of the four feature metrics
for each brain region between resting and meditative states
revealed that there were no significant differences between two
states in all brain regions for all feature values (p > 0.05).
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FIGURE 2 | Schematic illustration of Tucker3 clustering on functional neuroimaging data. X(I× J× K), Y(G× Q× R) and E(I× J× K) denote the three-way data array

of observation data, the centroid array, and the residual array, respectively. U(I× G), B(J× Q), and C(K × R) denote the indicator matrix defining a partition of the

objects into G classes, the component loading matrix for variables, and the component loading matrix for occasions, respectively.

FIGURE 3 | Component scores obtained by T3Clus. Each point indicates

each participant’s data. The meditative state is red-colored and the resting

state is colored blue.

3.3. Low-Dimensional Representation of
the Brain States Derived by T3Clus
Figure 3 shows the two-dimensional representation of
each participant’s brain state during the two experimental
conditions, obtained by T3Clus. Each axis was determined by
T3Clus to maximize the difference between two conditions,
simultaneously reducing the dimensionality of the brain regions
and feature metrics.

There was a significant difference between the first component
scores in the resting and meditative conditions (p < 0.001),
while there was a no significant difference between the
second component scores. Therefore it can be said that the
discriminating brain regions and features to classify between two
states exist in the component loadings for the first component.
The component loadings for the first component are shown
in Figure 4.

To extract the essential brain regions and their feature
values, the permutation test was performed on the component
loading matrix. Tables 1, 2 indicate the significant brain regions
and feature values with p-values < 0.05, respectively. The
significant brain regions shown in Table 1 were the top 8 largest
component-loading values in Figure 4. On the other hand, for
the feature values, only the clustering coefficient was extracted as
a significant discriminating feature.

Therefore, these results indicated that the eight brain regions
and their clustering coefficients were essential for discriminating
brain states between resting and meditative conditions. Figure 5
shows the component loading maps of the eight brain regions
that contribute to the classification of the two states, displayed on
axial slices at different z levels.

3.4. Dependence of the Computational
Results on the Network Threshold
Component loading maps of the different network thresholds
(costs) were summarized in Figure 6A. Additionally, to check
how much stable the chosen brain regions were, the ratio of the
brain regions chosen by T3Clus which were overlapped among
the different costs to the total number of cost settings (19)
was calculated and shown in Figure 6B. The brain states whose
overlap ratios exceeded 0.40 were Occipital Inf L/R and the left
and right caudate (Caudate L/R), and their values were 0.47 (L),
0.63 (R), 0.42 (L), and 0.58 (R), respectively.
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FIGURE 4 | Component loadings obtained by T3Clus. (Left) Loadings for brain regions. (Right) Loadings for four feature values.

TABLE 1 | First component loading of brain regions (p < 0.05).

Brain region Loading p-score

Frontal Inf Oper L 0.2250 0.0125

Occipital Inf R 0.2036 0.0215

ParaHippocampal R 0.1981 0.0224

Cerebellum 10 R 0.1923 0.0281

Cingulum Mid R 0.2031 0.0284

Cerebellum Crus1 L 0.1946 0.0309

Occipital Inf L 0.2036 0.0324

Paracentral Lobule R 0.1824 0.0397

4. DISCUSSION

4.1. Performance Comparison Between
T3Clus and the Conventional Approach
According to the conventional approach, t-test results revealed
that there were no brain regions that significantly discriminated
between resting and meditative states for all four feature values.
This result suggests that it is difficult to explain the functional
brain changes caused by meditation with a single functional
brain metric.

On the other hand, when feature space was constructed
considering the dependency between multiple variables by
T3Clus, two states were classifiable and the discriminating
features could be extracted. It is suggested that T3Clus can extract
meaningful features that potentially affect classification between
the two states. Additionally, these results also suggest that the
differences between the resting- and meditative states in novice
meditators are observed only in the projected space constructed
by T3Clus.

4.2. Differences Between Resting- and
Meditative States Induced by
Breath-Counting Meditation
In Table 2, only the clustering coefficient was extracted as the
discriminating feature. It quantifies the number of connections
that exist between the nearest neighbors of a certain node as
a proportion of the maximum number of possible connections
(Watts and Strogatz, 1998). With an increase in the clustering

TABLE 2 | First component loading of feature values (p < 0.05).

Feature value Loading p-score

Clustering coefficient 0.7943 0.0370

coefficient, the node tends to form with a high density of
connections. In addition, it is notable that fALFF was not
extracted. This suggests that local activity is not altered by
performing the breath-counting meditation, while the functional
network structure is affected.

In Tables 1, 2, all the component loadings of the eight brain
regions and the feature value (clustering coefficient) constructing
the first component were positive. Component scores can be
calculated by the product of the observation values and the
weights, which are obtained by the product of the loadings of
the brain regions and the loading of the feature value. Therefore
it indicates that the clustering coefficients of the eight brain
regions are positively correlated with the first component score.
Since the first component could discriminate between resting and
meditative states, and the meditative states were distributed on
the positive side of the first component in Figure 3, the clustering
coefficients of the eight brain regions in the meditative state were
higher than those in the resting state.

Next, we give an interpretation to each of the eight
brain regions in Table 2. The right parahippocampal gyrus
(ParaHippocampal R) located at the limbic system was extracted
as one of the discriminating regions and plays an important role
in creation of memories and recall of visual scenes (Aminoff
et al., 2013). It is also known as a part of the DMN (Fransson,
2006). Furthermore, it has been reported that the left crus I of the
cerebellar hemisphere (CerebellumCrus1 L) is a part of the DMN
(Favaro et al., 2012; Lavagnino et al., 2014). The inferior occipital
cortex (Occipital Inf) is included in the visual regions of the
occipital region (Beckmann et al., 2005; Damoiseaux et al., 2006;
Veer et al., 2010) and also is a part of the DMN (Fox et al., 2005;
Fransson, 2005). It has been reported that the DMN is activated
in MW states, where the participant’s attention is distracted from
breathing (Hasenkamp et al., 2012). Our results suggested that
the DMN regions, the ParaHippocampal R, Cerebellum Crus1 L,
and Occipital Inf formed dense connections with other regions in
moving from the resting state to the meditative state.
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FIGURE 5 | Component loading maps of the eight brain regions that contribute to the classification between resting- and meditative states.

FIGURE 6 | Comparison of the T3Clus results between different network thresholds (from 0.050 to 0.500, increments: 0.025). (A) Component loading maps at

different thresholds (referred to as “cost” in the figure). (B) Overlap ratio of the chosen brain regions among 19 different cost values. Orange colored ones are the eight

regions extracted at cost = 0.225.

The right middle cingulate gyrus (Cingulum Mid R) is
included in a fronto-parietal network (FPN), which is involved
in top-down attention and controlling task execution (Corbetta
et al., 2008; Craig and Craig, 2009). The opercular part of left
inferior frontal gyrus (Frontal Inf Oper L) is also included
in the FPN. It has been shown that the FPN is formed
when the meditators sustain their attention on their breathing
appropriately (Hasenkamp et al., 2012). Therefore, it is expected
that the densities of the networks that include the FPN
regions, Cingulum Mid R, and Frontal Inf Oper L as nodes
would be increased by sustaining the attention on breathing
during meditation.

In addition, the right paracentral lobule (Paracentral Lobule
R) is part of the somatosensory network (SSN) (Favaro et al.,
2012; Lavagnino et al., 2014), and it has been reported that
this network is activated when the meditator’s attention shifts
back to the breath after being aware of MW (Hasenkamp et al.,
2012). This suggests that the Paracentral Lobule R is densely

connected with other regions because the participants noticed
MW in the meditation block and tried to return their attention
to breathing again.

Each of three networks, DMN, FPN, and SSN, are known as
characteristic functional network associated with the cognitive
cycle that occurs during meditation. Based on our findings, we
hypothesize that the changes in the brain states induced by
the breath-counting meditation is that each of the eight brain
regions, mainly those included in the three networks, form a
densely-connected network.

4.3. Effects of the Network Threshold
Choice on the Computational Results
From Figure 6B, in the choice of the single cost value of 0.225,
the most stable brain regions among the different cost values
were Occipital Inf L/R. The other regions were dependent on the
choice of cost values.
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Notably, Caudate L/R which were not chosen as the
discriminating regions at cost = 0.225 were highly overlapped
among the different cost values. However, from Figure 6A, we
can observe that Caudate L/R tended to be chosen at higher cost
values. Actually, if we calculated the overlap ratios of Caudate L/R
in each of lower (from 0.050 to 0.225) and higher (from 0.250 to
0.500) cost ranges, those of the lower range were 0.13 (L) and
0.13 (R), and those of the higher range were 0.64 (L) and 0.91
(R). Gard et al. (Gard et al., 2015) revealed that yoga practitioners
and meditators had significantly greater degree centrality in
the caudate than controls, and also suggested that meditators
would have stronger functional connectivity within basal ganglia
cortico-thalamic feedback loops than non-practitioners.

From these results, it can be expected that different cost choice
would provide different characteristic brain regions and network
structure. However, we need to be careful that the higher the
cost values are, the more the network connections with lower
functional connectivity are taken into account for representation
of the brain states. This would lead to overemphasize weak
connections. In general, the network thresholding are applied to
reduce the computational burden of analyzing the network by
removing weak connections (Garrison et al., 2015). Therefore
we believe it is necessary to choose the specific cost value
that balances between the computational burden and extracting
meaningful network structure based on the some sort of criterion.

4.4. Limitations of the Current Study and
Future Directions
In this study, we gave some interpretations of the brain regions
and network features chosen by T3Clus. For example, several
regions in DMN were observed in our results, however, the
classical regions such as posterior cingulate cortex, precuneus,
medial prefrontal cortex and inferior parietal were not involved
in the current results. To make our interpretations more reliable,
the hypothesis-driven study where the brain regions chosen by
T3Clus are set to the region-of-interests and also their functional
network characteristics are used for hypothesization should be
further performed after the T3Clus execution. Another future
direction is to review the experimental design to measure the
behavioral metrics quantifying the quality of meditation. This
would lead to make our interpretations more reliable.

Nonetheless, the major contributions of our study are that
(1) we provided the framework of data-driven approach using
T3Clus on graph theoretical metrics and spontaneous local
activity measure, and (2) also indicated the differences between
resting- and meditative states (during FA meditation) in novice
meditators: the eight brain regions, Frontal Inf Oper L, Occipital
Inf R, ParaHippocampal R, Cerebellum 10 R, Cingulum Mid R,
CerebellumCrus1 L, Occipital Inf L, and Paracentral Lobule R are
densely connected with other regions through FAmeditation.We
believe these results are meaningful because they can’t be derived
by ordinary independent variable analysis.

5. CONCLUSION

In this study, we investigated the differences between resting-
and meditative brain states induced by focused-attention

meditation in novice meditators. In the experiment, breath-
counting meditation, one of the most popular forms of focused-
attention meditation, was used, and brain activity during resting
and meditation states was measured by fMRI. Functional
changes in brain states were analyzed by the T3Clus method
applied to the three graph theoretical metrics, degree centrality,
betweenness centrality, and clustering coefficient and one
spontaneous local activity measure, fALFF, calculated from the
fMR images measured.

The results indicated that the two experimental conditions
could be differentiated based on the first component of the two-
dimensional feature space identified by T3Clus. Moreover, the
component loadings of the first component revealed that the
clustering coefficients of the eight regions were the prominent
features to discriminate between resting and meditative states.
We also found that the clustering coefficients of these regions
tended to be higher in the meditation state. The extracted
regions were included in either of three networks, DMN, FPN,
and SSN, which are known to be characteristic functional
network associated with the cognitive cycle that occurred during
meditation. Our results revealed that the changes in the brain
activity induced by breath-counting meditation can be explained
by the network density changes in these eight brain regions.
It should be noted that no significant differences have been
found, by t-test, in each of the four feature metrics for each
brain region between two experimental conditions. This suggests
that only T3Clus could detect the differences between resting-
and meditative brain states by removing the feature metrics and
the brain regions irrelevant to the functional changes caused
by meditation.
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