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Abstract: In China, awareness about hypertension, the treatment rate and the control  

rate are low compared to developed countries, even though China’s aging population  

has grown, especially in those areas with a high degree of urbanization.  

However, limited epidemiological studies have attempted to describe the spatial variation of 

the geo-referenced data on hypertension disease over an urban area of China. In this study,  

we applied hierarchical Bayesian models to explore the spatial heterogeneity of the relative 

risk for hypertension admissions throughout Shenzhen in 2011. The final model 

specification includes an intercept and spatial components (structured and unstructured). 

Although the road density could be used as a covariate in modeling, it is an indirect factor on 

the relative risk. In addition, spatial scan statistics and spatial analysis were utilized to 

identify the spatial pattern and to map the clusters. The results showed that the relative risk 

for hospital admission for hypertension has high-value clusters in the south and southeastern 

Shenzhen. This study aimed to identify some specific regions with high relative risk,  
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and this information is useful for the health administrators. Further research should address 

more-detailed data collection and an explanation of the spatial patterns. 

Keywords: hypertension; Hierarchical Bayesian models; spatial scan statistics;  

analysis scale; Shenzhen; urban China 

 

1. Introduction 

Hypertension is a chronic medical condition in which the blood pressure in the arteries is elevated, 

and this condition is classified into two categories: primary hypertension and secondary hypertension. 

Between 90% and 95% of cases are categorized as primary hypertension, which implies high blood 

pressure with no obvious underlying medical causes [1]. The World Health Organization has identified 

hypertension as the leading cause of cardiovascular and cerebrovascular mortality and the World’s most 

common chronic disease, as hypertension is a major risk factor for strokes, myocardial infarctions,  

heart failures and arterial disease. The treatment of hypertension and its complicating diseases leads to 

heavy consumption of medical and social resources. The American Heart Association estimated that the 

projected total costs of high blood pressure will be $91.4 billion in 2015 [2]. There are many risk factors 

for hypertension disease, including age, race, family history, being overweight or obese, not being 

physically active, using tobacco, high-salt diet, too little vitamin D and potassium in diet,  

excessive alcohol use, stress and certain chronic conditions [3,4]. Besides, the risk of having 

hypertension can vary in regions depending on their environmental conditions and  

socioeconomic position [5,6]. 

In China, the prevalence of hypertension has continuously increased during the past fifty years. 

According to the 2010 Chinese guidelines for the management of hypertension, from 1991 to 2002,  

the awareness of hypertension increased from 26.3% to 30.2%, the treatment rate rose from 12.1% to 

24.7% and the control rate grew from 2.8% to 6.1% [7]. However, these rates are relatively low 

compared to developed countries. This report reveals that over 130 million of people with hypertension 

are unaware of their condition and that at least 30 million people are aware of their hypertension but do 

not receive any medical treatment. Indeed, over 75% of people who are aware that they have 

hypertension do not adequately control it [7]. 

Recent hypertension studies on China mainly focus on lifestyle modifications, prevention, the impact 

on health-related quality of life and medical treatment [8–11]. Limited epidemiological studies have 

attempted to describe the spatial variation of the hypertension disease over a large area. Previous works 

have indicated that neighborhood walkability, food availability, safety, and social cohesion may be 

mechanisms that link neighborhoods to hypertension [12] and the number of hypertension admission 

patients largely depends on the general hypertensive population. In this study, we attempted to explore 

the spatial variation of the hospital admissions for hypertension throughout Shenzhen in 2011.  

The classic statistic in epidemiology is the standardized ratio (SR) which is commonly used to represent 

disease risk across a geographical area [13,14] in order to identify those regions with higher or lower 

disease risk, being useful for capture regional changes. For each region, the standardized ratio is 

expressed as a relative value between the number of observed cases and the number of expected cases,  
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as estimated by the national disease rate, with or without adjustment for socioeconomic and 

demographic variables [15]. 

Although the standardized ratio is a useful tool in disease mapping research, it has some problems. 

An inevitable problem is spatial autocorrelation, which is an idea often attributed to geographer  

Waldo Tobler. Measuring the spatial pattern of feature values is based on the notion that things that are 

near to each other are more alike than things that are far apart. In geographical research, the study area is 

often delineated by artificial boundaries for measurement or administrative purposes [16].  

However, a spatial process in an area has an interaction with neighbors outside these boundaries and 

adjacent areas usually have similar attributes. In addition, the standardized ratio is a deficient estimator 

because it depends greatly on the population of each area. Usually, sparsely populated areas with few  

(or zero) cases can generate extreme values [13,15]. Because the administrative divisions depend on 

population size, sparsely populated areas are often larger than densely populated areas, and furthermore, 

they tend to dominate the map visually even though they produce the least precise risk estimates [13].  

Moreover, shortcomings in the census data can generate defective risk estimation. For example,  

rapid population growth since the previous census would cause overestimated risks in a study area [17]. 

To tackle the spatial dependence and inaccurate estimation of the standardized ratios, many methods 

have been employed to describe and assess the amount of true spatial variation of disease risk [15].  

A disease outbreak can be considered as a geographic process that is highly correlated to a specific 

geographic location and the corresponding conditions. In GIScience, we analyze the geographic 

processes for two reasons: first, we seek to predict the likelihood that something will occur in a  

place [18–20]; second, we wish to identify the underlying factors [21,22]. The relationships between 

various attributes of the spatial data can be defined as a model, which could become quite complex and 

time-consuming. A Bayesian estimation approach was used to analyze small area diabetes prevalence in 

the US [23]. For this study, we employ a model-based relative risk estimation method based on 

hierarchical Bayesian models to assess the true spatial heterogeneity of the relative risk for hypertension 

admissions. These models are widely used for risk smoothing in disease mapping and have been 

described in detail by previous works [24–26]. The basic principle of Bayesian methods is that uncertain 

data can be strengthened by combining them with prior information [14]. Such estimates are a 

compromise between the local value of the standardized ratio and either the mean value for the map as a 

whole, or some local mean [13]. The distribution for the spatial components in these models is discussed 

in [27]. With covariate information and spatial components, models based on Bayesian statistics provide 

a more accurate estimation of the relative risk of each sub-district. In addition, methods of spatial 

statistics and analysis were applied in this study to identify and map spatial patterns. 

Another important topic is the analysis scale, which is often known as modifiable areal unit  

problem [28,29]. The analysis scale includes the size of the units in which phenomenon are measured 

and the size of the units into which measurements are aggregated for data analysis and mapping [30].  

To study a phenomenon accurately, it has been suggested that the analysis scale must match the actual  

scale of the phenomenon [31]. However, this issue can become quite difficult, especially in unfamiliar 

cases. Traditionally, geographers analyze phenomena in geographical units that are as small as  

possible [14,32,33], which results in difficulties and high expenses for the data collection.  

Furthermore, the choice of the analysis scale is often dictated by the availability of data, and because of 

sparse data, there will often be a tradeoff between homogeneity within small geographic units and the 
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precision of risk estimates [13,16]. Because of the availability of census data, the study is performed at 

the sub-district level, even though smaller geographical units existed in the study area. 

In this work, we explored the spatial heterogeneity of the relative risk for hypertension admissions 

throughout Shenzhen in 2011 and attempted to address the drawbacks of the standardized ratio in 

disease mapping. Spatial statistical techniques and methods based on hierarchical Bayesian models were 

utilized in this study, and both covariate information and random components were employed in these 

models. After smoothing the relative risk of hypertension, a stable standardized ratio was acquired in 

each sub-district to highlight those sub-districts that have elevated or lowered relative risk. Our study 

aimed to identify some specific regions with high relative risk for hypertension admissions,  

and this information is useful for the Shenzhen City’s health administrators to improve the quality of 

hospital-based services for hypertension patients. 

2. Materials and Methods 

2.1. Description of the Study Area 

Shenzhen is a major city in the south of Southern China’s Guangdong Province, and it is situated 

immediately north of Hong Kong (Figures 1 and 2). Since late 1979, this area has become one of the 

most successful Special Economic Zones in China and is considered one of the fastest-growing cities in 

the World. The total annual investment in medical and health in 2008 was 3.3 billion Yuan, and this 

investment reached almost 7.9 billion Yuan in 2011 [34]. 

Figure 1. A map of China showing the location of Shenzhen. 
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Figure 2. A map of Shenzhen. 

 

One of the major challenges for Shenzhen City’s health and medical administration is dealing with 

the increasing burden from chronic disease accompanied by the population’s fast expanding. According to 

the population screening report in Shenzhen in 2008, the overall hypertension awareness and treatment 

rates were low. Moreover, the incidence of hypertension in Shenzhen has doubled during the period 

from 1997 to 2009 [35]. In addition, the prevalence of overweight and obese children in Shenzhen is not 

far behind the levels observed in children from Australia, the United Kingdom and the USA [36]. 

Besides, the hospital admissions rate for chronic disease can be reduced by effective primary and 

secondary prevention in primary care [37], thus analyzing and estimating the relative risk of hospital 

admissions for hypertension disease accurately is useful for the health administrators to develop a 

high-quality and well-organized hospital-based health services for hypertension patients. 

The other subject that interests us is the unique characteristics of Shenzhen. In a relatively short 

period of 34 years, Shenzhen has become a thriving city with a modern cityscape, which is distinctive in 

the world. Because of its rapid economic growth and high population density, Shenzhen is a typical 

urbanized area in China. It has important significance to analyze the spatial variation of hypertension 

admissions with Shenzhen’s fast-paced style for health administration and disease control. 

2.2. Data 

Since 2006, the Shenzhen Municipal Government began to create and apply a universal urban spatial 

grid; it was completed at the beginning of 2010. The spatial grid pyramid contains a multilevel spatial 

grid, namely, the city level, district level, sub-district level, community level and basic grid level;  

57 sub-districts are included in this grid pyramid. In this study, we employed spatial grids at the 

sub-district level as the analysis units and the data were aggregated into this level. 
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Hypertension data on the total number of hospitalized patients in each sub-district by age, gender and 

other information were provided by Shenzhen Center for Health Information, which contained 10,419 

cases of hypertension in 2011. ICD-10 is the 10th revisions of the International Statistical Classification 

of Diseases and Related Health Problem (ICD), a medical classification list by the WHO. It codes for 

diseases, signs and symptoms, abnormal findings, complaints, social circumstances, and external causes of 

injury or diseases [38]. In our study, we used the data for hypertension (ICD-10 I10-I15), containing primary 

hypertension, hypertensive heart disease, hypertensive renal disease, hypertensive heart disease and 

hypertensive renal disease, and secondary hypertension. We aimed at this current study to examine the 

regional changes in the hospital admissions for hypertension disease, not to explore the age/sex 

disparities in hypertension. Thus, the further differentiations of these cases were not implemented 

because modeling the relationships between the population’s age and sex composition and the 

hospitalization rates of hypertension was not included in this research. 

Based on the data from the Sixth National Population Census, the population data were aggregated at 

the sub-district level. Although the census was carried out in 2010 and may not match the actual 

distribution of the potential hypertensive population in 2011 perfectly, it can still be applied for 

estimating the standardized ratio because of the age and mental stress-orientation of hypertension and 

the region’s demographic stability. Previous works have demonstrated that being overweight and having 

hypertension are more prevalent in the more urbanized areas [39], and the road density is a common way 

of quantifying urbanization [40]. Hence, the road density of each sub-district was employed as a 

covariate in the model, which was calculated by dividing the total length of the roads of each sub-district 

by its area. 

2.3. Standardized Ratio Calculation 

The standardized ratio, which is expressed as a ratio or percentage of observed cases count in the 

study area to the expected cases count in the general population, is used to determine if the occurrence of 

a disease in a relatively small population is high or low. Because the hypertension data were extracted 

from the information of hypertension hospitalization cases and local age-specific admission rates were not 

available, we applied the standardized admission ratio in each sub-district as the standardized ratio,  

which can be used to represent the relative risk for hypertension admission across the study area. In this 

study, the number of expected cases of hypertension admission was calculated by multiplying 

hypertension admission rate of the general population by the resident population of each sub-district. 

Thus, this kind of standardized ratio was defined based on indirect standardization method and 

calculated as follows: 

    
  
  
 

  

   
   
  
 

   
  
 

  

 

(1) 

where Oi and Ei denotes the observed and expected counts of hypertension admission cases in 

sub-district “i” respectively, and ni represents the resident population of each sub-district “i”. 
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2.4. Bayesian Model-Based Disease Mapping 

To overcome the drawbacks of the standardized ratio, models based on Bayesian statistics are widely 

adopted in disease mapping. We assumed that the observed hypertension hospitalization cases (Oi) at the 

sub-district level followed a Poisson distribution with mean    . In addition,     is an estimate of the 

true number of hypertension hospitalization cases in sub-district “i”, which can be provided by the 

expected hospitalization cases in sub-district “i” (Ei) and the standardized ratio (SRi) in sub-district “i”. 

A general formulation is given by:  

               (2) 

                (3) 

In Poisson-distributed models, the standardized ratio in sub-district “i” can be explained by a series of 

explanatory variables. With an intermediate distribution of the logarithm of the standardized ratio,  

this model can be parameterized as: 

                  (4) 

In Equation (4), the log of the standardized ratio in each spatial unit “i” is modeled by an intercept 

term   , a series of explanation variables constituted by a set of covariates X and regression coefficients 

  and   , which is interpreted as the residual term results from unknown or unobserved factors. 

Although the residual term is assumed to be approximately normally distributed, there are two sources of 

variability that may appear in disease mapping studies at the area level that will violate this statistical 

assumption. In tackling this problem, the residual term can be divided into two segments: a spatially 

correlated (structured) component and a spatially random (unstructured) component that represents the 

spatial correlation and overdispersion in the residual term of each sub-district. Therefore, the model is 

revised as follows: 

                     (5) 

                            (6) 

            (7) 

          (8) 

        
   (9) 

        
   (10) 

In Equation (5),    denotes the unstructured random component and    represents the structured 

random component of each sub-district “i”. When modeling based on a Bayesian framework,  

it is necessary to specify a prior distribution for the observed data. A noninformative prior distribution 

(flat distribution) or weakly informative Gaussian prior distribution (a normal distribution with large 

variance) could be given for the priors of the intercept term and covariate coefficients in Equations (7) 

and (8) [15,41]. In Equation (9), the unstructured component was assigned to follow a normal 

distribution with mean zero and variance   , and the spatially correlated component was  

introduced through a conditional autoregressive prior distribution (CAR) with variance    in 
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Equation (10) [42,43], which is a type of Markov random field model. We applied a robust version of 

CAR in this research that assumed a double exponential distribution rather than an intrinsic Gaussian 

CAR prior distribution [44]. 

Specifying suitable priors for the variance of the unstructured and structured spatial component is 

another critical subject because the differences between the sizes of the priors for    and     could 

result in a disparity in spatial smoothing. A useful approach is to assign a prior to the standard deviation 

rather than to the precision that is the reciprocal of the variance. Gelman recommended using a uniform 

prior distribution with a wide range instead of the inverse-gamma family of noninformative prior 

distributions for the hierarchical standard deviation [27]. For the standard deviation, we set a uniform 

distribution on the interval (0,100) because this range was wide enough to cover any realistic value for 

the standard deviation in log-transformed modeling. 

These models were coded in the WinBUGS 1.4 software [45], which could be called from R with 

R2WinBUGS. WinBUGS (Bayesian inference Using Gibbs Sampling from R) was designed as flexible 

software for the Bayesian analysis of complex statistical models using Markov chain Monte Carlo 

(MCMC) methods [44]. For each model, three parallel MCMC chains that each of 20,000 MCMC 

iterations were simulated and visualized with time series plots and Gelman-Rubin statistics [15].  

Then, the posterior distribution of the smoothing standardized ratio was acquired after a burn-in of  

2000 iterations. The deviance information criterion (DIC) [46] was utilized to compare all of the models 

to determine the “best fit” model. The DIC is a hierarchical modeling generalization of the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC); it is particularly helpful in a 

Bayesian model selection problem where the posterior distributions of the models are acquired based on 

an MCMC simulation. The generalization is based on the posterior distribution of the deviance statistic 

that is defined as follows: 

                           (11) 

where        is the likelihood function and      is some standardizing function of the data alone 

which is a constant that cancels out in all calculations that compare different models. In [46],  

the authors suggest summarizing the fit of a model by the posterior expectation of the deviance, given 

by           . Then, pD is the effective number of parameters to measure the complexity of a model; 

however pD may well be less than the total number of model parameters, due to the borrowing of 

strength across random effects . A reasonable definition of pD is the posterior expected deviance minus 

the deviance evaluated at the posterior expectations [24]. Thus, pD is given by: 

                               (12) 

Using the notation in the WinBUGS output for the DIC tool, Dbar represents the posterior expected 

deviance and Dhat denotes the deviance evaluated at the posterior expectations. Then, pD and DIC is 

given by 

             (13) 

                               (14) 

                     (15) 
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3. Results 

3.1. The Spatial Variations of the Observed Admission Cases at Multiple Levels 

We applied the number of hypertension admission cases per 1,000 people in each sub-district as the 

admission rate. The result showed hypertension admission rate varied across the study area (Figure 3).  

The sub-district Lianhua suffered the highest admission rate as 3.55, whereas in Longhua,  

the rate was only 0.41. 

Figure 3. The map illustrates the spatial variation of hypertension admission rate at 

sub-district level. 

 

The observed hypertension admission cases varied across the study area, and the spatial patterns were 

dissimilar at multiple analysis scales (Figure 4). Moran’s Index (Moran’s I) was applied in this research 

to identify and measure the strength of the spatial patterns of the observed hospitalization cases in 

neighboring sub-districts. The results showed there was a statistically significant cluster pattern in the 

observed cases count of nearby sub-districts with a p-value < 0.01. Then, the Getis-Ord General 

G-statistic was adopted to measure the concentration of the values of the observed cases count at the 

sub-district level. With a large z-score of 3.65, this statistics indicated that the spatial distribution of the 

high values of the observed cases count was spatially clustered. 
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Figure 4. These maps illustrate the spatial variations of the observed hypertension 

admission cases at multiple levels: (1) the district level; (2) the sub-district level,  

and (3) the community level. 

 

3.2. The Spatial Variation of the Relative Risk of Hospital Admissions for Hypertension 

The map of the SR illustrates that the relative risk varied throughout Shenzhen (Figure 5(1)).  

The sub-district Lianhua had the highest relative risk with an SR of 3.53, whereas in Longhua, this risk 

was only 0.40. The results of Moran’s I showed that the cluster pattern was statistically significant in the 

standardized ratios of adjacent sub-districts with a p-value < 0.01 and a z-score of 2.60. By using the 

General G-statistic, a high-value cluster was significant with a z-score of 2.46. Then, a hot spot analysis 

based on the local G-statistic (Gi*) was used to show where the clusters of high values or low values 

were, and results were summarized in Table 1. A group of sub-districts with high Gi* values indicated a 

concentration of sub-districts with a high SR as a hot spot; conversely, a group of sub-districts with low 

Gi* values indicated a cold spot (Figure 6(2)). 
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Figure 5. These maps illustrate the spatial variation of relative risk: (1) a map of the SR;  

(2) a map of the smoothing SR. 

 

Table 1. The results of hot spot analysis based on the Gi*. 

Cluster Type Sub-district Observed Cases Expected Cases SR GiPValue GiZscore 

Hot spot 

Fubao 107 107.21 1.00 0.01 2.55 

Futian 248 247.83 1.00 0.08 1.74 

Nanyuan 109 113.97 0.96 0.08 1.77 

Shatou 134 226.66 0.59 0.06 1.90 

Guiyuan 152 82.59 1.84 0.07 1.82 

Kuiyong 176 61.34 2.87 0.02 2.34 

Nanao 51 19.05 2.68 0.03 2.14 

Dapeng 87 46.44 1.87 <0.01 3.15 

Cold spot 

Guannan 370 453.96 0.82 0.08 −1.77 

Shajing 287 531.41 0.54 0.09 −1.72 

Dalang 147 279.45 0.53 0.05 −1.94 

Longhua 148 366.27 0.40 0.02 −2.39 

Pinghu 219 229.34 0.95 0.06 −1.91 



Int. J. Environ. Res. Public Health 2014, 11 724 

 

 

Figure 6. These maps illustrate the cluster of relative risk as estimated by SatScan (1) and as 

estimated by the hot spot analysis of ArcGIS (2). 

 

SaTScan is a free software package that analyzes spatial, temporal and space-time data using the 

spatial scan statistics, which are widely used in performing geographical surveillance of disease and 

disease-detecting clusters and in testing whether a disease is randomly distributed over space, over time 

or over both space and time [47]. According to a known underlying population at risk, a purely spatial 

analysis was performed using a Poisson-based model where the hypertension cases in a sub-district were 

assigned to follow a Poisson distribution. The clusters were mapped in Figure 6(1) and summarized  

in Table 2. 
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Table 2. The clusters of the relative risk in Shenzhen, 2011 from SaTScan using a purely 

spatial analysis. 

Cluster Type Sub-district Observed Cases Expected Cases Relative Risk p-value 

Primary 

Meilin 212 152.13 2.69 <0.0001 

Lianhua 576 163.28 2.69 <0.0001 

Xiangmihu 216 82.43 2.69 <0.0001 

Secondary 

Dapeng 87 46.44 2.52 <0.0001 

Kuiyong 176 61.34 2.52 <0.0001 

Nanao 51 19.05 2.52 <0.0001 

Zhaoshang 224 80.12 2.84 <0.0001 

Liantang 82 84.40 1.44 <0.0001 

Donghu 166 83.55 1.44 <0.0001 

Huangbei 170 112.03 1.44 <0.0001 

Cuizhu 160 115.91 1.44 <0.0001 

Dongxiao 46 103.72 1.44 <0.0001 

Dongmen 153 91.46 1.44 <0.0001 

Sungang 94 63.47 1.44 <0.0001 

Nanhu 157 90.83 1.44 <0.0001 

Guiyuan 152 82.59 1.44 <0.0001 

Shiyan 444 248.76 1.82 <0.0001 

Pingdi 142 95.70 1.49 0.0014 

Gongming 400 320.10 1.26 0.0018 

3.3. Summary of the Hierarchical Bayesian Models 

In measuring the importance of explanation variables in modeling the relative risk of hospital 

admissions for hypertension across the study area, several models with different combinations of 

variables were examined in Table 3. All of the models were run in WinBUGS 1.4 via Gibbs sampling. 

We summarize the models with their levels of complexity, and the results show that the models with 

smaller DIC values were those with intercepts and random effects. Model 5, which had the smallest DIC 

of 359.153, was selected as the best model; it includes an intercept, a spatially structured component  

and a spatially unstructured component. Table 4 gives the posterior summary for the precision and 

explanation variables. 

Table 3. The results of hierarchical Bayesian models from WinBUGS with different complexities. 

# of Model Description Dbar Dhat pD DIC 

1 Intercept & road density with coefficient 3,015.580 3,013.600 1.985 3,017.570 

2 Intercept & road density without coefficient 3,283.520 3,282.530 0.995 3,284.520 

3 Intercept & unstructured component 328.936 283.227 45.709 374.646 

4 Intercept & structured component 334.725 291.671 43.054 377.779 

5 Intercept & unstructured &  

structured component 
316.465 273.777 42.688 359.153 

6 Intercept & road density with coefficient & 

structured & unstructured component 
356.994 306.799 50.195 407.189 
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Table 4. A posterior summary of the results of hierarchical Bayesian models from WinBUGS. 

# of 

Model 
Explanation Variables Mean SD 

MC 

Error 

Credible Interval 

2.5% 97.5% 

1 Intercept −0.2729 0.02323 2.873E-4 −0.3187 −0.228 

 Coefficient 0.4525 0.03394 4.168E-4 0.3862 0.519 

2 Intercept −0.6257 0.009773 3.893E-5 −0.6449 −0.6066 

3 Intercept 0.05549 0.07219 0.001014 −0.08567 0.197 

 Variance of unstructured component 4.373 1.032 0.006073 2.633 6.666 

4 Intercept 0.06246 0.03228 1.39E-4 −0.001213 0.1252 

 Variance of structured component 1.015 0.1706 0.001032 0.7188 1.386 

5 Intercept 0.07391 0.05503 5.591E-4 −0.03969 0.1805 

 Variance of unstructured component 819.7 13,800.0 435.8 3.965 1,710.0 

 Variance of structured component 2.207 2.364 0.08871 0.9082 6.592 

6 Intercept −0.03228 0.2274 0.01064 −0.4436 0.4754 

 Coefficient 0.1787 0.3556 0.0167 −0.6419 0.8033 

 Variance of structured component 17.75 203.0 7.739 0.8435 48.67 

 Variance of unstructured component 26.78 188.6 6.437 3.147 122.8 

With the smallest DIC, model 5 was selected as the best model that can be used to smooth the 

standardized ratio that was displayed by the choropleth map in Figure 5(2). By utilizing Moran’s I,  

the cluster pattern was significant in smoothing standardized ratios of neighboring sub-districts with a 

p-value less than 0.05 and a z-score of 2.49. Then, the results of the General G-statistic implied that the 

highly clustered pattern was significant with a z-score of 2.82. 

4. Discussion and Conclusions 

In recent years, researchers have applied statistical techniques and spatial analysis to study the spatial 

variation of hospital admissions for hypertension disease. To that end, a Local Moran’s I index analysis 

and geographically weighted regression were used to investigate the patterns in standardized ratios of 

cardiovascular disease [48]; furthermore, the risk factors for hypertension was examined using 

Kaplan-Meier methods and Cox proportion hazards models [49]; in addition, the spatial scan statistics 

were used to detect clusters of high or low prevalence of overweight people or people with hypertension 

in rural South Africa [50]. In this study, spatial scan statistics from SaTScan 9.1 were utilized to spot 

clusters of the relative risk of hospital admissions for hypertension in Shenzhen, spatial statistical 

techniques from ArcGIS 10.0 were adopted to identify patterns in the standardized ratio and methods 

based on Bayesian statistics were used to smooth the relative risk in a small-area disease mapping. 

Moran’s I index compares the value for each feature in the pair to the mean value for the dataset rather 

than directly comparing the attribute values off neighboring features to each other. If the average 

difference between neighboring features is less than the average between all features, the values of the 

features are clustered. The results of Moran’s I index demonstrated that the spatial autocorrelation was 

positive in this geographical context, and the spatial dependence of nearby observed cases should be 

included in the modeling of estimates of the relative risk for hypertension admissions.  

Then, the Getis-Ord General G-statistic was used in this study to measure the concentration of values. 

One of the disadvantages of the Getis-Ord General G-statistic is that the results are highly dependent on 
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the size of the features being analyzed. When large areas tend to have low values and smaller areas tend 

to have high values, even if the concentrations of highs and lows are equally distributed, the G-statistics 

will indicate that the high values are concentrated. Because the study area is often divided based on the 

population size and is delineated by the administrative boundaries, this tendency is especially  

significant when studying geographical phenomena and will lead to bias in analyzing and mapping the 

high-value clustering. 

In hot spot analysis, we applied the Gi* statistic because it included the value of the target feature that 

affected the occurrence of the clusters. Apart from the hot spot and cold spot, the Gi* values of the rest of 

the areas were not statistically significant, which means there was no apparent concentration of either 

high or low standardized ratio surrounding these areas, and this usually happened either when the 

surrounding standardized ratio was near the mean or when the target sub-district was surrounded by a 

combination of high and low standardized ratios. The local statistic works best for identifying high-value 

clusters when there is no measureable pattern of clustering or dispersion across the study area [51]. 

Then, the spatial scan statistics were applied to spot clusters of the relative risk. The geometry of the 

area being scanned, the probability-distribution-generating events under the null hypothesis, and the 

shapes and sizes of the scanning window are the three basic properties of the scan statistic [52].  

The methods of the probability approximations and Monte Carlo-based hypothesis testing are applied in 

the models of the spatial scan statistics, and the local G-statistic uses a neighborhood based on either adjacent 

features or a set distance. According to the results of a purely spatial scan analysis, the primary and 

secondary clusters were statistically significant. However, Zhang noted that spatial scan statistics and the 

local statistic can neither directly incorporate ecological covariates nor account for overdispersion [53]. 

To tackle the spatial dependence and overdispersion of the standardized ratios, hierarchical Bayesian 

models were applied in this study. In these models, the standardized ratio was smoothed locally towards 

the mean ratio in the set of adjacent sub-districts. In small-area disease mapping, estimations of the 

relative risk are often inaccurate because the population is usually small in the analysis unit.  

From Table 5, it is clear that the smoothing was greater for the least-stable estimates where the expected 

number of cases was small. Further research should be conducted in these areas because the larger areas 

tend to dominate the map visually, even though they produce the least-precise risk estimates. 

Although multilevel spatial grids were obtainable, the study was performed at the sub-district level 

because the available census data were aggregated at this level. However, a disadvantage is that the 

analysis scales used in many geographical studies are arbitrary and modifiable. For example, the census 

data may be aggregated into sub-districts, postcode areas, police precincts or any other spatial partition, 

which affects the analysis’s results. The pattern created by a set of features and attributes may change 

depending on the scale. Because of the availability of data and the restrictions of research funding, in our 

study, we specified the sub-district spatial grid as the analysis scale as this scale was capable of 

describing the spatial variation of the relative risk of hospital admissions for hypertension in Shenzhen. 

The high-value cluster pattern was statistically significant in the observed cases count and in the relative 

risk in the neighboring sub-districts, which indicated that the spatial autocorrelation was positive and 

that the spatial dependence should be included in modeling the relative risk. One of the major 

contributions of this study was highlighting those sub-districts where the relative risk of hospital 

admissions for hypertension was concentrated, and the improvement of public health services should be 

addressed in these areas. Further work on data collection should target the smaller geographical units. 
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Table 5. A summary of the top ten sub-districts with significant smoothing; the rank is 

specified from high to low. 

Sub-district SR Smoothing SR Rank of Expected Cases Rank of Area 

Kuiyong 2.87 1.36 53 5 

Huaqiangbei 2.73 1.78 51 54 

Nanao 2.68 1.82 56 2 

Lianhua 3.53 2.75 25 43 

Shahe 1.62 0.94 30 34 

Pingdi 1.48 0.91 39 16 

Yantian 1.19 0.69 47 18 

Donghu 1.99 1.51 44 25 

Dongmen 1.67 1.20 40 57 

Shatoujiao 1.14 0.71 54 45 

Another disadvantage of our method is the boundaries of sub-districts, which are a reflection of 

administrative needs rather than the actual spatial distribution of epidemiological factors [14].  

As a result, these boundaries can lead to an inaccurate interpretation of the spatial variation of the 

relative risk across the study area. Furthermore, the study area is delineated by these artificial 

boundaries: the realistic process continues beyond the area because it has an interaction with the 

neighbors outside these borders. Because the calculations are usually based on the spatial neighborhood 

around each feature, certain spatial statistical techniques may require data on variables that refer to 

spatial units beyond the boundary of the study area. If these boundary data are not available,  

this shortcoming represents a form of data incompleteness [16] unless there are fixed natural barriers 

that would minimize any influence from the surrounding features, as in the case of an island where the 

coastal boundary affects the spread of some diseases. How the boundary is handled and how to define 

spatial neighborhoods and weights is a hot topic in spatial analysis and statistics. Some solutions to this 

problem have been proposed in previous works [16,54]. However, regardless of how the boundary is 

defined, the features near the edge of the study area will still have fewer neighbors than the features in 

the center of the study area. In our study, we concluded that the boundary’s effect on the Gi* statistic did 

not lead to an underestimate problem because each hot spot or cold spot was identified by comparing the 

local sum to the expected local sum, and furthermore, the differences in the number of neighbors will not 

impact the result. 

We attempted to identify those factors that are associated with the spatial distribution of  

hospital admissions for hypertension. Previous works have demonstrated the relationship between the 

prevalence of hypertension, and socioeconomic measures, environmental variables and neighborhood 

characteristics [5,6,12,21,40,49,55]. In [56], the researchers aimed to investigate the association of 

aircraft noise with risk of chronic diseases in the general population and concluded that high levels of 

aircraft noise also associated with an increased risk of stroke, coronary heart disease and cardiovascular 

disease. In [57], the objective was to investigate whether exposure to aircraft noise increases the risk of 

hospitalization for cardiovascular diseases in older people residing near airports and the results showed 

that there was a statistically significant association between exposure to aircraft noise and risk of 

hospitalization for cardiovascular diseases among older people living near airport. In our study,  

the results revealed that the road density, which was an indirect factor, can be applied in modeling the 
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spatial variations of the relative risk. In [58], the results indicated that there were ethnic differences in 

clinical trials and in routine care for diabetes patients in South Asian. Thus, detailed information is 

necessary in a geographic correlation study, which is usually conducted at a more local or small-area 

scale, resulting in a demand of large amounts of data. In acquiring the traffic noise level in each 

neighborhood as a direct factor, noise-dispersion models and manual noise assessments could be used [55].  

The results of the hierarchical Bayesian model showed that the relative risk of hospital admissions for 

hypertension was not homogeneous throughout Shenzhen. The high-value clustering was significant in 

the south and southeast of Shenzhen, which can be applied as a guideline for the establishment of 

hospital-based health services. However, there was an obvious underestimation in this study because of 

the lack of awareness of hypertension. Furthermore, Shenzhen is not yet facing a serious aging problem 

compared with other large Chinese cities, and hence, Shenzhen has a relatively low prevalence of 

hypertension and admission rate. In addition, the census data suffer drawbacks that result from the 

policy of “Hukou” (residents who hold a formal household registration in Shenzhen), and the population 

of Shenzhen is unique because the majority of its residents are migrant workers. Because there is a 

strong connection between this population group and their hometowns and families, they tend to support 

the elderly, who may suffer hypertension, which increases the number of hypertension admission cases. 

The main objective of this study was to improve the estimates of the spatial variation of the relative risk 

and identify a hot spot for public health services. Further work is necessary to amend the model and 

explain the spatial heterogeneity of the relative risk that is explored in this study. 
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