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The defect-induced localization 
in many positions of the quantum 
random walk
Tian Chen & Xiangdong Zhang

We study the localization of probability distribution in a discrete quantum random walk on an infinite 
chain. With a phase defect introduced in any position of the quantum random walk (QRW), we have 
found that the localization of the probability distribution in the QRW emerges. Different localized 
behaviors of the probability distribution in the QRW are presented when the defect occupies different 
positions. Given that the coefficients of the localized stationary eigenstates relies on the coin operator, 
we reveal that when the defect occupies different positions, the amplitude of localized probability 
distribution in the QRW exhibits a non-trivial dependence on the coin operator.

The classical random walk (CRW) has proven to be a powerful technique in classical algorithms1. Its quantum 
counterpart, quantum random walk (QRW)2–18, has also been employed in developing some quantum algo-
rithms, e.g., random-walk search algorithms19–22, quantum PageRank algorithms in a quantum network23–25, and 
so on. To design such quantum algorithms based on the QRW, it is necessary for us to explore and understand 
the properties of the QRW itself. One property associated with the efficient design of quantum algorithms is the 
localization of position distribution in the QRW26,27. The first paper devoted to the localization within quantum 
mechanics is presented by Anderson28. When the localization emerges in the QRW, the amplitude of probability 
distributions at some positions of the QRW keeps a nonzero value all the time, and the probability distribu-
tion in the position space does not show the ballistic spreading as in the standard QRW3. Several origins of the 
localization in the QRW have been discussed in detail29–50. When the entanglement is introduced into the coins 
or particles, or the multi-state coin is used, the localization in the QRW appears due to the emergence of the 
degeneracy of some eigenvalues for the evolution matrix U(k)29–38. When the QRW is affected by the random 
environment, the localization can be found in the QRW39–47. Another case for the appearance of the localization 
results from the inhomogeneity of the coin operators in the walk48–50. Moreover, the recurrence probability of the 
QRW has been analyzed and the criterion for the localization of the QRW has been presented51–55. Recently, some 
researches illustrated that when only the phase of the original position in the QRW is modified (it means that 
only one single phase defect is introduced at the original position), one will obtain a sharp allocation of distribu-
tion for this particular position and keep the amplitude of the localization until the infinite time56–61. This QRW 
incorporating one position-dependent phase defect has been realized with the aid of beam displacers and phase 
shifters in experiment already62,63.

In our work, we study the localization of the QRW on an infinite line in which the inhomogeneity is intro-
duced. A phase defect appears in one position of the QRW. As stated in the previous paper56,57,62, when the defect 
occupies the position x =  0 or x =  1, the probability distribution at the corresponding position x =  0 or x =  1 in 
the QRW architecture will not tend to zero even the time approaches the infinite limit. Our results reveal that, 
when the defect is introduced into any position of the QRW, the localization of the probability distribution will 
appear. Given the localized stationary eigenstates of the step evolution operator obtained in Sec. Methods, we find 
that the amplitude of localized probability at the certain position of the QRW depends on the overlap between 
the localized stationary eigenstates of the step evolution operator and the initial state of the QRW. An interesting 
result is presented that when the defect occupies different positions, the amplitude of localized probability in the 
QRW reflects the non-trivial dependence on the parameter θ of the coin operator C(θ), not only shows a simple 
monotonic increase with the parameter θ as reported before62. Such property that the probability distribution 
of the QRW depends on the coin operator is very significant and has its application into the development of the 
quantum algorithms23–27. Besides, the effects of coin operator have been discussed in other aspects within the 
QRW, e.g., quantum state transfer, simulation of properties of nano-devices in spintronics, etc64–66. Based on the 
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localized eigenstates of the step evolution operator provided in Sec. Methods, we present a reasonable analysis for 
the probability distribution in the QRW which shows a non-trivial dependence on the coin operator. A potential 
experimental realization of our QRW with the phase defect is proposed at the end of our main text.

The organization of our paper is as follows, in Sec. Results, we present the step evolution operator Uφ of the 
QRW with defect and in Subsec. Localization with the defect occupying different positions, we numerically obtain 
the position distribution of the QRW when the defect occupies different positions. Then we discuss two different 
QRWs that the defect resides at the even (x =  2) or odd (x =  3) position of the walk in Subsec. The effect of coin 
operators on the localization. With the localized stationary eigenstates of the step evolution operator presented 
in Sec. Methods, we analyze the effect of the coin operator on the position distribution of the QRW. A potential 
experimental realization for such QRW with defect is proposed. Later, we provide our conclusion and discuss the 
future application of our findings in Sec. Discussion and Conclusion.

Results
The one step evolution operator in the QRW architecture is Uφ which consists of one coin operator C(θ) and one 
conditional shift operator φSc .
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where the Hilbert space of coin operator c is spanned by |c〉 , c =  0, 1, and the Hilbert space of position p is 
spanned by |x〉 , x ∈  Z. The total system is comprised by the coin and the position. The coin operator C(θ) is 
θ-dependent, that is,
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When θ =  π/4, the coin operator takes the form as the familiar Hadamard matrix. The conditional shift oper-
ator φSc  allows the particle to walk into two different directions according to the coin state,
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The effect of the defect is contained in the phase. When the particle walks past the position x =  m, it will 
acquire an additional phase 2πφ.

Localization with the defect occupying different positions
In this subsection, we numerically study the localized probability at different positions in the QRW. As stated previ-
ously56, the localization of the probability distribution in the QRW means that the amplitude of probability at certain 
position will keep a non-zero value all the time. It is well known that, if the particle starts from the original position 
(x =  0), the particle will occupy only even (odd) positions with the even (odd) step evolution. In our numerical cal-
culation, when the defect occupies the position x =  0 or x =  1, we can reproduce the same probability distributions 
of the QRW with or without defects as reported in refs 56–58. Then we explore the properties of probability distri-
bution of the QRW in which the defect occupies a farther position (x ≥  2). We take the single phase defect locating 
at the position x =   2 or x =   3 as examples. The initial state for the coin and the position is 
Φ = +( )0 1 0ini

i

c p2
1
2

. The phase of the defect is φ =  1/2. The particle starts from the original point x =  0, 
then undergoes many steps of the evolution in the quantum walk architecture with the single phase defect occupying 
the position x =  2 or x =  3. The probability distributions of the QRW with and without defects are presented in Fig. 1.

It is clearly seen that when the defect appears at the position x =  2 (Fig. 1(a,b)) or x =  3 (Fig. 1(c,d)), the prob-
ability of occupying the position around x =  2 (Fig. 1(a,b)) or x =  3 (Fig. 1(c,d)) does not tend to zero, no matter 
how many steps the particle has taken (Blue solid lines in Fig. 1). The localized probability at the position x =  2 or 
x =  3 keeps the same value with the increase of steps. While, the probability distribution of the standard QRW 
without defects shows the ballistic spreading. No localization of probability distribution in the QRW can be found 
in such case (Red dotted lines in Fig. 1). For the QRW with single phase defect, the localization of the position 
distribution results from the emergence of the localized eigenstates of the step evolution operator φU2. The initial 
state of the QRW evolves with the unitary step evolution operator Uφ. If there is non-zero overlap between the 
initial state of the QRW and the localized eigenstates of φU2, some of the initial state will evolve into the localized 
eigenstates of φU2 and keep unchanged with the evolution. Then the localization of the QRW emerges. As pre-
sented in Sec. Methods, when the defect occupies the position x =  m, we can obtain the eigenstates of φU2 as 
|ψ〉  =  ∑ n(αn|0〉 c|n〉 p +  βn|1〉 c|n〉 p), the expression of the coefficients of αn and βn can be explicitly written as

when n ≠  m,
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Where λ is the eigenvalue of the operator φU2, the constants C+ and C− have a relation shown in Sec. Methods. 
After taking the normalization for the eigenstate |ψ〉 , we can obtain the coefficients αn and βn of the eigenstates 
|ψ〉  of the QRW. Here, we take the defect occupying the position x =  m =  2 as an example, the parameter θ for the 
coin operator is θ =  π/6, the phase of the defect is φ =  1/2. Following the method addressed in Sec. Methods, we 
can obtain two different eigenvalues λ± of evolution operator φU2. The detailed description of the localized eigen-
states |ψ+〉  (|ψ−〉 ) of the evolution operator φU2 corresponding to the eigenvalue λ+ (λ−) is presented in Fig. 2.

The left part of Fig.  2 describes the coefficients α +n  and β+n  of localized eigenstates ψ =+  
α β∑ | 〉 | 〉 + | 〉 | 〉+ +n n( 0 1 )n n c p n c p

 with the corresponding eigenvalue λ + , and the details of α −n  and β−n  of the local-
ized eigenstates  ψ α β| 〉 = ∑ | 〉 | 〉 + | 〉 | 〉−

− −n n( 0 1 )n n c p n c p
 are presented in the right part of Fig. 2. Due to the emer-

gence of localized eigenstates |ψ±〉  of the step evolution operator φU2 in the QRW, if the overlap between the initial 
states |Φ 〉 ini and the localized eigenstates |ψ±〉  is not zero, the localization in the QRW can appear. Considering the 
case addressed in Fig. 1(a,b), when the initial state of the QRW is  Φ = +( )0 1 0ini

i
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2

, the defect 
occupies the position x =  2, the parameter θ of the coin operator is π/6, the overlap between the localized eigen-
state |ψ+〉 (|ψ−〉 ) and the initial state |Φ 〉 ini is 0.03499 (0.1399), so the localization of the QRW appear. Though in 
small steps of evolution (Fig. 1(a,c)), the localized probability at the position x =  2 or x =  3 in the QRW mingles 
with the diffusion of the probability, the localization becomes apparent when the step is large (Fig. 1(b,d)). 
Moreover, the “three-peak-zones” of the position distribution emerges in the QRW with defect, which is similar 
as the position distribution of QRW with entangled coins32–35. For the QRW with entangled coins, the reason for 
the localization around the starting point is explained as the emergence of the degeneracy of some eigenvalues for 
the evolution matrix U(k)34,35. In their discussions, the evolution matrix U(k) is the Fourier transform of the step 
evolution operator. For our studied QRW with defect, the localization of position distribution results from the 
appearance of the localized eigenstates of the step evolution operator φU2 and the non-zero overlap between the 
localized eigenstates and the initial states of the QRW.

Another interesting feature is that the QRW with defects exhibits an asymmetrical distribution around the 
defect’s position x =  2 (Fig. 1(a,b)). Due to the reflection of the defect, a larger probability distribution can be 
found in the left side of the position x =  2, when compared to the smaller probability of transmission in the right 
region of the position x =  2 58,59. The similar behaviors of probability distribution can be found when the defect 
occupies the position x =  3, see Fig. 1(c,d).

What’s more, we study the localization of probability distribution in the QRW when the defect occupies differ-
ent positions. The particle starts from the original position (x =  0), and the initial state for the coin and the 

Figure 1. The probability distribution of the position in the QRW with different steps. Blue solid, the 
probability distribution of the QRW with one single phase defect. Red dotted, the probability distribution of the 
standard QRW without defect. The initial state of the coin and position is taken as Φ = +( )0 1 0ini
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.  

The phase of the defect, φ =  1/2. (a,b) the defect occupies the position x =  2. A sharp peak of probability is found 
at the position x =  2. The parameter θ of the coin operator is chosen, θ =  π/6. (c,d) the defect occupies the 
position x =  3. A sharp peak of probability is found at the position x =  3. The parameter θ of the coin operator is 
chosen, θ =  π/8.
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position is  Φ = +( )0 1 0ini
i

c p2
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. The phase of the defect is φ =  1/2. The parameter θ of the coin oper-
ator is set as θ =  π/6.

In Fig. 3, we study the localized probability at different positions where the defect occupies. The blue solid line 
represents the localized probability at the certain position in the QRW and the defect occupies the same position. 
The red dotted line denotes the probability at the certain position in the QRW without defect. For the defect 
resides at the even positions, the step of the evolution in the QRW is 980; for the defect occupies the odd position, 
the step of the evolution in the QRW is 981. Though the magnitude of probability localized at the position x ≥  6 
is small, such probability will never decrease to zero with increasing the step evolution of the QRW. The detailed 
description of the amplitude of the probability distribution for the position x ≥  6 is presented in the inset (a) of 
Fig. 3. We find that when the step of the evolution is around 1000, the probability at the position x =  9 or x =  10 of 
the QRW with defect is smaller than that of standard QRW without defects. The time evolution of the QRW with 
or without defect is explicitly provided in insets (b) and (c) of Fig. 3. In the inset (b,c), we discuss the probability 
of x =  9 (x =  10) in the QRW with time. The purple dashed line describes the time evolution of the probability 
of x =  9 (x =  10) in the QRW with defect, and in comparison, the green dotted dashed line represents the time 
evolution of the probability of x =  9 (x =  10) in the standard QRW without defect. From these two insets, we find 
that when the defect occupies the position x =  9 (x =  10), the amplitude of probability distribution at the corre-
sponding position x =  9 (x =  10) keeps around the same value with time evolution of the QRW (see the purple 
dashed lines in the insets (b) and (c), the time for the QRW is from 500 to 1500). While, in the standard QRW 
without defect, the probability at the position x =  9 and x =  10 decays exponentially with the time (see the green 
dotted dashed lines in the insets (b) and (c))2,3,8. It indicates that when the phase defect exists in the QRW, the 
localization of the probability distribution in the QRW will appear.

The effect of coin operators on the localization
In this subsection, we study the effect of different coin operators on the localization in the QRW. Considering the 
step evolution operator φU2 contains two steps evolution in the QRW, at first, we explore the properties of the prob-
ability distribution in the QRW with the defect occupying the even position, then the QRW with the defect occu-
pying the odd position is discussed.

Even case. To study the QRW with the defect occupying the even position, we take the QRW with defect 
occupying the position x =  2 as an example. The particle starts from the original position (x =  0), and then the 
particle undergoes the even steps evolution. The initial state for the QRW is  Φ = +( )0 1 0ini
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. The 

phase of the defect is φ =  1/2. In our discussion, we take three different values for the parameter θ of the coin 
operator, that is θ =  π/8, π/6 and π/4. The time step of the evolution in the QRW is 480. The probability distribu-
tions of the QRW with these three different coin operators are addressed in Fig. 4.

From the figure, we can find that among the parameter θ =  π/8, π/6, and π/4 of the coin operator, when θ is 
taken as π/6, the localized probability at the position x =  2 where the defect occupies is largest. While in compar-
ison, when the phase defect emerges at the position x =  0 (x =  1), the localization of the probability distribution 

Figure 2. The coefficients α±n  and β±n  of the localized eigenstates |ψ±〉 of the step evolution operator φU
2. 

The position of the defect is x =  m =  2, the parameter θ of the coin operator is θ =  π/6; the phase defect φ =  1/2. 
In (a), the cuboid with red and orange denotes the real and imaginary part of α +n , the cuboid with dark yellow 
and light yellow represents the real and imaginary part of β+n ; In (b), the cuboid with red and orange denotes the 
real and imaginary part of α −n , the cuboid with dark yellow and light yellow represents the real and imaginary 
part of β−n .
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in the QRW can be found at the position x =  0 (x =  1), the amplitude of the localized probability displays the 
monotonic increase with the parameter θ of the coin operator62.

Now, for the defect occupies the position x =  2, we begin to analyze the amplitude of localized probability that 
is the non-monotonic increase with θ in the QRW. The phase of the defect is φ =  1/2. For each value of these three 
different θs (θ =  π/8, π/6, and π/4), by applying the calculation methods in Sec. Methods, we obtain two different 
eigenvalues (λ+ and λ−) and the corresponding eigenstates ψ α β| 〉 = ∑ | 〉 | 〉 + | 〉 | 〉+

+ +n n( ( 0 1 )n n c p n c p
 and 

ψ α β| 〉 = ∑ | 〉 | 〉 + | 〉 | 〉−
− −n n( 0 1 ))n n c p n c p

 of the step evolution operator φU2. The coefficients α +n  and β+n  (α −n  and 
β−n ) of the localized eigenstates |ψ+〉  (|ψ−〉 ) are presented in Fig. 5. The figures (a) and (b) of Fig. 5 describe the 
coefficients α +n  and β+n , respectively. In figure (a,b)), the cuboid with dark blue and medium blue denotes the real 
and imaginary part of α +n  (β+n ) with the parameter θ chosen as θ =  π/8; the cuboid with cyan and yellow denotes 
the real and imaginary part of α +n  (β+n ) with θ =  π/6; the cuboid with orange and crimson denotes the real and 
imaginary part of α +n  (β+n ) with θ =  π/4. The figures (c) and (d) of Fig. 5 describe the coefficients α −n  and β−n  for 

Figure 3. The amplitude of localized probability at the position where the defect occupies. For the defect 
resides at the even positions, the step of the evolution in the QRW is 980; for the defect occupies the odd 
positions, the step of the evolution in the QRW is 981. The initial state of the coin and position is taken as 
Φ = +( )0 1 0ini

i

c p2
1
2

. The phase of the defect φ =  1/2; the coin operator with θ =  π/6. Blue solid, the 

QRW with one defect; red dotted, the QRW without defects. In inset (a), the defect changes from the position 
x =  6 to x =  10, and the localized probability at the corresponding position is addressed. The inset (b,c) describe 
the time evolution of probability at the position x =  9 and x =  10, respectively. Inset (b), the purple dashed line 
represents the localized probability at the position x =  9 and the defect occupies the same position x =  9; the 
dotted dashed green line denotes the time evolution of probability at x =  9 without defect. Inset (c), the purple 
dashed line stands for the localized probability at x =  10 and the defect is at the same position x =  10; the dotted 
dashed green line represents the time evolution of probability at x =  10 without defect.

Figure 4. The probability distribution of the position in the QRW with the defect residing at x = 2. Three 
different θs of the coin operators are chosen. Blue solid, θ =  π/8, red dotted, θ =  π/6, green dotted dashed, 
θ =  π/4. The initial state of the coin and position is taken as  Φ = +( )0 1 0ini

i

c p2
1
2

. The phase of the 
defect φ =  1/2. The time step of the evolution in the QRW is 480.
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the eigenstate |ψ−〉 , respectively. In figure (c,d)), the cuboid with dark blue and medium blue denotes the real and 
imaginary part of α −n  (β−n ) with the parameter θ chosen as θ =  π/8; the cuboid with cyan and yellow denotes the 
real and imaginary part of α −n  (β−n ) with θ =  π/6; the cuboid with orange and crimson denotes the real and imag-
inary part of α −n  (β−n ) with θ =  π/4. In our discussion, when the overlap between the localized eigenstates of the 
step evolution operator φU2 and the initial state |Φ 〉 ini =  (cos ϕ · eiδ|0〉  +  sin ϕ|1〉 )c|0〉 p is not zero, we will obtain the 
localized probability distribution in the QRW. For the defect occupies the even position x =  m, the localized prob-
abilities of the particle at position x =  l in the QRW with respect to different localized eigenstates |ψ+〉  and |ψ−〉  
are
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where the superscript 2N of the operator U implies that the particle of the QRW takes N evolution operator φU2. In 
our depiction of Fig. 4, the parameters of our initial state |Φ 〉 ini is taken as ϕ =  π/4 and δ =  π/2. The phase of the 
defect is φ =  1/2. The localized probability at the position x =  2 of Fig. 4 corresponds to the parameter l =  2 in the 
expression of equation (5) above. The amplitude of localized probability with respect to the eigenstate λ+ (λ−) is 
associated with the coefficients α +2 , β +2 , α +0  and β +0  (α −2 , β −2 , α −0  and β −0 ). For the localized probability with the 
eigenstate |ψ+〉  (|ψ−〉 ), it indicates that the localized probability at the position x =  2 is not only related to the 
modulus of α +2  and β +2  (α −2  and β −2 ), but also related to the real and imaginary part of α +0  and β +0  (α −0  and β −0 ). 
As shown in Fig. 5, though the modulus of α +2  and β +2  (α −2  and β −2 ) become larger with the increase of the 
parameter θ from π/8 to π/4, the real and imaginary part of α +0  and β +0  (α −0  and β −0 ) do not show the similar 
behavior. By applying the obtained coefficients α +n  and β+n  (α −n  and β−n ) of the localized eigenstate |ψ+〉  (|ψ−〉 ) 
(see Fig. 5), we can make the sum of localized probabilities from the localized eigenstates |ψ+〉  and |ψ−〉 , and 

Figure 5. The values α±n  and β±n  of the localized eigenstates |ψ±〉 of step evolution operator φU
2. The defect 

occupies x =  2. The phase of the defect φ =  1/2. (a,b) describe the coefficients α +n  and β+n  for the eigenstate |ψ+〉 . 
In figure (a,b), the cuboid with dark blue and medium blue denotes the real and imaginary part of α +n  (β+n ) with 
θ =  π/8; the cuboid with cyan and yellow denotes the real and imaginary part of α +n  (β+n ) with θ =  π/6; the 
cuboid with orange and crimson denotes the real and imaginary part of α +n  (β+n ) with θ =  π/4. (c,d) describe the 
coefficients α −n  and β−n  for the eigenstate |ψ−〉 . In figure (c,d), the cuboid with dark blue and medium blue 
denotes the real and imaginary part of α −n  (β−n ) with θ =  π/8; the cuboid with cyan and yellow denotes the real 
and imaginary part of α −n  (β−n ) with θ =  π/6; the cuboid with orange and crimson denotes the real and 
imaginary part of α −n  (β−n ) with θ =  π/4.
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obtain the amplitude of localized probability at position x =  2 in the QRW. With the initial state of the QRW 
Φ = +( )0 1 0ini

i

c p2
1
2 , our calculation reveals the amplitude of localized probabilities as 0.07824, 

0.09996 and 0.07680 with the parameter θ of the coin operator chosen as π/8, π/6 and π/4, respectively. In com-
parison, our numerical simulation of the evolution of the QRW provides the probability distribution of the QRW 
at time step 480 (see Fig. 4), the localized probabilities at the position x =  2 in the QRW are 0.07817, 0.09997 and 
0.07679 with the parameter θ of the coin operator is π/8, π/6 and π/4, respectively.

Odd case. For the defect appears at the even position, we have taken the defect occupying the position x =  2 
as the example. Next, we will consider the probability distribution of the QRW with the defect occupying the odd 
position. The position x =  3 is chosen as the location of the phase defect. The particle starts from the original 
position, x =  0. The initial state of the coin and the position is  Φ = +( )0 1 0ini

i

c p2
1
2 . The phase defect 

φ =  1/2. In our discussion, three different coin operators are chosen as θ =  π/10, π/8, and π/6. The time step of the 
evolution in the QRW is 481. The amplitudes of the probability distribution in the QRW are revealed in Fig. 6.

As shown in Fig. 6, the amplitude of localized probability at the position x =  3 does not increase monotoni-
cally with the parameter θ of the coin operator. The probability at the position x =  3 with θ =  π/8 is larger than the 
probability at the same position with θ =  π/10 or θ =  π/6. While, the localized probability with the defect at the 
position x =  0 or x =  1 shows the monotonic increase with θ62. In the following, we will analyze the amplitude of 
localized probability at the position x =  3 in the QRW with different θs of the coin operator.

We start by studying the localized eigenstates of the step evolution operator φU2. The phase of the  
defect is φ =  1/2. Considering three different θs (θ =  π/10, π/8 and π/6) of the coin operator, we can obtain  
two eigenvalues (λ+ and λ−) and two localized eigenstates ψ α β| 〉 = ∑ | 〉 | 〉 + | 〉 | 〉+

+ +n n( ( 0 1 )n n c p n c p
 and 

ψ α β| 〉 = ∑ | 〉 | 〉 + | 〉 | 〉−
− −n n( 0 1 ))n n c p n c p

 for the evolution operator φU2 with each θ. The detailed description of the 
localized eigenstates for these three θs is presented in Fig. 7. In Fig. 7(a,b), the cuboid with dark blue and medium 
blue denotes the real and imaginary part of α +n  (β+n ) with θ =  π/10; the cuboid with cyan and yellow represents 
the real and imaginary part of α +n  (β+n ) with θ =  π/8; the cuboid with orange and crimson stands for the real and 
imaginary part of α +n  (β+n ) with θ =  π/6. For Fig. 7(c,d), the cuboid with dark blue and medium blue corresponds 
to the real and imaginary part of α −n  (β−n ) with θ =  π/10; the cuboid with cyan and yellow represents the real and 
imaginary part of α −n  (β−n ) with θ =  π/8; the cuboid with orange and crimson denotes the real and imaginary part 
of α −n  (β−n ) with θ =  π/6. The amplitude of localized probability in the QRW depends on the overlap between the 
localized eigenstates of the step evolution operator φU2 and the initial state of the QRW. Considering the step evo-
lution operator φU2 contains two steps evolution of the QRW, and the initial state of the QRW is expressed as  
|Φ〉 ini =  (cos ϕ · eiδ|0〉  +  sin ϕ|1〉 )c|0〉 p, we can obtain the state of the coin and the position after the first step as

ϕ θ ϕ θ

ϕ θ ϕ θ

Φ = Φ

= ⋅ + ⋅ −

+ ⋅ − ⋅ .

φ

δ

δ

U

e cos

e

( cos sin sin ) 0 1

( cos sin sin cos ) 1 1 (6)

ini
i

c p
i

c p

1

Then the localized probabilities at position x =  l in the QRW with respect to different localized eigenstates 
(|ψ+〉  and |ψ−〉 ) can be addressed as

Figure 6. The probability distribution of the position in the QRW with the defect residing at x = 3. Three 
different θs of the coin operators are chosen. Blue solid, θ =  π/10, red dotted, θ =  π/8, green dotted dashed, 
θ =  π/6. The initial state of the coin and position is taken as  Φ = +( )0 1 0ini

i

c p2
1
2

. The phase of the 
defect φ =  1/2. The time step of the evolution in the QRW is 481.
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The coefficients for the localized probability at the position x =  l =  3 corresponding to the localized eigenstate 
|ψ+〉  (|ψ−〉 ) are α +3 , β +3 , α−

+
1 and β +1  (α −3 , β −3 , α−

−
1 and β −1 ).

When considering the localized probability contributed from the eigenstate |ψ+〉  (|ψ−〉 ), it not only depends 
on the modulus of α +3  and β +3  (α −3  and β −3 ), but also relates to the real and imaginary part of α−

+
1 and β +1  (α−

−
1 and 

β −1 ). As shown in Fig. 7, though the modulus of α +3  and β +3  (α −3  and β −3 ) become larger with the increase of θ, the 
real and imaginary part of α−

+
1 and β +1  (α−

−
1 and β −1 ) do not have the similar behavior. Actually from Fig. 7, we can 

find that the amplitudes of real and imaginary part of α−
+

1 or β +1  (α−
−

1 or β −1 ) decrease with the change of θ from 
π/10, π/8 to π/6. By employing the coefficients obtained in Fig. 7, we calculate the localized probability of the 
QRW with the equation (7). With the initial state of the QRW  Φ = +( )0 1 0ini

i

c p2
1
2

, our results reveal 
that the localized probabilities at the position x =  3 in the QRW are 0.03711, 0.04639 and 0.04284 corresponding 
to the parameter θ =  π/10, π/8 and π/6 of the coin operator, respectively. These values are similar to the localized 
probabilities at the position x =  3 from the numerical simulation of the QRW in Fig. 6, where the amplitudes of 

Figure 7. The values α±n  and β±n  of the localized eigenstates |ψ±〉 of step evolution operator φU
2. The defect 

occupies x =  3. The phase of the defect φ =  1/2. (a,b) describe the coefficients α +n  and β+n  for the eigenstate |ψ+〉 . 
In figure (a,b), the cuboid with dark blue and medium blue denotes the real and imaginary part of α +n  (β+n ) with 
θ =  π/10; the cuboid with cyan and yellow denotes the real and imaginary part of α +n  (β+n ) with θ =  π/8; the 
cuboid with orange and crimson denotes the real and imaginary part of α +n  (β+n ) with θ =  π/6. (c,d) describe the 
coefficients α −n  and β−n  for the eigenstate |ψ−〉 . In figure (c,d), the cuboid with dark blue and medium blue 
denotes the real and imaginary part of α −n  (β−n ) with θ =  π/10; the cuboid with cyan and yellow denotes the real 
and imaginary part of α −n  (β−n ) with θ =  π/8; the cuboid with orange and crimson denotes the real and 
imaginary part of α −n  (β−n ) with θ =  π/6.
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localized probabilities are 0.03706, 0.04637 and 0.04283 with θ =  π/10, π/8 and π/6 of the coin operator, 
respectively.

Based on the discussion above, we have found that when there exists one phase defect at any position in the 
QRW, due to the non-zero overlap between the localized eigenstates of the step evolution operator and the initial 
state of the QRW, the localization of the probability distribution in the QRW appear. When the defect occupies at 
different positions, the amplitudes of localized probability in the QRW reveal different dependence on the coin 
operator. Our analysis on the localized probability above takes the position x =  2 and x =  3 as the defect’s position, 
similar analysis on the localization of the QRW can be discussed when the defect occupies the position x ≥  4.

So far, we have studied theoretically the localization of probability distribution in the QRW with defects. 
Such localization of probability distribution can be observed in the experiment as realized in refs 15 and 16. In 
their experiments, the Hilbert space for the coin operator is spanned by the polarization degree of the light, and 
the step evolution is realized with the polarizing beam splitters (PBS) and fiber lines. Different positions in the 
QRW is revealed with different arriving times of photons in the avalanche photodiodes (APD). By applying the 
time-dependent signal to the electro-optic modulator (EOM), the phase defect can be introduced into the certain 
position of the QRW. Considering the QRW with the defect occupying the position x =  2, we find that the locali-
zation of probability distribution is apparent when the particle undergoes 30 steps evolution in the QRW. For the 
experimental realization mentioned above, the standard QRW with 28 steps evolution has been achieved15. This 
experimental realization might provide a platform to observe the localization of the probability distribution in 
the QRW with defects.

Discussion and Conclusion
In summary, we have studied the localization of the position distribution in the QRW on an infinite chain. When 
the single phase defect is introduced into any position of the QRW, the probability at that position where the 
defect occupies does not tend to zero in the infinite time limit, and the localization of the probability distribution 
in the QRW emerges. Later we discuss the effect of different coin operators on the localization of the QRW. When 
the defect occupies different positions, the amplitudes of localized probability show the different dependence on 
the coin operator. Taking the defect residing at the position x =  2 or x =  3 as examples, we find that the localized 
probability at the position x =  2 or x =  3 does not go up monotonically with the increase of θ. Such non-trivial 
θ-dependence of localized probability in the QRW is different from that when the defect locates at the position 
x =  0 or x =  1, in which a trivial monotonic increase of localized probability with θ is revealed2,3,62. So the θ corre-
sponding to the largest localized probability at the position x =  2 or x =  3 is not simply π/2. Further analysis on the 
localization when the defect resides at the position x ≥  4 can be addressed in a similar way. Considering the goal 
of quantum algorithm is to find a specified vertex on the line with a probability of O(1), by introducing the defect 
into such specified vertex on the line, we can obtain a large probability of occupying the defect’s position with an 
appropriate choice of coin operator. Our new findings of localization in the QRW with defects not only deepen 
our insight into the properties of the QRW, but also help us to design quantum algorithms based on the QRW.

Methods
In this section, we will provide the detailed derivation for the localized eigenvalues and eigenstates of the step 
evolution operator φU2. We assume that the state comprising the position and the coin is

∑ψ α β| 〉 = | 〉 | 〉 + | 〉 | 〉 .n n( 0 1 )
(8)n

n c p n c p

The subscript c (p) indicates that this state belongs to the Hilbert space for the coin (position). The phase 
defect occupies the position x =  m. After applying one step Uφ to the total system, we obtain the expressions of the 
amplitude αn and βn when the particle starts from the position x =  n =  m at the discrete time t,

α ω α θ ω β θ
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1

Here, the parameter ω denotes the phase e2πiφ, with φ ∈  [0, 1). When the particle starts from the position n ≠  m at 
time t, the time evolution for coefficients αn and βn are
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Considering the particle starts from the original position (x =  0) initially, it is clearly that the particle occupies 
even (odd) positions in the QRW architecture when the particle takes the even (odd) steps. To find the localized 
stationary states of the QRW with the defect, we apply two steps evolution operator φU2 for the total system. We 
provide the relation for the coefficients at the position x =  n between the time t and t +  2, and then derive the 
relation among the coefficients of localized eigenstates as in ref. 56. The probability amplitude αn and βn (n ≠  m) 
can be obtained as
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Here, the parameter λ stands for the eigenvalues of φU2. With equation (11), we can get

β
α λ α
λ

θ=
− ⋅

−
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+

1
cot

(12)n
n n

2
2

Substituting the expression of βn into equation (11), we achieve the expression as

λ θα λ λ θ α λ θα− − + + =
≠ ± .

+ −

n m m
cos ( 2 sin 1) cos 0,

2, (13)
n n n

2
2

2 2 2
2

The general solution of this equation is

α = ⋅ + ⋅+
−

−
− −C z C z , (14)n

n m n m( )

where C+ and C− are constant coefficients. Considering the convergence of αn when n →  ± ∞ , we can obtain the 
expression for αn with substituting equation (14) into equation (13),
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Here, z is the solution of equation (13) when its value satisfies, |z| <  1. With replacing the expressions of αn 
above into into equation (12), we can obtain βn as
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Taking into account the additional phase acquired when the particle walks through the defect at position 
x =  m, we can get the coupled equations for the probability amplitude αn and βn (n =  m) with the evolution oper-
ator φU2 as
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The parameter λ stands for the eigenvalues of φU2, also. Following the obtained equations above, the explicit 
expressions for αm and βm are

α
α
λ

λ
λ
β θ

β λ
λ

θ α
λ
β

= +
−

⋅

=
−

⋅ + .

+
+

− −

1 tan ,

1 tan 1
(18)

m
m

m

m m m

2
2

2 2
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 , we obtain the probability distribution αm and βm at the position x =  m that the 
defect occupies as
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We replace the term αn and βn of equation (17) with the expressions above. The relation between the phase ω 
induced by the defect, the eigenvalue λ of φU2 and the angle θ of the coin operator is shown as
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where we use y to replace z2. The expression for y can be obtained as
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The relation between the constants C+ and C− is

θ λ ω ω θ λ ω ω θ
ω θ ω θ λ

=
⋅ − + ⋅ − + − ⋅

⋅ ⋅ ⋅ − −
.− +C C cos ( ) ( sin )(1 2 sin )

cos (2 sin 1) (22)

2 2 2 2 2

2 2

Considering the normalized condition for the summation of |αn|2 and |βn|2, we can get the values of C+ and 
C−, and the coefficients αn and βn at different positions n can be obtained.
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