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Purpose: Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and,
occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes
for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that
was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes,
such as cerebellar atrophy, motor disorders, and mental disorders.
Methods: We conducted an extensive clinical examination of the proband and performed a computed tomography (CT)
scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing
for 26 individuals from the proband’s extended family.
Results: The proband’s computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar
atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of
the NDP gene identified a novel nonsense mutation, c.343C>T, in this region.
Conclusions: Although recent research has shown that multiple different mutations can be responsible for the ND
phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by
mutations in the NDP gene.

Norrie disease (ND; OMIM 310600), a rare X-linked
recessive disorder, is characterized by congenital blindness
and, occasionally, mental retardation and hearing loss.
Degenerative and proliferative changes are observed in the
neuroretina of ND patients and lead to early-onset blindness.
More complex phenotypes are included in some ND cases,
such as microphthalmia, growth failure, and seizures [1,2].
ND is caused by mutations in the NDP gene, which is located
on chromosome Xp11.1. The NDP gene contains three exons,
but only the second and the third exons are translated [3].
Norrin—a 133-amino acid protein encoded by the NDP gene
—plays a critical role in the norrin-FZD4 signaling system,
which is involved in the vascular development of the eye and
ear [4]. More than 75 disease-causing mutations have been
identified in ND patients [5-9]. Lack of norrin expression,
truncated norrin, or mutations affecting the Cys residues
involved in the conserved motif are much more likely to cause
ND. However, the mechanism responsible for the variety of
effects caused by norrin mutants is not entirely clear.
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Here, we report a family possessing a novel nonsense
mutation in the NDP gene, accompanied by severe
presentation of ND in the three affected male patients. This is
the first report of a Chinese family with three affected males
with the NDP mutation. The proband is a 20-year-old male
afflicted with symptoms typical of ND, including blindness,
epileptic seizures, and degenerative neuropathy characterized
by mental retardation. A computed tomography (CT) scan of
his brain indicated remarkable cerebellar atrophy and the fifth
ventricle between the left and right transparent septum, which
is not common in human brains.

METHODS
The 26 patients studied here comprise three generations of a
Chinese family from Shandong Province. The proband, III:5,
was born in 1989 after a normal pregnancy. When he was two
months old, he was sent to a local hospital where he was
diagnosed with congenital cataracts. His medical record
described the following characteristics: cloudy cornea in both
eyes, lens opacities, leukoplakia of the cornea in both eyes,
and posterior synechiae in the left eye. The right pupil could
not be seen, and the diameter of the left pupil was 2 mm. In
2008, the proband and his two affected relatives were
examined in further detail, and a CT scan of the proband’s
brain was performed. Considering the possibility of
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haploinsufficiency, a magnetic resonance imaging (MRI)
scan of the carrier III:6’s brain was performed as well.

Genomic DNA was extracted from the peripheral blood
using the standard phenol/chloroform method and was stored
at −20 °C. The study complied fully with the Tenets of the
Declaration of Helsinki and was confirmed by the Ethics
Board of the State Key Laboratory of Medical Genetics of
China. Informed consent was given by all members of the
family before testing. Because the proband was unable to
communicate with us, his informed consent was obtained
from his parents.

Microsatellite DNA markers were mapped to genes on
the X chromosome by polymerase chain reaction (PCR) with
17 fluorescent microsatellite markers (ABI prism linkage
mapping set version 2.5: DXS1060, DXS8051, DXS987,
DXS1214, DXS1068, DXS993, DXS991, DXS986, DXS990,
DXS1106, DXS8055, DXS1001, DXS1047, DXS1227,
DXS8043, DXS8091, and DXS1073). To perform the PCR,
a calculated master mix was created and then divided to
several tubes equally. Each tube’s ingredients were 50 ng
genomic template DNA, 0.5 μl PCR 10× buffer, 0.1 μl dNTP
mix (2.5 mM), 0.06 μl each of forward and reverse primers,
0.6 μl MgCl2 (15 mM), and 0.05 U of AmpliTaq Gold
(Applied Biosystems, Foster City, CA); the solution was
brought to 5 μl with deionized water. Thermal cycling was
conducted as follows: 95 °C for 12 min; 15 cycles of 94 °C
for 30 s, 63 °C for 1 min with a decrease of 0.5 °C per cycle,
and 72 °C for 1 min 50 s; 24 cycles of 94 °C for 30 s, 56 °C
for 1 min, and 72 °C for 1 min 50 s; and a final extension step
of 72 °C for 15 min (GeneAmp 2720, Applied Biosystems).

PCR products were analyzed on an ABI 3100 automated
sequencer (Applied Biosystems). GS400 was used as an
internal size standard and was run in the same lane as the
markers. GENESCAN and GENOTYPER software were
used to determine the size of the alleles. Subsequently, an
additional 12 fluorescent markers from the Human Genome
Database and Marshfield Database were analyzed for fine-

scale mapping (DXS8090, DXS8015, DXS8012, DXS8085,
DXS8035, DXS8080, DXS8054, DXS8083, DXS1003,
DXS1039, DXS988, and DXS1204).

Two-point LOD scores were computed with the MLINK
linkage analysis program (by Jurg Ott, version 5.2) [10]. All
linkage analyses were performed using an X-linked recessive
inheritance model with full penetrance in homozygotes and
hemizygous males and a disease-allele frequency of 0.0001.
Map distances were taken from the Marshfield Database, and
haplotypes were manually reconstructed.

Mutation screening of the NDP gene, for all family
members and for 100 healthy volunteers as normal controls,
was performed in conjunction with X chromosome scans.
PCR was used to amplify the region spanning exon 2 (forward
primer: 5′-ATC CTG CCC TTT CCT TGA; reverse primer:
5′-AGC CTC ATT CTC CCA CAA), and exon 3 (forward
primer: 5′-TGA GCC ACT GGT CTA ATC TA; reverse
primer: 5′-CTC TCT CTG TCA ACA AGC AT) of the NDP
gene. To perform the PCR, a calculated master mix was
created and then divided to several tubes equally. Each tube’s
ingredients were 1 μl (50 ng) genomic DNA, 1 μl (30 ng) of
each primer, 1 μl 10× PCR buffer with MgCl2 (Roche
Diagnostics Corporation, Indianapolis, IN), 0.05 μl (5 U) of
AmpliTaq Gold (Applied Biosystems); the solution was
brought to 10 μl with deionized water. The PCR products were
purified with shrimp alkaline phosphatase (Fermentas
International Inc., Burlington, Ontario, Canada) and
exonuclease I (Fermentas) for 90 min at 37 °C to remove the
phosphoryl groups. The samples were sequenced on an
automated sequencer in both directions according to the
manufacturer’s recommendations (ABI PRISM 3100 Genetic
Analyzer, Applied Biosystems).

RESULTS
Clinical findings: Three males from the Chinese family—the
proband, his uncle, and his cousin—are affected by the
disease, indicating that it might be inherited in an X-linked
recessive manner.

Figure 1. The proband, III:5, and his left
eye. Cloudy cornea in both eyes, lens
opacities, leukoplakia of the cornea in
both eyes, and posterior synechiae in the
left eye were observed. Further, the
patient was suffered by seizures and
mental disorders. The features of rolled
up eyes and dribbling can be observed
in this image.
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Results of visual acuity examination of the proband were:
no light perception in either eye, bilateral adherent leucoma
of cornea, congenital cataract (Figure 1). Because the proband
had severe mental retardation and epilepsy, the anterior
chamber and posterior segment of his eye could not be
examined. A B-ultrasonic scan showed that the optic axes are
21 mm in the right eye and 20 mm in the left eye and vitreous
opacity. No retinal detachment was found.

A CT scan of the proband’s brain (Figure 2) indicated that
he had experienced cerebellar atrophy with widened and
deepened sulci; the fifth ventricle was also observed on the
scan. Cerebral density remained normal; no widening and
deepening of the cerebral sulcus fracture were found; and the
position of central structure had not changed.

The other two patients were also afflicted by epilepsy and
progressive mental disorders, and can barely communicate
with other people. Even with assistance, they are barely able
to walk; however, they are more mobile than the proband, who
can only be moved in a wheelchair. The conditions of all three
patients have worsened with age.

No ND phenotype was found in the carriers. The MRI
scan of carrier III:6’s brain showed no abnormality (Figure 2).

Linkage analysis: The maximum LOD score for all 17
analyzed markers was 1.51 for DXS993 on chromosome
Xq11.4. On the basis of this result, we analyzed 12 additional
fluorescent markers in the flanking regions of DXS993 for
fine-scale mapping. Of these, 10 yielded additional
information; three of these markers (DXS8012, DXS8035,
and DXS1003) had LOD scores greater than 2 (Table 1),
which suggested that they were involved in the ND phenotype.
Haplotype analysis and recombination mapping: All 12
fluorescent microsatellite markers flanking DXS993 were
used to construct the haplotypes. Inspection of the haplotype
transmission data (Figure 3) showed a telomeric
recombination event between markers DXS8090 and
DXS8015 in individuals II:8 and III:1, placing the disease-
causing gene centromeric to marker DXS8090. Similarly,
recombination events between loci DXS1039 and DXS988
occurred in individuals II:10 and II:12, indicating that the
disease gene is telomeric to locus DXS988. Thus, in this
family, the disease gene lies within a 15.71-cM region on
chromosome Xp21.1-p11.22, bounded proximally by locus
DXS8090 and distally by locus DXS988.

Figure 2. The CT scan and MRI scan
results. A: CT scan of the proband’s
brain; these images show cerebellar
atrophy with widened and deepened
sulci and permit observation of the fifth
ventricle. Arrows show cerebellar
atrophy is characterized by narrowed
lobes and widened folds of cerebellar
hemisphere and vermis; and the
evolution of the cavity of septum
pellucidum. B: MRI scan of carrier III:
6’s brain; no abnormality was observed.
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Mutation screening: The three affected patients (II:3, III:1,
and III:5) were homozygous for a novel nonsense mutation,
c.343C>T; four other individuals (I:2, II:2, II:5, and III:6)
were heterozygous for this genotype (Figure 4). This
transition causes an Arg115Term exchange and results in the
production of a nonfunctional truncated norrin protein. The
distribution of carriers and non-carriers in this pedigree
conforms to the predictions of the haplotype analysis and
recombination mapping. The c.343C>T mutation was not
found in the controls.

DISCUSSION
ND is rarely reported in China. Here, we have used CT scans,
genome scans, and mutation screening to confirm the
characteristics of ND and diagnose ND according to
Warburg’s criteria [11]. Mental disturbances have also been
described in other ND patients [12,13]. However, previous
reports did not describe motor disorders or cerebellar
atrophies as severe as those documented here. These results
may provide more data for research and molecular diagnosis
of the disease.

TABLE 1. TWO-POINT LOD SCORES FOR MICROSATELLITE DNA MARKERS.

  Recombination fraction  
Marker cM

0.00 0.1 0.2 0.3 0.4 0.5
DXS8090 36.79 -∞ 0.09 0.33 0.29 0.14 0.00
DXS8015 37.87 0.90 0.77 0.61 0.44 0.24 0.00
DXS8012 42.21 2.41 2.00 1.54 1.02 0.45 0.00
DXS993 42.21 1.51 1.23 0.92 0.58 0.21 0.00

DXS8085 42.75 0.90 0.77 0.61 0.44 0.24 0.00
DXS8035 43.83 2.41 2.00 1.54 1.02 0.45 0.00
DXS8054 45.87 1.51 1.23 0.92 0.58 0.21 0.00
DXS8083 46.54 1.51 1.23 0.92 0.58 0.21 0.00
DXS1003 47.08 2.41 2.00 1.54 1.02 0.45 0.00
DXS988 52.50 -∞ 0.09 0.36 0.35 0.22 0.00

DXS1204 52.50 -∞ 0.09 0.36 0.35 0.22 0.00

Figure 3. Pedigree of the study family
and the haplotypes obtained from
examining 12 microsatellite DNA
markers on chromosome X. Solid
symbols represent affected individuals
and open symbols represent unaffected
individuals. The arrowhead denotes the
proband. Markers are listed in order
from the centromere to the telomere.
The affected haplotype is shown in
rectangles.

Molecular Vision 2010; 16:2653-2658 <http://www.molvis.org/molvis/v16/a284> © 2010 Molecular Vision

2656

http://www.molvis.org/molvis/v16/a284


The NDP gene maps to Xp11.1, spans 28 kb, and contains
3 exons. Exon 1of the NDP gene contains only the 5′
untranslated region; the first 58 residues of the open reading
frame are in exon 2, while codons 59–133 of the open reading
frame and the 3′ untranslated region are in exon 3 [3]. ND is
ascribed to mutations of the NDP gene, which can also cause
X-linked familial exudative vitreoretinopathy (XL-FEVR)
[14-16]. XL-FEVR is a heterogeneous vitreoretinal disorder
characterized by peripheral vitreous opacities, subretinal and
intraretinal exudates, and retinal traction due to failure of
peripheral retinal vascularization [17].

NDP encodes norrin, a member of the cystine knot growth
factor family [18]. It is a secreted cysteine-rich protein that
has 133 amino acids. The cystine knot domain of norrin spans
from codon 32 to codon 133, which is thought to play an
essential role in neurologic interactions [19]. The cysteine
residues at codons 39, 65, 69, 96, 126, and 128 have been
found to be responsible for the cysteine-knot formation. Three
disulfide bridges between codon 39 and 96, 65 and 126, and
69 and 128 are involved in the tertiary structure of norrin [5].
Most mutations of the NDP gene associated with ND or XL-
FEVR are related to this domain, including R115L (c.
344G>T) and R109Term (c.325C>T), which cause XL-FEVR
and ND, respectively [20]. Thus far, all patients with nonsense
mutations were diagnosed with ND disease.

The novel mutation in exon 3 at codon 115 altered the
arginine codon to a termination codon. Hence, the last 18
amino acids of the wild-type norrie protein would lost by the
resulting protein, which contains cysteine residues and
disulfide bridges involved in the cysteine knot. The
R115Term mutation might considerably alter the protein
structure and severely disrupt neurologic interactions related
to the cystine knot domain.

The function of norrin is not entirely clear; however,
research has shown that it may be involved in the development
of the neuroectoderm or in regulation of neural cell
proliferation [21]. Norrin has been identified as a specific
ligand for frizzled-4 (FZD4; OMIM 604579), a presumptive
Wnt receptor. Interacting with the cysteine-rich domain
(CRD) of FZD4, norrin can activate the Wnt/β-catenin
pathway by inducing FZD4- and LRP (OMIM 107770)-

dependent activation, affecting vascular development in the
ear and eye [4]. Moreover, norrin plays an important role in
retinal vasculogenesis and in neural cell differentiation and
proliferation [22,23]. Additionally, evidence has shown that
the neuroprotective properties of norrin are independent from
its effects in vascular development [24]. This may explain
why degenerative neuropathies such as seizures and mental
disorders were observed in the affected individuals examined
in this study.

However, the mechanism by which mutations in the
NDP gene cause the complex phenotypes of ND is still
unclear. Further, the case presented here supports Schuback’s
assumption that new phenotypic expressions of the disease
may be identified [6]. This may result from complex
epigenetic factors that interact and influence the physiologic
and neurodevelopmental expression of the ND phenotype
[6]. More data are required to further the understanding of the
diverse and variable effects of norrin mutations.
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