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Background. Various studies reported that the prognosis of patients with cervical cancer (CC) was significantly associated with
immunity, whereas limited studies have explored whether immune-associated genes could be classifiers for recurrence-free
survival (RFS) of stage I CC. Thus, an improved immune-related gene signature for stage I CC patients’ prognosis is urgently
required. Materials and Methods. We retrospectively analyzed the gene expression profiles of stage I CC patients in the
GSE44001 set from the Gene Expression Omnibus (GEO) database. The stage I CC patients were randomly divided into the
training group and the internal validation group. The training patients were adopted to develop a prognostic immune gene-
based signature; meanwhile, the internal validation patients were used to validate the power of the selected immune gene-related
signature using univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and
multivariate Cox regression analysis. The accuracy and reliability of the immune gene-related signature were evaluated based on
Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves. Results. High power of the 8-
immune gene signature was found on the basis of ROC analysis (AUC at 1, 3, and 5 years were exhibited in the internal
validation group (0.702, 0.715, and 0.728, respectively), external validation group (0.702, 0.825, and 0.842, respectively), and
entire GEO dataset (0.840, 0.894, and 0.852, respectively)). Besides, C-index, ROC, calibration plots, and decision curve analysis
(DCA) also acted well in our nomogram, suggestive of a high ability of the nomogram to elevate the prognostic prediction of
stage I CC patients. Conclusions. In this study, we successfully constructed an integrated 8-immune gene-based signature which
could accurately identify patients with low prognostic risk from those with high prognostic risk. In addition, we developed an
immune-related nomogram which can elevate the prognostic prediction of stage I CC patients.

1. Introduction

Cervical cancer (CC) is the fourth most frequently diagnosed
malignancy in women worldwide [1]. CC accounts for about
10% of cancer-associated deaths in women worldwide, and
there are an estimated 560,000 new cases in 2018 [2, 3]. Stan-
dard therapies which include chemotherapy, radiotherapy,
and surgical resection have improved the prognostic man-
agement of early-stage CC, whereas it is hard to prevent
metastasis and recurrence of CC, which results in the major-
ity of CC deaths [4, 5]. Therefore, new therapeutic methods
and novel hallmarks that provide prognostic information
for CC patients are urgently required.

Previous studies suggested that the immune system was a
determining index during carcinoma initiation and progres-
sion [6, 7]. Accelerating evidence has showed that immune
genes may serve as a hallmark of cancer. For example, Shen
et al. developed and validated an immune gene set-based
prognostic signature in ovarian cancer [8]. Tsakonas et al.
showed that an immune gene expression signature distin-
guished central nervous system metastases from primary
tumors in non-small-cell lung cancer [9]. Li et al. developed
and validated an individualized immune prognostic signa-
ture in early-stage nonsquamous non-small-cell lung cancer
[10]. Cheng et al. identified an immune-related risk signature
for glioblastoma based on bioinformatic profiling [11]. Zhou
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et al. revealed an immune-related six-lncRNA signature to
improve prognosis prediction of glioblastoma multiforme
[12]. Various studies reported that the prognosis of patients
with CC was significantly correlated with immunity. For
instance, Yang et al. identified a prognostic immune signature
for CC to predict survival and response to immune checkpoint
inhibitors [13]. Huang et al. revealed the prognostic value of
the preoperative systemic immune-inflammation index in
patients with CC [14]. Wang et al. showed the prognostic
landscape of tumor-infiltrating immune cells in CC [15]. Chen
et al. revealed the correlation between subsets of tumor-
infiltrating immune cells and risk stratification in patients with
cervical cancer [16]. Cui et al. identified the TCR repertoire as
a novel indicator for immune monitoring and prognosis
assessment of patients with CC [17], whereas limited studies
have explored whether immune-associated genes could be
predictors for the prognosis of stage I CC. Therefore, an
improved immune-associated gene signature for stage I CC
patients’ prognosis is urgently needed.

In this study, we investigated the gene expression data
and related clinical information of stage I CC patients in
GSE44001 from the GEO database to develop an individual-
ized prognostic signature for stage I CC patients based on
bioinformatic methods. Then, the power of the 8-immune
gene signature was validated via ROC analysis and Kaplan-
Meier analysis. We developed a nomogram on the basis of

the risk score, cancer status, and race to improve the pre-
dicted value of the 8-immune gene signature. The outcomes
indicated that our nomogram was an accurate prognostic
prediction tool.

2. Materials and Methods

2.1. Data Acquisition. We retrospectively analyzed the gene
expression profiles of stage I CC samples in the GSE44001
set of the GEO database via the GEOquery package [18].
Only samples with both survival information and expression
data available were included in the present study. In addition,
genes with a lack of expression values or samples with a lack
of prognostic information for recurrence were removed. Fol-
lowing this, immune gene data were downloaded from the
ImmPort database [19]. Consequently, 1811 immune genes
and 258 stage I CC cases were included to develop the
immune gene-based prognostic classifier for stage I CC.
Besides, 153 samples with stage I CC from the TCGA data-
base were searched across the TCGAbiolinks package [20]
which was employed as an external validation group. The
detailed information of enrolled samples in GEO and TCGA
databases was presented in Table S1. In addition, our article
was about data mining analysis through TCGA and GEO
database and not associated with ethical approval.

2.2. Development and Validation of the Immune-Related
Signature for Stage I CC. We first performed univariable
Cox regression analysis using the collected immune gene to
identify the immune genes which generated a close
(P < 0:05) correlation with RFS of stage I CC patients. Fol-
lowing that, the identified immune genes were adopted for
LASSO analysis to determine stage I CC patients’ RFS-
related candidate immune genes (P < 0:05). Finally, we
implemented multivariate Cox regression analysis according
to the candidate immune genes to select RFS signature genes
for stage I CC patients, and an 8-metabolic gene signature
was identified as a prognostic predictor.

The stage I CC samples in the entire GEO dataset were
randomly assigned into the training and internal validation
groups with a ratio of 7 : 3. The training patients were
adopted to build a prognostic immune gene-related signa-
ture; meanwhile, the internal validation patients were
exploited to validate the reliability of the selected immune
gene-related signature. After that, we established a formula
by using the 8-immune gene-based signature to calculate
the immune risk score for each patient. Patients were then
separated into high- and low-risk cohorts based on the
median cutoff of the risk score. We assessed the prognostic
performance of the immune signature by comparing the sen-
sitivity and specificity of ROC curves via R (version 4.0.0),
and the AUC value was employed as an evaluation indicator.
The comparison of RFS between the high-risk and low-risk
cohorts was assessed by the Kaplan-Meier curve through R
(version 4.0.0).

2.3. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR). Total RNA was extracted from stage I
CC tissues via TRIzol (Invitrogen) according to the

Table 1: Clinical features of contained samples.

Characteristics
Training
dataset
(n = 181)

Testing
dataset
(n = 77)

External
validation test
(n = 153)

Stage

IA 9 (0.05) 4 (0.052) 6 (0.039)

IB 172 (0.95) 73 (0.948) 147 (0.961)

Diameter

≥3.0mm 89 (0.492) 38 (0.494)

<3.0mm 92 (0.508) 39 (0.506)

Grade

G1 11 (0.072)

G2 69 (0.451)

G3 61 (0.399)

Not available 12 (0.079)

Height

>160 cm 65 (0.425)

≤160 cm 65 (0.425)

Not available 23 (0.15)

Weight

>70 kg 76 (0.497)

≤70 kg 64 (0.418)

Not available 13 (0.085)

BMI

≥27 64 (0.418)

<27 64 (0.418)

Not available 25 (0.163)
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manufacturer’s instructions. The complementary DNA
(cDNA) was synthesized through the reverse transcription
kit (Takara, Japan) in accordance with the instructions of
the manufacturer, and qRT-PCR was conducted by a stem-
loop RT primer and the PrimeScript RT reagent kit (Takara
Bio, Inc.) following the manufacturer’s instructions. Gene
expression was normalized to GAPDH and was calculated
via the 2−ΔΔCq method. Each experiment was performed
three times. All primer sequences are listed in Table S2.

2.4. Single Sample Gene Set Enrichment Analysis (ssGSEA).
ssGSEA was carried out based on the TCGA-CESC mRNA
dataset across the GSVA package [21] to find the immune
gene signature-based signaling pathways. We investigated
the top 20 key immune gene-related pathways that had a pos-
itive association with the risk score. The stage I CC patients
in the entire GEO dataset were randomly divided into the
training and internal validation groups with a ratio of 7 : 3.
p values of <0.05 were considered statistically significant.

2.5. Identification of the Nomogram. We implemented uni-
variate and multivariate Cox proportional hazard analysis
on the basis of the risk score and several clinic-related factors.
Cox proportional hazard models were utilized for calculating
hazard ratios (HR) and corresponding 95% confidence inter-
val (CI). To elevate the predictive reliability of the 8-immune
gene-based signature for stage I CC patients’ RFS, a nomo-
gram was established on the basis of the risk score, cancer

status, and race via the “rms” R package. The predictive capa-
bility of our nomogram for stage I CC patients’ RFS was
assessed according to C-index, ROC, calibration plots, and
DCA. The predicted results of the nomogram were illustrated
in the calibrate curve, and the 45° line stood for the ideal
prediction.

3. Results

3.1. Patient Characteristics. A cohort containing 258 stage I
CC patients with available expression data and related clini-
cal information in the GEO database was analyzed. The clin-
icopathological features of the analyzed samples are showed
in Table 1. A flowchart which manifested the entire process
of the study is showed in Figure 1.

3.2. Construction of Immune-Associated Risk Signature.
Univariate and LASSO Cox regression analyses were
adopted to examine the association between the 2059
immune-related genes and RFS of the stage I CC patients
(Table S3). The result showed that 25 immune-related genes
were discovered to be importantly involved in stage I CC
patients’ RFS in the light of LASSO Cox regression analysis
(Figures 2(a) and 2(b)). At last, 8 immune-correlated genes
(CCL14, MAP3K14, HFE, UCN, TNFRSF11B, OSMR,
PLXNA3, and PLXNC1) were manifested to be closely
correlated with RFS of stage I CC patients on the basis of
multivariate Cox analysis. Risk score = −0:151 ∗ CCL14 +

Stage І cervical cancer data from GEO database
(258 samples) and TCGA database (153 samples)

1811 Immune relevant genes, 258 patients
were screened based on immport database
and clinical information 

104 Immune-associated genes that were
significantly associated with RFS were identified

25 candidate immune-associated genes were identified

8 Immune-associated gene signature
was identified 

Evaluation of predictive performance
of the 8 immune-associated gene
signature and identification of 8
immune-associated gene
signature-associated pathways

Association between 8 immune-associated genes
signature and patient RFS in internal, external
validation sets and entire GEO dataset

Construction of the nomogram Validation of the nomogram

Univariate Cox analysis

LASSO Cox model with training
set, 1000 iterations 

Multivariate Cox analysis with backward
and forward stepwise method 

K-M survival analysis

Figure 1: Flow chart of the present research.
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0:769 ∗HFE − 0:800 ∗MAP3K14 + 0:672 ∗ OSMR + 0:895
∗ PLXNA3 + 0:509 ∗ PLXNC1 + 0:251 ∗ TNFRSF11B +
0.396∗UCN. The 8-immune-correlated gene signature was
exploited as an indicator for RFS of stage I CC patients.
Figure 3 and Figure S1 illustrate that the high immune-
correlated gene expression of HFE, OSMR, PLXNA3,
PLXNC1, TNFRSF11B, and UCN had a distinctly miserable
survival; nevertheless, the low immune-associated gene
expression of CCL14 and MAP3K14 produced an evidently
gloomy survival. In addition, 28 immune checkpoints and
tumor mutation burden (TMB) from the TCGA database
were also analyzed between the two risk groups (Figure S2).
The result showed that the expression levels of CD4,
CXCR4, LGALS9, TNFRSF4, and TNFSF4 were elevated in
the high-risk group, while the expression levels of CD48,
CD83, and KLRG1 were raised in the low-risk group.
Importantly, the expression of TMB was raised in the low-
risk group (Figure S3). Otherwise, the expression of the
immune genes in CC tissues was analyzed by real-time
quantitative reverse transcription-polymerase chain reaction

(qRT-PCR) and immunohistochemical (IHC) assay
(Figure S4). The result exhibited that the expression levels of
CCL14 were reduced in CC tissues; meanwhile, the
expression levels of HFE, TNFRSF11B, OSMR, and PLXNA3
were increased in CC tissues.

3.3. Relationship between the Immune-Associated Signature
and Stage I CC Patients’ RFS. The stage I CC samples were
separated into the high- and low-risk groups according to
the median cutoff of the risk score. Kaplan-Meier analysis
was adopted to explore the difference in RFS between two
groups. Survival analysis showed that the cohorts with lower
risk scores had longer RFS than the high-risk cohorts, which
was illustrated in the internal validation group (p = 0:012)
(Figure 4(a)). A similar outcome was implied in the external
validation group (p = 2e − 04) (Figure 4(c)) and the entire
GEO group (p = 2e − 05) (Figure 4(e)).

3.4. Evaluation of the Predicted Capacity of the 8-Immune
Gene-Correlated Signature Based on ROC Analysis. Time-

–10 –8 –6 –4 –2

–20

–10

0

10

Log lambda

Co
effi

ci
en

ts

68 64 61 26 0

(a)

–10 –8 –6 –4 –2

0

100

300

500

Log (𝜆)

Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

68 70 65 60 61 60 35 25 9

(b)

Figure 2: Candidate immune gene selection according to the LASSO Cox regression model. (a) 10-fold cross-validation for tuning parameter
selection in the LASSO model by minimum criteria (the 1-SE criteria). (b) LASSO coefficient profiles of the 104 immune genes. A coefficient
profile plot was generated against log (lambda) sequence. Vertical line was drawn at the value selected with 10-fold cross-validation, where
optimal lambda resulted in 25 nonzero coefficients.
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dependent ROC curves were employed to test the robustness
of the 8-immune-correlated gene signature. The AUC at 1, 3,
and 5 years in the internal testing group were 0.702, 0.715,
and 0.728, respectively (Figure 4(b)), the external testing
group (0.837, 0.749, and 0.777, respectively) (Figure 4(d)),

and the entire GEO group (0.702, 0.825, and 0.842, respec-
tively) (Figure 4(f)). These results showed that the 8-
immune gene signature was a firm prognostic tool.

Following this, we ranked the immune risk scores of the
stage I CC patients in the training and internal testing
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Figure 3: Boxplots of the 8 immune gene expression values against risk cluster in the GEO dataset. “High” and “low” referred to the high-risk
and low-risk clusters, respectively. The differences between the 2 clusters were tested by the Mann-Whitney U test, and p values were
exhibited in the graphs.
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Figure 4: Kaplan-Meier and ROC analysis of patients with stage I CC in the internal validation, external validation, and entire GEO set,
respectively. (a, c, e) Kaplan-Meier analysis with a two-sided log-rank test was implemented to test the differences in RFS between the
low-risk and high-risk samples. (b, d, f) 1-, 3-, and 5-year ROC curves of the 8-immune gene signature were adopted to examine the
power in predicting stage I CC patients’ RFS.
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Figure 5: Immune gene risk score analysis of 258 stage I CC samples in the GEO dataset. (a) Metabolic gene risk score distribution against the
rank of risk score. Median risk score was adopted as the cutoff point. (b) Recurrence-free survival status of stage I CC patients. (c) Heatmap of
8 immune gene expression profiles of stage I CC patients.
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cohorts and analyzed their distribution (Figure 5(a)), and the
survival status of stage I CC cases in the training and internal
testing cohorts was illustrated on the dot plot (Figure 5(b)).
We found that the groups with lower risk scores had longer
RFS than the high-risk groups. Heatmap distribution of the
8 immune-correlated genes clustered through the immune
risk score is exhibited in Figure 5(c), which was concordant
with the result in Figure 3. A similar outcome was found in
the external validation group (Figure S5), which supported
the result in Figure 3.

3.5. Exploration of the 8-Immune Gene Signature-Correlated
Biological Pathways. The stage I CC samples were divided
into the high- and low-risk groups according to the median

cutoff of the risk score. The top 20 core immune gene-
activated pathways that produced a positive association with
the immune risk score are illustrated in Figure 6(a)
(Table S4). A significantly positive association between the
enriched pathways and immune risk score is further
exhibited in Figure 6(b).

3.6. Nomogram Construction. Univariate and multivariate
Cox regression analyses were carried out to further analyze
for independency of the 8-immune gene signature to predict
stage I CC patients’ RFS based on the risk score and other
known clinical factors. The results indicated that the 8-
immune gene signature was independent predictive factors,
with a hazard ratio (HR) of 4.68 (95% CI: 2.67-8.20, p =
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Figure 6: Identification of the 8-immune gene signature-associated biological pathways. (a) Heatmap of top 20 enriched pathways associated
with the high-risk group. (b) Correlation graph between risk scores and top 20 pathways.
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6:94e − 08) (Table 2). To elevate predicted robustness of the
8-immune gene-based signature for stage I CC patients’
RFS across a quantitative method, we built a nomogram on
the basis of the risk score, cancer status, and race (Figure 7)
to predict 1-, 3-, and 5-year stage I CC patients’ RFS. The
importance between the risk score and the clinic-related var-
iables is depicted in Figure 8(a). The result exhibited that C
-index (0.911, 95% CI: 0.876-0.936), AUC (0.929, 0.954,
and 0.974) (Figure 8(b)), and calibration plot illustrated that
the nomogram served as a perfect predictive model
(Figures 8(c)–8(e)). Besides, the DCA manifested that the

nomogram produced a crucial clinical application for prog-
nosis prediction of stage I CC patients than that in the treat
all or treat none cluster. Net benefit was verified for stage I
CC patients’ 3-year recurrent risks (Figure 8(f)), illustrating
the good capacity of our tool.

4. Discussion

We constructed and validated an immune gene-based signa-
ture for CC using GEO and TCGA dataset. The signature
consisted of 8 immune genes with prognostic ability. A

Table 2: Univariate Cox regression analysis and multivariate Cox regression analysis outcomes based on immune gene risk score and other
clinic-relevant factors.

Univariate analysis Multivariate analysis
id HR HR.95 L HR.95 H p value HR HR.95 L HR.95 H p value

Cancer status 4.339719 2.851935 6.603643 7:25e − 12 4.680186 2.670895 8.201051 6:94e − 08

Score 2.951403 1.846756 4.716801 6:06e − 06 3.21561 1.791249 5.77259 9:13e − 05
Number of positive lymph nodes 1.144813 1.053136 1.244472 0.001495 0.978141 0.867004 1.103524 0.719476

Lymphovascular invasion indicator 2.093224 1.290804 3.394462 0.002746 1.80633 0.897758 3.634418 0.097396

N 1.515486 0.999303 2.298299 0.050385 0.728134 0.393761 1.346447 0.311754

Grade 1.39709 0.975019 2.001868 0.068438 1.161459 0.747212 1.805361 0.50599

Race 1.378743 0.919578 2.067178 0.120127 2.652522 1.498592 4.694991 0.000812

BMI 0.94959 0.888731 1.014617 0.125877 1.016788 0.911553 1.134172 0.765189

Weight 0.984041 0.961687 1.006915 0.170005 0.992311 0.96137 1.024249 0.63297

M 0.683123 0.326188 1.43064 0.312295

Height 1.013923 0.959142 1.071833 0.625605

T 1.157597 0.604218 2.217795 0.65909

Total number of pregnancies 1.029369 0.87153 1.215795 0.733222

Age 0.99709 0.96979 1.025158 0.836982

Menopause status 1.019268 0.777162 1.336796 0.890296

Keratinizing squamous cell carcinoma present
indicator

0.972696 0.597031 1.584735 0.911485

Ethnicity 0.972632 0.534771 1.769003 0.927551

Number of successful pregnancies 1.00326 0.801568 1.255701 0.977329

Tobacco smoking history 0.998008 0.715417 1.392223 0.990635

Points
0 10 20 30 40 50 60 70 80 90 100

Score
4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Cancer_status
Free Tumor

Other

Total points
0 20 40 60 80 100 120 140 160

1−year survival
0.99 0.9 0.8 0.55 0.25

3−year survival
0.99 0.9 0.8 0.55 0.25 0.05

5−year survival
0.99 0.9 0.8 0.55 0.25 0.05

White
Race

Non-white

Figure 7: Immune gene-correlated nomogram for the prediction of RFS with stage I CC patients. The nomogram was built in the entire GEO
database, with the immune gene risk score, race, and cancer status.
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Figure 8: Validation of immune gene-correlated nomogram in entire GEO dataset. (a) The higher the bar chart, the larger the percentage. (b)
1-, 3-, and 5-year ROC curves for the immune gene-correlated nomogram. (c–e) Stood for the 1-, 3-, and 5-year nomogram calibration curves,
respectively. The closer the dotted line fit to the perfect line, the better the predictive power of the nomogram. (f) The decision curve analysis
(DCA) for the nomogram. The net benefit was plotted versus the threshold probability. The red line stood for the nomogram. The blue line
stood for the treat all, and the green line stood for the treat none.
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combination of the 8 immune genes (CCL14, MAP3K14,
HFE, UCN, TNFRSF11B, OSMR, PLXNA3, and PLXNC1)
was used as a predictor for stage I CC patients’ RFS. Among
the 8 immune genes, 6 immune genes (HFE, OSMR,
PLXNA3, PLXNC1, TNFRSF11B, and UCN) were correlated
with high risk and 2 immune genes (CCL14 and MAP3K14)
were protective factors. Of note, previous researches have
manifested that these above 8 immune genes were involved
in carcinoma, respectively. For instance, Gu et al. suggested
that CCL14 was a prognostic biomarker and correlated with
immune infiltrates in hepatocellular carcinoma [22]. Mak
et al. reported that the apoptosis repressor with caspase
recruitment domain modulated second mitochondrial-
derived activator of caspase mimetic-induced cell death via
BIRC2/MAP3K14 signaling in acute myeloid leukemia [23].
Liu et al. indicated that C282Y polymorphism in the HFE
gene was associated with the risk of breast cancer [24]. Shao
et al. suggested that 7-hydroxystaurosporine (UCN-01)
induced apoptosis in human colon carcinoma and leukemia
cells independently of p53 [25]. Luan et al. found that
TNFRSF11B activated Wnt/β-catenin signaling and pro-
moted gastric cancer progression [26]. Hibi et al. indicated
that methylation of the OSMR gene was frequently observed
in noninvasive colorectal cancer [27]. Gabrovska et al. sug-
gested that PLXNA3 may have some form of a growth-
suppressive role in breast cancer [28]. Chen et al. manifested
that PLXNC1 enhanced carcinogenesis through transcrip-
tional activation of IL6ST in gastric cancer [29]. We specu-
lated that the above 8 immune genes were also related to
stage I CC.

Various studies manifested that nomograms may elevate
prognostic prediction for tumors on the basis of several clin-
ical variables via a quantitative method. For example, Chen
et al. reported the transcription factor profiling to predict
recurrence-free survival in breast cancer: development and
validation of a nomogram to optimize clinical management
[30]. Xiong et al. suggested that nomogram integrating geno-
mics with clinicopathologic features improved prognosis
prediction for colorectal cancer [31], whereas fewer studies
developed a nomogram to predict the prognosis of stage I
CC patients. Our nomogram was built according to clinical
variables to predict the prognosis of stage I CC patients in a
quantitative method; in other words, our model can predict
specific survival percentages of stage I CC patients, which
may elevate prognostic prediction for stage I CC patients.

Considerable researches demonstrated that the LASSO
Cox regression model can be adopted to select prognostic
predictors of various cancers, For example, Lan et al. identi-
fied prognostic factors and constructed a prognostic miRNA
signature based on univariate Cox regression analysis and
LASSO [32]. Luo et al. developed a three-miRNA signature
as a novel potential prognostic hallmark in patients with clear
cell renal cell carcinoma [33]. The LASSO method can min-
imize the log partial likelihood subject to the sum of the abso-
lute values of the parameters which are bounded by a
constant. Thus, it shrinks coefficients and generates some
coefficients which are precisely zero. Consequently, it can
reduce the assessment variance when providing an explicable
final tool [34]. We adopted the LASSO method to select the

candidate immune-associated genes significantly related to
RFS of stage I CC patients for eliminating the interference
of the possible multicollinearity.

Therefore, the application of LASSO analysis can elevate
the prognostic prediction for RFS of stage I CC patients.

Although the 8-immune gene-based signature appears to
be a potential prognostic predictor in clinical application,
there are also some limitations. Firstly, the IHC results for
PLXNA3 and PLXNC1 were not available. Secondly, the
sample size in our external validation set was not large
enough. The third limitation was that the prognostic value
of the 8-immune gene-based signature was tested only by
online databases, and more prospective studies should be fur-
ther performed. Fourthly, we developed the nomogram
according to retrospective data from the TCGA database,
which may produce a hazard of selection bias.

5. Conclusion

We constructed an integrated 8-immune gene-based signa-
ture that was significantly related to RFS of stage I CC
patients which could accurately identify patients with low
prognostic risk from those with high prognostic risk. Fur-
thermore, we evaluated the accuracy and reliability of the
above signature based on Kaplan-Meier analysis and ROC
curves. These results suggested that the 8-immune gene-
based signature could potentially serve as a prognostic tool
in stage I CC. The indicators indicated that our nomogram
can elevate the prognostic prediction of stage I CC patients.
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