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Overexpression of Lrp5 enhanced the anti-breast cancer effects
of osteocytes in bone
Shengzhi Liu 1, Di Wu1,2,3, Xun Sun1,2, Yao Fan1,2, Rongrong Zha1,2, Aydin Jalali1, Yan Feng1,2, Kexin Li1,2, Tomohiko Sano1,4,
Nicole Vike5, Fangjia Li6, Joseph Rispoli 5, Akihiro Sudo4, Jing Liu6, Alexander Robling7,8, Harikrishna Nakshatri 9,10, Bai-Yan Li 2 and
Hiroki Yokota 1,2,7,8,10

Osteocytes are the most abundant cells in bone, which is a frequent site of breast cancer metastasis. Here, we focused on Wnt
signaling and evaluated tumor-osteocyte interactions. In animal experiments, mammary tumor cells were inoculated into the
mammary fat pad and tibia. The role of Lrp5-mediated Wnt signaling was examined by overexpressing and silencing Lrp5 in
osteocytes and establishing a conditional knockout mouse model. The results revealed that administration of osteocytes or their
conditioned medium (CM) inhibited tumor progression and osteolysis. Osteocytes overexpressing Lrp5 or β-catenin displayed
strikingly elevated tumor-suppressive activity, accompanied by downregulation of tumor-promoting chemokines and upregulation
of apoptosis-inducing and tumor-suppressing proteins such as p53. The antitumor effect was also observed with osteocyte-derived
CM that was pretreated with a Wnt-activating compound. Notably, silencing Lrp5 in tumors inhibited tumor progression, while
silencing Lrp5 in osteocytes in conditional knockout mice promoted tumor progression. Osteocytes exhibited elevated Lrp5
expression in response to tumor cells, implying that osteocytes protect bone through canonical Wnt signaling. Thus, our results
suggest that the Lrp5/β-catenin axis activates tumor-promoting signaling in tumor cells but tumor-suppressive signaling in
osteocytes. We envision that osteocytes with Wnt activation potentially offer a novel cell-based therapy for breast cancer and
osteolytic bone metastasis.
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INTRODUCTION
Primary bone cancer is relatively rare, but bone is a frequent site of
cancer metastases.1,2 Estrogen receptor (ER)-positive cancers
preferentially metastasize to bone,3 but bone is also a common
site of metastasis of ER-negative breast cancers, including triple-
negative breast cancer.4 Many potential reasons for the high rate
of bone metastasis, including chemotaxis mediated by cytokines,
chemokines, and TGFβ-rich calcified matrix as a metastatic
environment, have been considered.5 However, the role of
osteocytes, which are the most abundant type of bone cells, in
this process remains poorly understood.6 Focusing on the role of
Wnt signaling, which is required for load-driven bone home-
ostasis, we evaluated the interactions of tumor cells with
mechanosensitive osteocytes.
The extracellular matrix in bone is remodeled by bone-forming

osteoblasts and bone-resorbing osteoclasts.7 Osteocytes are
matrix-laden, differentiated osteoblasts, and mature osteocytes
have an elevated level of Sclerostin.8 In response to mechanical
stimulation, these cells activate Wnt signaling and orchestrate
bone remodeling.9 With their extensive dendritic architecture,
osteocytes act as mechanosensors.10 Low-density lipoprotein
receptor-related protein 5 (Lrp5) is a Wnt coreceptor11 that

promotes loading-driven bone formation by downregulating
Sclerostin.7 In the canonical Wnt signaling pathway, β-catenin
acts as an epicenter of intracellular signal transduction.12 In
contrast to its beneficial role in osteocytes, Wnt signaling plays a
detrimental role in cancer, and thus strategies to inhibit Wnt
signaling have been sought.13 This study aimed to examine the
role of Lrp5- and β-catenin-mediated Wnt signaling in tumor-
osteocyte interactions in order to develop a novel therapeutic
strategy based on Wnt regulation. To the best of our knowledge,
the effect of osteocytic Wnt activation on tumor-osteocyte
interactions has not been investigated.
Instead of direct application of a Wnt-modulating agent to

tumor cells, our approach in this study was to activate Wnt
signaling in cultured osteocytes and apply these osteocytes with
Wnt activation or conditioned medium (CM) from these cultures
to tumors. Cell-based therapies are being attempted for various
diseases due to recent technological advances.14 In regenerative
medicine, CM derived from mesenchymal stem cells has been
employed to promote the healing of damaged tissues.15 However,
the effects of osteocyte-derived CM on breast cancer-associated
osteolysis have not been well studied. In this study, we first
overexpressed Wnt-modulating genes, such as Lrp5 and β-catenin,
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in osteocytes or pretreated osteocytes with the chemical agent
BML284, a Wnt activator. The pretreated osteocytes or their CM
were then administered locally or systemically in a mouse model
of breast cancer as well as a mouse model of tumor-induced tibial
osteolysis.
Tumor heterogeneity results from complex cellular interactions,

through which the growth of tumor cells can be promoted or
inhibited depending on the neighboring tumor and nontumor
cells.16 In this study, we mainly employed differentiated MLO-A5
osteocytes that had an elevated expression level of Sclerostin. It
has been reported that peripheral blood and bone marrow plasma
from multiple myeloma patients contain elevated levels of
Sclerostin.17 Additionally, an anti-Sclerostin antibody was shown
to increase bone mass without affecting the progression of the
tumor.18 However, we observed herein that mature osteocyte-
derived CM had a stronger tumor-suppressive capability than
premature osteocyte-derived CM, and the results indicated a
dichotomous role for Sclerostin as well as Lrp5 in osteocytes and
tumor cells. Collectively, our results reveal opposing roles of the
Lrp5/β-catenin axis in tumor cells and osteocytes; these roles
impact the metastatic progression of cancer and potentially
provide an explanation for the limited success in targeting this
signaling axis in advanced cancers.

RESULTS
Differentiated osteocytes inhibited the proliferation, migration,
and invasion of mammary tumor cells
To evaluate the role of osteocytes in cancer progression, we first
differentiated MLO-A5 preosteocytes by treating them with
ascorbic acid. Compared to MLO-Y4 osteocyte-like cells, which
are premature osteocytes, the ascorbic acid-treated A5 osteocytes
themselves expressed elevated levels of Sclerostin (Scl), a marker
of osteocyte differentiation and maturity; Lrp5, a coreceptor for
Wnt signaling; and DMP1, a matrix protein involved in bone
mineralization (Fig. 1a). By contrast, we observed that A5
osteocyte-derived CM contained lower levels of Sclerostin and
Lrp5 than Y4 osteocyte-derived CM (Fig. 1b, c). Compared to Y4
CM, A5 CM exhibited stronger inhibitory effects on the prolifera-
tion, migration, and invasion of EO771 mammary tumor cells,
based on the results of EdU incorporation assays, wound-healing
assays, and Transwell assays, respectively (Fig. 1d–f). Furthermore,
we evaluated the expression of tumor-promoting genes that play
critical roles in the progression and metastasis of breast cancer,
such as MMP9, Runx2, TGFβ, and Snail. The western blot results
showed that in EO771 cells, A5 CM downregulated tumor-
promoting genes such as Sclerostin, Lrp5, β-catenin, MMP9,
Runx2, TGFβ, and Snail and elevated the level of an apoptosis
marker, cleaved caspase 3, more substantially than did Y4 CM (Fig.
1g). The above results indicated that A5 osteocyte-derived CM,
containing a low level of Sclerostin, did not contribute to tumor
progression but inhibited the proliferation, migration, and
invasion of tumor cells.

Differentiated osteocytes inhibited migration and invasion in vitro,
ex vivo, and in vivo
We next determined the effects of CM from differentiated
osteocytes on the migratory and invasive properties of mammary
tumor cells. A5 CM reduced the migration of 4T1.2 mammary
tumor cells, as evaluated by a wound-healing assay (Fig. 2a), and
the invasion of primary human breast cancer cells, as evaluated by
a Transwell assay (Fig. 2b). Of note, 0514-15 cells were derived
from a pleural effusion in a patient with ER+/PR− breast cancer,
whereas 0514-21 cells were derived from a chest wall metastasis
in a patient with triple-negative breast cancer. A5 CM also
inhibited the ex vivo growth of human breast cancer tissue
fragments (Fig. 2c) and reduced the number of colonized tumor
cells in the mouse lung in the in vivo extravasation assay (Fig. 2d).

To examine the effect of osteocytes at the biophysical level, we
employed a vinculin tension sensor. The vinculin head and tail
domains were linked to a FRET donor and acceptor, respectively19

(Fig. 2e). We determined the fluorescence lifetime of the FRET
donor. Compared to the control medium, A5 CM shortened the
FRET donor lifetime in EO771 and MDA-MB-231 cells (Fig. 2f),
indicating that A5 CM weakened tensile forces at focal adhesions.

Lrp5, expressed in osteocytes, enhanced antitumor capability
in vitro
The above results suggested the antitumor action of osteocytes.
Since osteocytes are known to regulate Wnt signaling, we next
examined whether overexpression of Lrp5 in osteocytes alters
their antitumor capability (Fig. 3a). Overexpression of Lrp5 in A5
osteocytes elevated the level of Lrp5 in A5 osteocytes and their
CM, while silencing of Lrp5 reduced its level in A5 osteocytes
(Fig. 3a, b). Of note, the level of Sclerostin in A5 CM was not
altered by either overexpression or silencing of Lrp5 (Fig. 3b). We
observed that Lrp5-overexpressing osteocyte-derived CM inhib-
ited the proliferation and invasion of EO771 tumor cells, as
determined by EdU incorporation and Transwell assays, respec-
tively (Fig. 3c, d). Furthermore, Lrp5-overexpressing osteocyte-
derived CM significantly inhibited the ex vivo growth of cancer
tissue fragments (Fig. 3e). By contrast, Lrp5-silenced osteocyte-
derived CM lost the ability to inhibit cell proliferation and invasion
(Fig. 3f, g), as well as the growth of tumor spheroids (Fig. 3h).
Collectively, these results indicated that Lrp5 in osteocytes was
partially responsible for their antitumor action.
Enhancement of antitumor effects by overexpression of Lrp5

was also observed in cells treated with Y4 CM (Supplementary
Fig. 1a, b). However, this antitumor function of Lrp5 was not
observed in cells treated with fibroblast-derived CM (Supple-
mentary Fig. 1c–e). We observed that CM from human
osteocytes either with or without Lrp5 overexpression also
inhibited the proliferation, invasion, and migration of tumor
cells (Supplementary Fig. 2a). Furthermore, CM from Lrp5-
overexpressing but not parental osteocytes reduced the
proliferative and invasive properties of PC-3 prostate cancer
cells (Supplementary Fig. 2b, c). Taken together, these results
indicated that Lrp5-overexpressing mouse and human osteo-
cytes acted as tumor suppressors not only in breast cancer cells
but also in prostate cancer cells.

A5 osteocytes reduced mammary tumor growth in vivo
Using a proof-of-principle model with C57BL6 mice, we next
evaluated the effect of osteocytes on mammary tumors, which
provided preclinical proof of principle of osteocytes’ antitumor
efficacy. EO771 cells were injected into the seventh mammary fat
pad with and without coinjection of osteocytes. Coinjection of
osteocytes reduced the growth of mammary tumors (Supplemen-
tary Fig. 3a). Examination of a histological section containing GFP-
labeled osteocytes showed that osteocytes were mostly located in
the proliferative zone, where they were interfused with tumor
tissue (Supplementary Fig. 3b). We also observed the same tumor-
suppressive effect in NOD/SCID mice injected with MDA-MB-231
breast cancer cells (Supplementary Fig. 3c, d). The effect of Lrp6,
another coreceptor in Wnt signaling, was different from that of
Lrp5. Injection of Lrp6-silenced EO771 cells did not alter mammary
tumors (Supplementary Fig. 3e, f), and Lrp6-silenced osteocyte-
derived CM did not suppress the antitumor action of osteocytes
(Supplementary Fig. 3g, h). Collectively, these results indicated
that Lrp5 but not Lrp6 altered the tumor-suppressive capability of
osteocytes.

Osteocyte coinjection suppressed tumor-induced osteolysis
Thus far, we have shown that osteocytes act as tumor suppressors
in the mammary fat pad. We next examined their effect on tumor
invasion of bone. MR imaging showed that mice in the placebo
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control group (injected with only tumor cells) exhibited clear
tumor-linked lesions in the tibia, which were significantly reduced
in the A5-injected group (Fig. 4a). Furthermore, μCT imaging
revealed that osteocyte coinjection reduced tumor-driven osteo-
lysis (Fig. 4b). In response to the coinjection, the bone volume
ratio (BV/TV) and trabecular number (Tb.N) were elevated, and the
trabecular separation (Tb.S) was reduced. These changes suggest

the ability of osteocytes to protect against cancer-induced
osteolysis. No benefits of osteocyte coinjection were observed
when osteocytes expressing Lrp5 shRNA were used. Evaluation of
H&E-stained sagittal sections revealed that the osteocyte-injected
group exhibited reduced tumor growth and bone injury
(Supplementary Fig. 4a). These results indicate that Lrp5-positive
osteocytes contribute to the prevention of tumor-induced bone
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loss. Of note, Lrp5 expressed in tumor cells has a protumorigenic
role, as mice injected with Lrp5-silenced EO771 tumor cells
showed a reduction in mammary tumor growth and tumor-driven
bone loss (Supplementary Fig. 4b, c).

Lrp5 deletion in osteocytes worsened tumor-driven osteolysis
in vivo
Having shown Lrp5’s antitumor capability in osteocytes, we next
examined the effect of Lrp5 deletion in osteocytes on tumor
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progression in the tibia in conditional knockout mice. As
predicted, mice with osteocytic deletion of Lrp5 exhibited
significantly lower bone mass than their wild-type littermates
(Fig. 4c, d). However, local injection of Lrp5-overexpressing

osteocyte-derived CM into the proximal tibia markedly protected
the bone. In addition to the tumor-driven reduction in BV/TV, we
also observed a reduction in BV/TV by deletion of Lrp5 in
osteocytes (Supplementary Fig. 4d). However, the tumor-induced
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reduction in BV/TV was greater than that caused by deletion of
Lrp5 in osteocytes (Supplementary Fig. 4e).

Lrp5 in osteocytes downregulated tumor-promoting genes and
upregulated tumor-suppressive genes
To understand the regulatory mechanism of Lrp5’s action, analysis
of a 111-cytokine antibody array was conducted with CM from
osteocytes with and without Lrp5 overexpression. In Lrp5-
overexpressing CM, the levels of two chemokine ligands (CXCL1
and CXCL5) and three other proteins (WISP1, OPN, and M-CSF)
were significantly reduced (Fig. 5a, b; Supplementary Fig. 5a).
These chemokines/cytokines are protumorigenic and prometa-
static, and at least two of the chemokines (CXCL1 and CXCL5) are
the targets of the prometastatic cytokine TGFβ in osteocytes
(Fig. 5c). In addition to downregulating tumor-promoting genes,
osteocyte-derived CM was enriched with proteins that potentially
acted as tumor suppressors. Mass spectrometry-based analysis
predicted that the levels of TPM4, ANXA1, ANXA6, LIMA1, p53, and
DSP were elevated in A5 osteocyte-derived CM (Fig. 5d). In Lrp5-
overexpressing osteocytes, the expression levels of these genes
were elevated, but that of TGFβ was reduced (Fig. 5e). The Lrp5
overexpression-induced changes in the expression levels of these
proteins in osteocyte CM could contribute to the inhibition of
tumor progression.

Overexpression of β-catenin and the treatment with the Wnt
activator BML284 enhanced the antitumor capability of osteocytes
Since Lrp5 is involved in Wnt signaling, we examined the status
of β-catenin, which is a downstream mediator of Wnt signaling.
We observed that in EO771 cells, β-catenin-overexpressing CM
elevated apoptosis-linked genes (CYCS, HIF1α, and APT1) in
EO771 cells (Supplementary Fig. 5b). The EdU incorporation
assay and Transwell-based invasion assay revealed that
β-catenin-overexpressing osteocyte-derived CM reduced the
proliferation and migration of EO771 tumor cells (Fig. 5f, g). In
osteocytes, overexpression of Lrp5 increased the expression of
β-catenin and an apoptosis-inducing factor, Trail (Fig. 5h), while
it downregulated tumorigenic proteins such as MMP9, Runx2,
TGFβ, and Snail (Fig. 5i). By contrast, silencing of β-catenin
reversed the expression profile of osteocytes with overexpres-
sion of Lrp5 (Fig. 5j; Supplementary Fig. 5c). Notably, the
inhibitory effect of CM from β-catenin-overexpressing osteo-
cytes on tumor-promoting proteins was suppressed by silencing
of Trail (Fig. 5k).
We determined the levels of Sclerostin and Lrp5 in CM from

β-catenin-overexpressing osteocytes and osteocytes treated with
BML284, an activator of Wnt signaling. The levels of these proteins
were not elevated in either CM. Instead, β-catenin-overexpressing
CM exhibited a decreased Sclerostin level, and BML284-treated
CM exhibited a decreased Lrp5 level (Supplementary Fig. 5d).
BML284-treated CM enhanced the antitumor capability of
osteocytes in an ex vivo tissue assay (Supplementary Fig. 5e). It
also downregulated tumor-promoting genes, and its administra-
tion to C57BL/6 mice reduced the progression of tumors
(Supplementary Fig. 5f–h).
Of note, the levels of tumor-suppressive genes (TPM4, ANXA1,

ANXA6, LIMA1, p53, and DSP) were elevated in β-catenin-
overexpressing osteocytes, and CM from β-catenin-overexpressing
osteocytes reduced the levels of CXCL1, CXCL5, WISP1, OPN, and
M-CSF (Supplementary Fig. 6a, b). Additionally, the levels of
tumor-promoting genes (Lrp5, MMP9, Runx2, and Snail) were
increased by TGFβ and CXCL5, while they were reduced by TPM4,
ANXA6, and Trail (Supplementary Fig. 6c, d). Regarding the link
between β-catenin and Trail, CM from β-catenin-overexpressing
osteocytes inhibited the proliferation and invasion of tumor cells,
but RNA interference with Trail siRNA blocked the inhibitory
effects of CM from β-catenin-overexpressing osteocytes (Supple-
mentary Fig. 6e, f).

CM from β-catenin-overexpressing osteocytes inhibited tumor
progression and osteoclastogenesis
We observed that systemic administration of β-catenin-over-
expressing osteocyte-derived CM inhibited the progression of
mammary tumors (Fig. 6a) and tumor-driven osteolysis (Fig. 6b, c,
Supplementary Fig. 6g). In addition, we examined the potential
involvement of Runx2 in tumor progression. In human primary
breast cancer cells from two sources, A5 CM reduced the Runx2
and MMP9 levels (Supplementary Fig. 7a). FRET analysis revealed
that Runx2-silenced EO771 cells exhibited a decreased fluores-
cence lifetime, indicating that silencing of Runx2 reduced the
molecular force and cell migration (Supplementary Fig. 7b).
Furthermore, in a mouse model, mice inoculated with Runx2-
silenced EO771 cells exhibited reduced tumor weights (Supple-
mentary Fig. 7c). To examine the effects of osteocyte-derived CM
on the development of bone-resorbing osteoclasts, we performed
staining for tartrate-resistant acid phosphatase (TRAP), a marker of
osteoclasts. Notably, Lrp5- and CM from β-catenin-overexpressing
osteocytes reduced the number of mature osteoclasts, with TRAP-
positive multinucleated (>3 nuclei) cells counted as mature
osteoclasts (Fig. 6d, e). CM from Lrp5- and β-catenin-over-
expressing osteocytes downregulated NFATc1, a master transcrip-
tion factor for osteoclastogenesis, and cathepsin K, a protease for
bone resorption (Fig. 6f).

DISCUSSION
In this study, we showed that osteocytes or their CM acted as
antitumor agents against mammary tumors and suppressed
tumor growth in bone in a mouse model. μCT images showed
the protection of trabecular bone, and MR images and
histological results indicated a reduction in the tumor-invaded
region. Ex vivo and in vitro studies revealed the inhibitory effects
of osteocyte-derived CM on tumor cell proliferation, migration,
and invasion. A FRET vinculin biosensor assay demonstrated that
the molecular force in tumor cells was weakened by osteocyte-
derived CM. Notably, the Wnt coreceptor Lrp5 and β-catenin
played a critical role in osteocyte-driven tumor inhibition. Proof-
of-principle studies, in which osteocytes were coinjected with
tumor cells into mammary fat pads, verified that osteocytes were
potentially able to suppress tumor progression. Systemic
administration of CM from osteocytes with overexpression of
Lrp5 or β-catenin strikingly reduced mammary tumor growth
and tumor-induced bone loss. Enhancement of the antitumor
effects was also observed in osteocytes preconditioned with
BML284, an activator of Wnt signaling. Collectively, these results
indicate that osteocytes and their CM are capable of inhibiting
tumor cells by activating endogenous Wnt signaling and
inactivating Wnt signaling in invading cancer cells.
Overexpression of Lrp5 and constitutive activation of β-catenin in

osteocytes contributed to their enhanced antitumor capability
through four distinct mechanisms (Fig. 6g). The first mechanism
was downregulation of tumor-promoting genes such as CXCL1,
CXCL5, and WISP1,19–21 while the second was upregulation of tumor
suppressor genes such as p53, ANXA6, and TMP4. Of note, p53 is
known as a guardian of the genome and a suppressor of
inflammatory responses in the tumor microenvironment.22 While
p53 is reported to be present in circulating blood and to affect the
growth of tumor cells,23 the tumor suppressor candidates identified
by mass spectrometry are known to mainly function intracellularly. It
is thus important to further examine the roles of these candidate
genes in CM. The third mechanism was elevation of Trail and
induction of apoptosis, and the fourth was suppression of
osteoclastogenesis via inhibition of both TRAP-positive multinu-
cleated osteoclasts and the expression of NFATc1 and cathepsin K. In
summary, Lrp5-overexpressing osteocytes markedly reduced tumor
progression by regulating tumor-promoting, tumor-suppressing, and
apoptosis-inducing genes.24–27
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One notable feature of this study is the unique approach to
inhibit tumor progression by activating Wnt signaling in
osteocytes with overexpression of its receptor and cytoplasmic
signal transducer. Since many lines of evidence report Wnt
signaling as tumorigenic,28 the approach used herein attempted
to inhibit tumor growth with a tumor-promoting agent or tumor-
suppressing CM. Mature osteocytes express a high level of
Sclerostin, a well-known marker of osteocyte differentiation.8 It
has been reported that an elevated level of Sclerostin in peripheral
blood is linked to poor prognosis in multiple myeloma patients.17

However, our results showed that A5 CM had a low level of
Sclerostin and did not contribute to this issue. We showed that the
silencing of Lrp5 in EO771 mammary tumor cells suppressed
tumor-induced bone loss, while Lrp5 deletion in the conditional
knockout mouse model stimulated bone degradation. This result
indicates that systemic administration of a Wnt signaling inhibitor
may interfere with the intrinsic antitumor ability of osteocytes in
the bone microenvironment.
While two Wnt coreceptors, Lrp5 and Lrp6, are known to be

involved in bone homeostasis,29 they played different roles in
tumor progression in our study. Deletion of Lrp5 in tumor cells
reduced mammary tumor growth, but deletion of Lrp6 did not.
Additionally, Lrp5 shRNA-transfected osteocytes lost antitumor
capability, but Lrp6 shRNA transfection did not affect the
antitumor action of osteocytes. Considering these results collec-
tively, we postulate that Lrp5 but not Lrp6 in osteocytes can
enhance tumor suppression.
Cancer treatments include surgery, radiotherapy, chemotherapy,

immunotherapy, hormone therapy, and stem cell transplantation,30

but injection of nonimmune differentiated cells or their CM is not a
standard treatment. Ideally, Wnt signaling needs to be inhibited in
tumor cells, but this study provided several lines of evidence
indicating that it can be activated in osteocytes, with beneficial
therapeutic outcomes. Although administration of Wnt inhibitors
reduced tumor growth, they did not appreciably strengthen the
antitumor effects of osteocytes. A chemotherapeutic drug may thus
not be sufficient to regulate Wnt signaling in the tumor-osteocyte
microenvironment. Notably, osteocytes presented intrinsic tumor-
suppressive capabilities in breast cancer cells and tissues, while
fibroblasts did not show antitumor capabilities. The present study
indicates the possibility of osteocyte-based therapy—particularly to
treat bone metastasis—in which osteocytes act as antitumor agents
and orchestrate bone homeostasis. We found that overexpressing
Lrp5 and constitutively activating β-catenin strengthened this tumor-
suppressive capability.
The results herein shed light on Lrp5- and β-catenin-mediated

antitumor actions of osteocytes, though several limitations should be
noted. In this study, we employed C57BL/6 mice injected with EO771
mammary tumor cells and NOD/SCID mice injected with MDA-MB-
231 human breast cancer cells. While this study employed a variety
of cell models, not only breast cancer cell lines but also prostate
cancer cells, primary human breast cancer cells and osteocytes,
tumor-osteocyte interactions may depend heavily on the type of
breast cancer cells. The antitumor capability of osteocytes may
depend on their differentiation stage as well as the expression level
of Lrp5. It is also necessary to examine whether any other cancer cells
behave similarly to breast cancer cells.31,32 It has been reported that
prostate cancer cells become invasive via interactions with
osteocytes.33 We observed that osteocyte-derived CM increased
the invasion of PC-3 prostate cancer cells. However, we also observed
that CM from Lrp5-overexpressing osteocytes decreased the invasive
behavior of these cells. It is recommended that the effect of
osteocyte-derived CM be evaluated not only on breast cancer cells
but also other cancer cells.
In conclusion, our study demonstrates that as the matrix-laden

and most abundant cells in bone, osteocytes—and their CM—can
inhibit tumor progression and bone loss and that this capability is
enhanced by activating Wnt signaling via Lrp5 and β-catenin

overexpression. Whereas much previous work has shown the
importance of Wnt signaling in bone homeostasis and tumor
progression, our work explores the tumor-suppressive role of Wnt
signaling via tumor-osteocyte communication. The results herein
point to the possibility of a novel osteocyte-based cancer therapy.
Further studies are warranted to gain maximum benefit from local
administration of engineered osteocytes or systemic administra-
tion of their CM to treat breast cancer-associated bone metastasis.

MATERIALS AND METHODS
Cell culture
EO771 mouse mammary tumor cells (CH3 BioSystems, Amherst, NY,
USA),34 4T1.2 mouse mammary tumor cells (obtained from Dr. R.
Anderson at the Peter MacCallum Cancer Institute, Melbourne,
Australia), and fibroblast cells (CRL3063; ATCC, Manassas, VA, USA)
were cultured in DMEM. MDA-MB-231 breast cancer cells (ATCC),
MLO-A5 and MLO-Y4 osteocyte-like cells (C57BL/6 background;
obtained from Dr. L. Bonewald at Indiana University, IN, USA), and
RAW264.7 preosteoclast cells (ATCC) were grown in αMEM. Human
primary osteocytes (Celprogen, 36043-15) were maintained in
human osteocyte primary cell culture complete growth medium
(Celprogen, M36043-15S) and subcultured on extracellular matrix
(Celprogen, E36043-15). PC-3 human prostate cancer cells (ATCC)
were cultured in RPMI-1640 medium (Gibco, Carlsbad, CA, USA).35

Primary human breast cancer cells (ER+/PR− 0514-15 cells and
triple-negative 0514-21 cells) were grown as described previously.36

Culture media were supplemented with 10% fetal bovine serum
and antibiotics (100 U·mL−1 penicillin and 100 μg·mL−1 streptomy-
cin; Life Technologies, Grand Island, NY, USA), and cells were
maintained at 37 °C in 5% CO2. Expression plasmids for Lrp5
(40 ng·μL−1) and β-catenin (40 ng·μL−1) were transfected into 2 ×
106 osteocytes overnight. After 1 d of incubation, the CM was
ultracentrifuged to remove exosomes and condensed 10-fold by
filtering (Amicon, Sigma, Saint Louis, MO, USA) with a molecular
weight cutoff of 3 kD. Proteins from CM-treated cells were
harvested 24 h after the beginning of incubation.

EdU incorporation assay
Approximately 2 000 cells were seeded in 96-well plates on day 1.
CM was added on day 2, and cell proliferation was examined using
a fluorescence-based cell proliferation kit (Click-iT™ EdU Alexa
Fluor™ 488 Imaging Kit; Thermo-Fisher, Waltham, MA, USA) on day
4. After fluorescent labeling, the number of fluorescently labeled
cells was counted, and the ratio of the number of fluorescently
labeled cells to the total number of cells was determined.37

Invasion (as assessed by a Transwell assay) assay
The invasion capacity of cancer cells was determined using a 24-well
plate, Transwell chambers (Thermo Fisher Scientific, Waltham, MA,
USA) with an 8-μm pore size, and Matrigel (100 μg·mL−1).
Approximately 5 × 104 cells in 200 μL of serum-free DMEM were
plated in the upper chambers, and 800 μL of CM was added to the
lower chambers. After 48 h, the cells that had invaded to the lower
side of the membrane were stained with crystal violet. At least five
randomly selected images were acquired, and the average number
of stained cells was determined.

Two-dimensional motility assay
A scratch wound-healing motility assay was performed to evaluate
2-dimensional cell motility. Approximately 4 × 105 cells were
seeded in 12-well plates. After cell attachment, a plastic pipette
tip was used to scratch a gap wound in the cell layer. Floating cells
were removed, and CM was added. Images of the cell-free scratch
wound zone were obtained via an inverted microscope at 0 h, and
the areas newly occupied with cells were measured 24–48 h after
wounding. The areas were quantified with ImageJ (National
Institutes of Health, Bethesda, MD, USA).38
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Osteoclast differentiation assay
An osteoclast differentiation assay was conducted with RAW264.7
preosteoclast cells in 12-well plates. During the 6-day incubation
of preosteoclast cells in medium containing 40 ng·mL−1 RANKL,
the culture medium was exchanged once on day 4. Adherent cells
were fixed and stained with a TRAP-staining kit (Sigma-Aldrich,
Missouri, USA) according to the manufacturer’s instructions. TRAP-
positive multinucleated (>3 nuclei) cells were identified as mature
osteoclasts and counted.

Western blot analysis and mass spectrometry
Western blot analysis was conducted using a previously described
protocol.39 We used antibodies against ANXA1, β-catenin, caspase
3, Lrp5, Lrp6, Runx2, Sclerostin, Snail, TGFβ, NFATc1, cathepsin K
(all from Cell Signaling, Danvers, MA, USA), DMP1, ANXA6, CXCL5
(all from Abcam, Cambridge, MA, USA), M-CSF, MMP9, OPN, TPM4
(all from Santa Cruz, Dallas, TX, USA), WISP1 (R&D systems,
Minneapolis, MN, USA), β-actin (Sigma, Saint Louis, MO, USA),
LIMA1, Trail (both from Novus, Centennial, CO, USA), p53, CXCL1
(both from Invitrogen, Carlsbad, California, USA), and DSP
(ProteinTech, Rosemont, IL, USA). The expression levels of
Sclerostin and Lrp5 in CM were detected by ELISA (My BioSource,
San Diego, CA, USA). Proteins isolated from A5 osteocyte CM, Y4
osteocyte CM, and osteoclast control CM (RAW264.7 cells) were
analyzed with an HF Hybrid Quadrupole Orbitrap mass spectro-
meter. Among the 549 identified proteins, 49 proteins had higher
expression levels in A5 CM than in Y4 CM and control CM. Among
these proteins, 11 (p53; SPARC= osteonectin; TPM1, TPM4=
tropomyosin 1 and 4; ANXA1, ANXA6= annexin A1 and A6; FMOD
= fibromodulin; OGN= osteoglycin; DSP= desmoplakin; AHNAK
= desmoyokin; and LIMA1= LIM domain actin-binding protein 1)
were identified as potential tumor suppressors.

Plasmid transfection, RNA interference, and cytokine analysis
To overexpress Lrp5 (#115907, Addgene, Watertown, MA, USA) or
β-catenin (#31785, Addgene), A5 osteocytes or EO771 tumor cells
were transfected with plasmids consisting of the coding
sequence of the gene of interest, while a blank plasmid vector
(FLAG-HA-pcDNA3.1; Addgene) was used as the control. A5 cells
or EO771 cells were also treated with shRNA specific for Lrp5 (sc-
149050-V, Santa Cruz), Lrp6 (sc-37234-V, Santa Cruz), or Runx2
(sc-37146-V, Santa Cruz), with GFP shRNA (sc-108084, Santa Cruz)
used as the control. Cells were grown in a 10 cm plate and
transfected with β-catenin plasmids or control plasmids using
Lipofectamine®3000 (Thermo, L300015). First, plasmids/shRNAs
were diluted in 200 μL of Opti-MEM, and 2 μL of P3000 was
added for every 1 μg of DNA/shRNA. Then, 20 μL of Lipofecta-
mine 3000 was mixed with 200 μL of Opti-MEM. Transfection was
performed overnight, and stable shRNA transfectants were
selected using puromycin (Sigma). In addition to shRNAs, siRNAs
were employed for silencing of β-catenin and Trail, together with
a nonspecific negative control siRNA (Silencer Select #1, Life
Technologies; On-target Plus Nontargeting Pool, Dharmacon).
Cells were transiently transfected with siRNAs with Lipofecta-
mine RNAiMAX (Life Technologies). Twenty-four hours later, the
medium was replaced with plain culture medium. The silencing
efficiency was assessed by immunoblotting 24 h after transfec-
tion.37 We also employed a mouse XL cytokine array (R&D
Systems) and determined the levels of 111 cytokines and
chemokines in osteocyte-derived CM.

3D spheroid assay and ex vivo tissue assay
Cells were cultured in ultra-low attachment 96-well plates (S-BIO,
New Hampshire, USA) at 1 × 104 cells per well for EO771 cells and
5 × 103 cells per well for A5 cells. Cells were imaged every 24 h,
and the area was calculated with ImageJ. The usage of human
breast cancer tissues in the ex vivo tissue assay was approved by
the Indiana University Institutional Review Board. A sample (~1 g;

ER/PR+, HER2+) received from the Simon Cancer Center Tissue
Procurement Core was manually minced with a scalpel into small
fragments (0.5–0.8 mm in length). These fragments were
incubated in DMEM supplemented with 10% fetal bovine serum
and antibiotics for 1 d. Osteocyte-derived CM was then added for
2 additional days, and a change in the fragment sizes was
observed.38

FRET imaging
To evaluate the tension force at focal adhesions and the
migratory capacity of tumor cells in response to treatment with
A5 CM and Runx2 shRNA, a plasmid expressing a vinculin tension
sensor (VinTS, #26019, Addgene) was transfected. Fluorescence
lifetime images were acquired with a custom-made microscope
based on a laser scanning confocal microscope (FluoView 1000,
Olympus; Center Valley, PA, USA) using previously described
procedures.39 A picosecond pulsed laser with a wavelength of
450 nm was coupled to the laser scanning module. All signals
were recorded in the time-correlated single-photon-counting
mode with a data acquisition board (TimeHarp 260, Picoquant;
Berlin, Germany). The FRET efficiency of the TS module was
calculated based on the lifetime of the donor molecule. Of note,
an increase in the tension force of the vinculin sensor implies an
increase in the fluorescence lifetime.

Animal models
The procedures for animal experiments were approved by the
Indiana University Animal Care and Use Committee and complied
with the Guiding Principles in the Care and Use of Animals
endorsed by the American Physiological Society. C57BL/6 mice
lacking Lrp5 in osteocytes (Dmp1-Cre; Lrp5f/f) were obtained by
breeding Dmp1-Cre transgenic mice with Lrp5 floxed mice, both of
which have been described earlier.40 Mice were housed five per
cage and provided with mouse chow and water ad libitum. In the
mouse model of mammary tumors, female C57BL/6 mice
(~8 weeks; Envigo RMS, Inc., Indianapolis, IN, USA) and NOD/SCID
mice (~8 weeks; The Jackson Laboratory, Bar Harbor, ME, USA)
received subcutaneous injections of EO771 cells and MDA-MB-231
cells (3.0 × 105 cells in 50 μL of PBS), respectively, into the seventh
mammary fat pad on day 1.41 We also conducted a proof-of-
principle study in which osteocytes were injected into mammary
fat pads. This proof-of-principle model system was employed as an
early-stage evaluation of the therapeutic feasibility of osteocytes. In
the treatment groups, A5 osteocytes (1.5 × 105 cells) were
coinjected with EO771 cells or MDA-MB-231 cells on day 1, and
osteocyte-derived CM was injected into the intraperitoneal cavity
from day 2 to day 18. The animals were sacrificed on day 18, and
the weight of each tumor was measured. In the mouse model of
osteolysis, ten female C57BL/6 mice per group were injected in the
right tibia with EO771 cells (3.0 × 105 cells in 20 μL PBS) on day 1.
A5 osteocytes (1.5 × 105 cells) were coinjected with EO771 cells
into the proximal tibia on day 1. Intramuscular injection of
osteocyte-derived CM into the proximal tibia was conducted from
day 2 to day 18. EO771 cells were transfected with shRNA specific
for Lrp5, Lrp6, or Runx2. Osteocytes were transfected with shRNA
specific for Lrp5 or Lrp6 or with expression plasmids for Lrp5 or
β-catenin.
To evaluate the effects of CMs on tumor invasion, an in vivo

extravasation assay was conducted. Female C57BL/6 mice (5 mice
per group) were injected with 50 μL of fluorescently labeled
EO771 cells (1.0 × 106 cells) via the lateral tail vein. Fluorescently
labeled EO771 cells were prepared by culture with a green
fluorescent dye (#4705, Sartorius, Gottingen, Germany) for 20 min
at 37 °C. Cells were then centrifuged at 1 000 r·min−1 for 5 min to
harvest the pellet. The pellet was resuspended in PBS (placebo
group) or osteocyte-derived CM (A5 CM group). Mice were
sacrificed after 48 h for histological identification of extravasated
tumor cells in the lung.
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X-ray and MR imaging
Whole-body X-ray imaging was performed using a Faxitron
radiographic system (Faxitron X-ray Co., Tucson, AZ, USA).42

Tibial integrity was scored in a blinded manner on a scale of 0–3,
as follows: 0= normal with no indication of a tumor, 1= clear
bone boundary with slight periosteal proliferation, 2= bone
damage and moderate periosteal proliferation, and 3= severe
bone erosion.43 MR imaging was conducted with a Bruker 7T 70/
30 USR system (Bruker BioSpin Co., Billerica, MA, USA).44 We
employed the Turbo RARE sequence for high resolution
(T2-weighted imaging) with the Bruker interface (Paravision
V6.0.2).

μCT imaging and histological analysis
Tibiae were harvested for μCT imaging and histological analysis.
Microcomputed tomography was performed using a Skyscan
1172 instrument (Bruker-MicroCT, Kontich, Belgium). Using
manufacturer-provided software, scans were performed at a
pixel size of 8.99 μm, and the images were reconstructed
(nRecon v1.6.9.18) and analyzed (CTan v1.13). For histological
analysis, H&E staining was conducted as described previously,38

and immunohistochemistry was performed using a previously
described protocol.45

Statistical analysis
For cell-based experiments, three or four independent experi-
ments were conducted, and data are expressed as the mean ± S.D.
values. For animal experiments, the sample size in the mouse
model was chosen to achieve a power of 80% with a significance
level of 0.05. The primary experimental outcome was tumor
weight for the mammary fat pad experiment and the BV/TV for
the tibia experiment. The secondary experimental outcome was
tumor size for the mammary fat pad experiment and the Tb.N for
the tibia experiment. Statistical significance was evaluated using
one-way analysis of variance (ANOVA). Post hoc statistical
comparisons with control groups were performed using the
Bonferroni correction with statistical significance assumed for P <
0.05. A nonparametric Kolmogorov–Smirnov test was applied to
compare cell aspect ratios. The single and double asterisks in the
figures indicate P < 0.05 and P < 0.01, respectively.
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