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Epilepsy is caused by abnormal electrical discharges (clinically identified by

electrophysiological recording) in a specific part of the brain [originating in only one part of

the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical

hyperexcited neural network disorder. It can be investigated through the network analysis

of interictal discharges, ictal discharges, and resting-state functional connectivity.

Currently, there is an increasing interest in embedding resting-state connectivity

analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging

technologies employed to achieve brain functional networks, magnetoencephalography

(MEG) with the excellent temporal resolution is an ideal tool for estimating the

resting-state connectivity between brain regions, which can reveal network abnormalities

in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic

presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG

and the workflow of constructing source–space functional connectivity based on MEG

signals. Resting-state functional connectivity abnormalities correlate with epileptogenic

networks, which are defined by the brain regions involved in the production and

propagation of epileptic activities. This paper reviewed the evidence of altered epileptic

connectivity based on low- or high-frequency oscillations (HFOs) and the evidence

of the advantage of using simultaneous MEG and intracranial electroencephalography

(iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state

functional connectivity has the potential to predict postsurgical outcomes. In conclusion,

resting-state MEG functional connectivity has made a substantial progress toward

serving as a candidate biomarker included in epileptic presurgical evaluations.

Keywords: magnetoencephalography, intracranial electroencephalogram, epilepsy, resting-state functional

connectivity, surgical outcome

INTRODUCTION

Epilepsy is a neurological disorder that is predominantly characterized by a tendency for the
recurrent and unpredictable hypersynchronous neuronal activity that interrupts the normal brain
function (Fisher et al., 2005). Antiepileptic drug administration is the first and basal treatment
principle, but mediation does not work well for approximately one-third of epileptic patients
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who require epilepsy surgery evaluation that is aimed at localizing
the epileptogenic zone (EZ) for individual surgical operations
(Kwan et al., 2011). In current clinical practice, ictal activities
and interictal epileptiform discharges (IEDs) are widely applied
to localize the EZ (Nissen et al., 2016a; Cuello-Oderiz et al., 2018);
however, some routine examinations are incapable of capturing
ictal activities and occasionally even fail to acquire IEDs
(Feyissa et al., 2017). Moreover, epileptic patients suffer from
persistent seizures after the surgical removal of the EZ, potentially
suggesting that the EZ in these patients is insufficiently identified
and removed (Englot et al., 2015; Jobst and Cascino, 2015).
Therefore, new approaches and biomarkers that can be integrated
into clinical decision-making are urgent.

Epilepsy has been treated as an archetypical neural network
disorder (Kramer and Cash, 2012), with specific disruptions
in networks involving one or both hemispheres; consequently,
the concept of epilepsy has changed from “foci” to “network”
(van Diessen et al., 2013). Network analysis has been widely
utilized to gain an insight into the dynamic complexity of
refractory epilepsy, which provides a framework to describe
seizure progress, including preseizure, seizure initiation, spread,
and termination (Kramer et al., 2008; Schindler et al., 2008),
and even interictal information (Chavez et al., 2010; Horstmann
et al., 2010; Liao et al., 2010; van Dellen et al., 2012b). Recent
studies have reported altered networks reflecting neuropathology
in epilepsy patients with focal epilepsy (Coito et al., 2016a,b; van
Diessen et al., 2014; Englot et al., 2016) and generalized epilepsy
(Chavez et al., 2010; Zhang et al., 2011; Elshahabi et al., 2015;
Niso et al., 2015). Resting-state networks are one of the common
approaches in seizure surgical clinical evaluation to uncover the
intrinsic interactions between brain areas thatmay affect epileptic
networks, whose main advantage is that they can be estimated
using interictal activity without the need to wait for a seizure to
occur (Hsiao et al., 2015; Krishnan et al., 2015; Li Hegner et al.,
2018; Leng et al., 2020).

Resting-state functional connectivity is attracting an
increasing amount of attention as a tool for the surgical
evaluation of epileptic patients. Advances in neuroimaging have
generated multimodal technologies to analyze the resting-state
functional networks (Figure 1). Of these imaging modalities,
functional magnetic resonance imaging (fMRI) has been widely
employed to investigate the functional connectivity during the
resting state (Biswal et al., 1995; Palacios et al., 2013; Tracy and
Doucet, 2015; Chakraborty et al., 2020; Courtiol et al., 2020).
However, fMRI is an indirect measure of neural activity with a
delay that detects the changes in blood oxygenation using blood-
oxygen-level-dependent (BOLD) contrast (Scarapicchia et al.,
2017). Similar to fMRI, positron emission tomography (PET)
measures the blood flow by averaging the measurements with a
low temporal resolution over a few minutes. Functional near-
infrared spectroscopy (fNIRS) has limited spatial and temporal
resolution. Electrophysiological neuroimaging modalities
include scalp electroencephalography (EEG), intracranial
electroencephalography (iEEG), and magnetoencephalography
(MEG). Scalp EEGmeasures differences in voltage; its recordings
depend heavily on the selection of the reference channel, and
its activities are vulnerable to skull impedance. Unlike scalp

FIGURE 1 | Temporal resolutions and spatial resolutions of different modalities

commonly employed. EEG, electroencephalography; fMRI, functional MRI;

fNIRS, functional near-infrared spectroscopy; iEEG, intracranial

electroencephalography; MEG, magnetoencephalography; PET, positron

emission tomography. Adapted from Olivi (2011).

EEG, MEG performs direct measures of brain activity at a
specific point, and its measures are reference-free. In terms
of localization accuracy, both MEG and scalp high-density
EEG, through magnetic and electric source imaging, provide
a good source localization of epileptogenic foci but with
different sensitivities (Carrette and Stefan, 2019, Tamilia et al.,
2019), and their combination showed complementarity due
to the sensitivity of EEG and MEG for radial and tangential
sources in the brain (Carrette and Stefan, 2019). Different
from MEG and scalp EEG, long-term iEEG monitoring,
mainly including electrocorticography (ECoG) and stereotactic
electroencephalography (sEEG), is not only invasive and costly
but also limited to a spatial sampling of only a portion of brain
areas (Hader et al., 2013). MEG is a non-invasive technique
that provides direct access to the entire brain activity with
submillisecond temporal resolution and millimeter spatial
resolution (Baillet, 2017), which makes it an ideal tool for
investigating the resting-state functional connectivity in epilepsy.

BASIC PRINCIPLES OF MEG MEASURING
BRAIN ACTIVITIES

MEG measures the magnetic fields that are mainly generated
by synchronous postsynaptic (intracellular) currents in the
pyramidal neurons of the cerebral cortex (Hämäläinen et al.,
1993). Some cortical pyramidal neurons are spatially aligned and
perpendicular to the cortical surface, with the soma at the basal
cortex and the apical dendrites at the surface of the cortex, which
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FIGURE 2 | A simple overview of MEG and its measures and the pipeline to obtain the resting-state functional connectivity. (A) The subject sits on the MEG chair for

the whole measurement process, whose head position corresponds to the sensors arranged in helmet-like arrays. (B) Some cortical pyramidal neurons are spatially

aligned and perpendicular to the cortical surface. When these pyramidal neurons are excited, the apical dendritic membrane becomes transiently depolarized, which

consequently triggers the generation of a current that flows from the apical dendrites to the soma within the intracellular space (primary current), and the magnetic

field-generated intracellular currents are the sources of the MEG. (C) Pipeline to obtain the resting-state functional connectivity. Brain activities characterize several

oscillatory bands (delta, theta, alpha, beta, gamma, and HFO), and each frequency-band signal (e.g., theta-band shown in red in the figure) of MEG sensor data is

source-localized to parcellation atlases coregistered with anatomical MRI. Cortical regions with significant activity were considered ROIs (A,B). The time-series activity

of the ROI can be extracted using a beamformer and fed in the connectivity analysis to obtain the functional connectivity in the source space.

are the sources of magnetic fields that could be detected by MEG.
When these pyramidal neurons are excited, the apical dendritic
membrane becomes transiently depolarized, which consequently
triggers the generation of a current that flows from the apical
dendrites to the soma within the intracellular space (primary
current), as well as the extracellular volume current that flows
from the soma and basal dendrites to the apical dendrites.
MEG signals are believed to arise from intracellular currents
(Figures 2A,B).

Neuronal magnetic fields are considerably weaker by∼10–100
million times Earth’s magnetic field (Hämäläinen et al., 1993),
which highlights the need for MEG instrumentation with very
sensitive sensors and the noise reduction method. In modern
MEG systems, weaker fields are recorded using superconducting
quantum interference devices (SQUIDs) (Kleiner et al., 2004),
which are immersed in a liquid helium cooling unit set to
∼-269◦C that is highly sensitive to extremely subtle changes
in the electromagnetic fields generated by neurons located a
few centimeters from the sensors. In terms of noise reduction,
in addition to the magnetically shielded room and differential
(gradiometric) sensors that shield the MEG system from
outside noise (Parkkonen, 2010), signal processing methods can
effectively reduce noise. For example, signal space separation
(SSS) decomposes multichannel MEG data based on the physical
properties of magnetic fields to remove external disturbances
and movement artifacts (Taulu et al., 2004). The signal space
projection (SSP) uses the orthogonal projection method in the

multidimensional signal space to remove the artifact associated
with the spatial pattern of the magnetic field (Ramírez et al.,
2011). Independent component analysis (ICA) is primarily
employed to remove artifacts, such as blinking, eye muscle
movement, facial muscle artifacts, and cardiac artifacts, but with
poor resolution of highly correlated brain sources due to its
fundamental statistical independence (Ikeda and Toyama, 2000;
Iversen and Makeig, 2014).

RESTING-STATE FUNCTIONAL
CONNECTIVITY BASED ON MEG SIGNALS

Resting-state functional connectivity refers to the statistical
associations or temporal correlations between two or more
anatomically distinct brain regions without imposed stimuli.
Although there is no established standard as to which
method, modality, and analysis variant are optimal for MEG-
derived, resting-state, functional connectivity, recent studies
revealed methodological limitations by comparing the test–
retest reliability (Colclough et al., 2016; Garcés et al., 2016),
which provides a platform for inferring the connectivity of the
resting state.

To calculate the resting-state functional connectivity, the
activity of the cortical source responsible for MEG sensor
signals should be estimated (Figure 2C). Each MEG sensor
measures the signals generated by all brain sources that are

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 649074

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. Resting-State Functional Connectivity Based MEG

active at a given time but with different weights due to the
volume conduction effect (Winter et al., 2007). Given that the
same connectivity information can be generated by different
configurations of interacting sources, it is difficult to interpret the
underlying functional connectivity based onMEG sensor signals.
In addition, the head of the subject is not fixed relative to MEG
sensor locations, which may cause the same MEG sensors from
picking up signals from different regions of the brain for the same
subject between two different runs of acquisition and different
subjects with different head shapes, sizes, and positions under
the helmet.

It is important to choose a suitable method for reconstructing
the activity of brain regions fromMEG sensor signals (Tadel et al.,
2011; Xiang et al., 2014; Baillet, 2017; van Mierlo et al., 2019),
which could be generally divided into two steps. In the first step,
head modeling (or forward modeling) provides the mathematical
relationship between the magnetic field of MEG sensors and the
brain currents in a subject’s head. The head model depends on
the shape and conductivity of the head and can typically be
constructed from structural MRI scans using methods ranging
from a single sphere (Baillet et al., 2002) to overlapping spheres
(Huang et al., 1999) and boundary or finite element methods
(Darvas et al., 2004). Because the propagation of magnetic fields
is not affected by electric conductance, the simple spherical head
model often works quite well for the MEG forward model (de
Munck et al., 2012; Hämäläinen et al., 2020).

In the second step, source modeling imaging depends on the
head model to estimate neuronal activity from the MEG. Source
model estimation of brain activity is typically obtained using
two main approaches: (1) dipole modeling, where the position
and amplitude of one to a few equivalent current dipoles (ECDs)
are estimated over relatively short time windows (Leahy et al.,
1998); and (2) distributed source modeling (DSM), which is
aimed at estimating the activity in many sources in the brain
by discretizing the brain (Baillet, 2017). In the ECD model,
the sources of the MEG signals are assumed to consist of focal
activations (Hämäläinen et al., 1993) and can be determined
using non-linear optimization algorithms (Huang et al., 1998)
or subspace scanning techniques (Mosher et al., 1992). ECDs
are suitable and traditionally utilized in a clinic for epileptic
focal localization (Bagic et al., 2011). Compared with ECDs,
DSMmay be more appropriate for source estimation when MEG
signals are generated in a widespread manner (Hämäläinen and
Ilmoniemi, 1994). The DSM approaches mainly include the
weighted minimum norm estimate (MNE) (Hämäläinen and
Ilmoniemi, 1994), standardized low-resolution electromagnetic
tomography (sLORETA) (Pascual-Marqui, 2002), dynamic
statistical parametric mapping (dSPM) (Dale and Sereno,
1993), maximum entropy on the mean (MEM) (Amblard
et al., 2004), and beamforming and scanning methods (Liuzzi
et al., 2017; Dimitriadis et al., 2018), each of which differs in
their assumptions about cortical generators. The spatial fidelity
of these approaches has been compared (Samuelsson et al.,
2021). Although there is no optimal choice for the inverse
solution, it is believed that the fidelity depends on the spatial
and synchronization profiles of the interacting cortical sources
(Hincapié et al., 2017).

Currently, although a large number of source–space
connectivity estimation methods for MEG are available, there
is no consensus on which functional connectivity index is most
suitable for MEG resting-state studies. According to the logic
of how to define the statistical dependence of the estimation
source, connectivity methods can be divided into phase
synchronization-based measures, coherence-based measures,
generalized synchronization-based measures, and Granger
causality-based measures (Niso et al., 2013). By comparing the
consistency and reproducibility of some commonly employed
network estimation metrics, Colclough et al. (2016) found that
amplitude envelope correlation (AEC) and partial correlation
are the most consistent methods, while the poorly consistent
methods are phase-based or coherence-based metrics such as
the phase lag index (PLI) or the imaginary part of coherency.
Envelope correlation metrics for the resting-state MEG
functional connectivity have also been recommended by Garcés
et al. (2016) and have been widely applied in the connectivity
network analysis (Brookes et al., 2011; Hipp et al., 2012;
Dimitriadis et al., 2018; Aydin et al., 2020; Routley et al., 2020).
The metrics, including coherence (Coh), imaginary coherence
(imCoh), pairwise phase consistency (PPC), phase-locking value
(PLV), PLI, weighted phase lag index (wPLI), and weighted phase
lag index debiased (wPLI2), were compared in a recent study to
test the reliability of resting-state MEG functional connectivity
in schizophrenia (SZ). The article indicated that the reliability
of these metrics varied greatly depending on the frequency
band, network, and participant group examined (Candelaria-
Cook and Stephen, 2020). Although there is no uniform
standard for MEG resting-state functional connectivity, some
identified factors should be considered: metrics (Colclough et al.,
2016), frequency band (Meng and Xiang, 2016; Marquetand
et al., 2019), and measurement duration (Marquetand et al.,
2019).

In practice, to facilitate the source connectivity analysis
of MEG signals, several open-source applications are
available to the user (Table 1), for example, Brainstorm
(Tadel et al., 2011; Niso et al., 2015, 2019), eConnectome
(He et al., 2011), FieldTrip (Oostenveld et al., 2011), MNE
(Gramfort et al., 2014), and SPM (Litvak et al., 2011),
which provide a platform for the standardization of the
most common analysis processes and reduce sharing efforts
across MEG communities.

RESTING-STATE MEG FUNCTIONAL
CONNECTIVITY ABNORMALITIES
INDICATE EPILEPTOGENIC NETWORKS

In recent years, several studies have shown that the network
connectivity of the resting state in epilepsy has changed but with
inconsistent results. These differences are probably attributed to
the frequency band selected and the metric chosen to reconstruct
the functional connectivity, as previously described, the different
types of epilepsy investigated, and the different drug treatments
and seizure rates in a clinic. Previous studies have reported that
the resting-state functional connectivity is frequency-dependent
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TABLE 1 | Connectivity metrics utilized by open-source applications.

Software Connectivity metrics used

Brainstorm Amplitude envelope correlation

Bivariate granger causality

Correlation

Coherence

Phase locking value

Phase transfer entropy

eConnectome Adaptive directed transfer function

Directed transfer function

FieldTrip Coherence

Directed transfer function

Granger causality

Imaginary part of coherency

Partial directed coherence

Phase locking value

Phase slope index

MNE Coherence

Imaginary coherence

Phase lag index

Phase locking value

Pairwise phase consistency

Weighted phase lag index

SPM Dynamic causal modeling

when EEG and fMRI are applied (Samogin et al., 2020; Xia et al.,
2020) and that resting-state functional connectivity derived from
MEG exhibits significant changes with age from childhood to
adolescence (Meng and Xiang, 2016). Moreover, the low- and
high-frequency bands may represent different seizure networks
(Tenney et al., 2014). Thus, we will focus on the evidence
of functional connectivity in low- and high-frequency band
abnormalities in epilepsy.

The activity of brain regions is characterized by several
oscillatory bands with frequencies ranging from∼0.05 to 500Hz
(Buzsáki and Draguhn, 2004). As noted, MEG has shown
advantages in connectivity metrics, which can exploit the rich
frequency content of the MEG signal (Xiang et al., 2014; Baillet,
2017) by assessing the functional connectivity of oscillatory
activities. The frequency-specific functional connectivity related
to the different properties of the physical architecture of
neuronal networks and to the speed of neuronal communication
limited by axon conduction and synaptic delays should be
considered. Based on this basic principle, the resting-state MEG
functional connectivity derived from multifrequency oscillations
is summarized in Table 2 and described in the next section.

HIGH-FREQUENCY OSCILLATIONS (HFOS)

Brain activities consisting of at least four clearly continuous
oscillations with frequencies >80Hz, compared with the
background, are referred to as high-frequency oscillations
(HFOs) (Jacobs et al., 2012; von Ellenrieder et al., 2016; Tamilia
et al., 2017). The detection of HFOs is conventionally performed
in an invasive intracranial EEG from patients with drug-resistant
epilepsy (Akiyama et al., 2005; Jirsch et al., 2006; Urrestarazu

et al., 2006; Fuertinger et al., 2016; von Ellenrieder et al., 2016;
Qi et al., 2020; Ren et al., 2020; Zhao et al., 2020), whereas recent
advances in MEG have shown promising results for non-invasive
detection of HFOs in epilepsy patients (Miao et al., 2014; Nissen
et al., 2016b; van Klink et al., 2016; von Ellenrieder et al., 2016;
Meng, 2019; Yin et al., 2019). According to previous studies
(Bragin et al., 1999; Usui et al., 2010, 2015; Brázdil et al., 2017),
HFOs are further subclassified into three groups: ripples (80–
250Hz), fast ripples (250–500Hz), and a very-high-frequency
oscillation (VHFO) band (500–1,000Hz) (Meng, 2019).

Proof of the validity of higher HFO rates within the seizure-
onset zone (SOZ) has proposed HFOs as a promising biomarker
of localization of the EZ (Thomschewski et al., 2019), which
is attracting an increasing number of researchers to investigate
HFOs in epilepsy with the goal of providing helpful information
for a comprehensive preoperative evaluation. In general, HFOs
are considered to be more focal and specific for identifying
the SOZ than classical epileptic spikes (Jacobs et al., 2008,
2012; Andrade-Valença et al., 2012). Moreover, in regard to the
identification of the SOZ, ripples have higher sensitivity but lower
specificity than FR (Andrade-Valença et al., 2012). It seems that
ripples and FR are generated by different pathophysiological
mechanisms: Ripples are likely generated by synchronous firing
coordinated by inhibitory currents (Schönberger et al., 2014),
whereas FR may reflect the in-phase and out-of-phase firing
of different pyramidal cell clusters (Demont-Guignard et al.,
2012). Better results regarding the outcome prediction were
reported for VHFO than for ripples and FR (Brázdil et al., 2017).
However, there are still challenges regarding HFOs that need to
be carefully addressed. One such issue is the detection of HFOs
that are characterized by varied morphometry (Zijlmans et al.,
2017), which should be addressed by exploiting an appropriate
method to precisely detect HFOs (Ren et al., 2018; Zhao
et al., 2020), considering the time-consuming and non-objective
visual marking of HFOs. Another issue involves distinguishing
pathologic HFOs from physiologic HFOs, representing a
fundamental challenge for evaluating the effectiveness of HFOs as
an epileptic biomarker (Thomschewski et al., 2019). Physiologic
HFOs in the hippocampus and the occipital lobe of humans
are a common phenomenon (Melani et al., 2013). Various
analytical methods based on amplitude, frequency, and duration
have been developed to separate HFOs (Cimbalnik et al., 2018;
Thomschewski et al., 2019). Recently, Liu et al. (2018) identified
a waveform morphological difference between pathologic HFOs
and physiologic HFOs. Specifically, pathologic HFO waveforms
are highly similar to those localized within the SOZs, whereas
physiologic HFOs in random waveforms belong to the functional
regions. An oddball cognitive task can be employed to further
facilitate the discrimination of HFOs generated by epileptic and
non-epileptic hippocampi (Pail et al., 2020).

A large number of studies have focused on the biomarker
value of HFOs in the localization of the EZ (Zijlmans et al., 2012;
Tamilia et al., 2017, 2020; Thomschewski et al., 2019; Velmurugan
et al., 2019), whereas only a few studies have investigated the
functional connectivity in HFOs using the resting-state MEG
signals. Nissen et al. (2016b) recorded the resting-state MEG
signals from 12 patients with refractory epilepsy and reported
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TABLE 2 | Resting-state MEG functional connectivity based on multifrequency signals recorded from epilepsy.

References Population Frequency bands analyzed Connectivity

measure

Main findings

Aydin et al. (2020) Focal epilepsy Theta (4–8Hz), alpha (8–13Hz), and beta

(13–26Hz) bands

Amplitude envelope

correlation

Stronger functional connectivity in alpha

band for non-seizure-free patients than

seizure-free patients of post-surgical

Douw et al. (2010) Gliomas with and without

seizures

Delta (0.5–4Hz), theta (4–8Hz), lower

alpha (8–10Hz), upper alpha (10–13Hz),

beta (13–30Hz), and gamma (30–45Hz)

Phase lag index Increased functional connectivity in the

theta band related to higher seizure

frequency in gliomas.

Englot et al. (2015) Focal epilepsy

Healthy controls

Delta (1–4Hz), theta (4–8Hz), alpha

(8–12Hz), beta (12–30Hz), and gamma

(30–55Hz)

Imaginary part of

coherency

Focal epilepsy vs. healthy controls:

decreased connectivity in delta, theta,

alpha, and beta bands

Hsiao et al. (2015) Temporal lobe epilepsy

(TLE)

Healthy controls

Delta (1–4Hz), theta (4–8Hz), alpha

(8–13Hz), beta (13–25Hz), and gamma

(25–40Hz)

Imaginary part of

coherency

TLE vs. healthy controls: increased

functional connectivity in delta and theta

bands

Jeong et al. (2014) Focal cortical dysplasia

(FCD)

Healthy controls

Theta (4–7Hz), alpha (8–12Hz), beta

(13–30Hz), and gamma (31–45Hz)

bands

Mutual information FCD vs. healthy controls: increased

connectivity in beta and gamma bands;

Leng et al. (2020) Cingulate gyrus epilepsy

Healthy controls

Alpha (8–13Hz), beta (14–30Hz), and

gamma (31–80Hz) bands

Correlation Cingulate gyrus epilepsy vs. healthy

controls: increased connectivity in alpha,

beta bands, especially in gamma band

Li Hegner et al.

(2018)

Focal and generalized

epilepsy

Healthy controls

Delta, theta, alpha, beta1, beta2, gamma Imaginary part of

coherency

Focal epilepsy vs healthy controls:

increased connectivity in theta, alpha

and beta1 bands;

Generalized epilepsy vs healthy controls:

increased connectivity in theta, alpha,

beta1, and gamma bands

Martire et al. (2020) Temporal lobe epilepsy

(TL) and

temporal-plus(TL+)

epilepsy

Theta, alpha, beta and low gamma Phase lag index TL vs. TL+: significant different

connectivity of bitemporal and

frontotemporal in the theta, alpha, and

beta bands

Niso et al. (2015) Focal and generalized

epilepsy

Healthy controls

Delta (0.1–4Hz), theta (4–8Hz) Hz, alpha

(8–12Hz) Hz, beta1 (12–20Hz), beta2

(20–28Hz), and low gamma (28–40Hz)

Phase locking value Focal epilepsy vs healthy controls:

increased connectivity in delta, theta,

and beta1 bands;

Generalized epilepsy vs healthy controls:

increased connectivity in delta, theta,

alpha, beta1, beta2, and

gamma bands

Pourmotabbed et al.

(2020)

Focal epilepsy with left- or

right-hemisphere

Healthy controls

Delta (0.5–3Hz), theta (4–7Hz) Hz, alpha

(8–13Hz) Hz, low beta (13–20Hz), high

beta (20–30Hz), and low gamma

(30–50Hz)

Phase lag index Focal epilepsy with right-hemisphere vs

healthy controls: increased connectivity in

theta band

Routley et al. (2020) Juvenile myoclonic

epilepsy (JME)

Healthy controls

Delta (1–4Hz), theta (4–8Hz), alpha

(8–13Hz), beta (13–30Hz), and gamma

(40–60Hz)

Correlation JME vs. healthy controls: increased

connectivity in the theta band and

decreased connectivity in the beta band

van Dellen et al.

(2012b)

Epilepsy with

low-grade(LGG),

high-grade glioma (HGG)

and with non-glial lesions

(NGL)

Healthy controls

Delta (0.5–4Hz), theta (4–8Hz), lower

alpha (8–10Hz), upper alpha (10–13Hz),

beta (13–30Hz), lower gamma

(30–45Hz) and higher gamma (55–80Hz)

Phase lag index LGG (NGL) vs. healthy controls:

decreased connectivity in theta band

van Dellen et al.

(2012a)

Lesional epilepsy Delta (0.5–4Hz), theta (4–8Hz), lower

alpha (8–10Hz), upper alpha (10–13Hz),

beta (13–30Hz), and lower gamma

bands (30–48Hz)

Phase lag index Increased functional connectivity in the

lower alpha band correlated with

increased seizure frequency in regions

where lesions were located.

Nissen et al. (2016b) Focal epilepsy Delta (0.5–4Hz), theta (4–8Hz), lower

alpha (8–10Hz), upper alpha (10–13Hz),

beta (13–30Hz), gamma (30–48Hz),

broadband (0.5–48Hz), and HFO

(80–250Hz) bands

Phase lag index Concordance between HFO and spike

sources

(Continued)
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TABLE 2 | Continued

References Population Frequency bands analyzed Connectivity

measure

Main findings

Meng (2019) Epilepsy

Healthy controls

Ripple (80–250Hz), fast ripples (FRs,

250–500Hz), and very high frequency

oscillations (VHFO, 500–1,000Hz)

Phase lag index Epilepsy vs. healthy controls: higher

mean functional connectivity in the ripple

and FRs bands;

Mean functional connectivity in the ripple

and VHFO bands positively correlated

with the duration of epilepsy

Yin et al. (2020) Insular epilepsy

Healthy controls

Ripples (80–250Hz) Correlation and

Granger causality

Insular epilepsy vs. healthy controls:

altered effective connectivity in interictal

HFO

FIGURE 3 | Functional connectivity networks based on HFOs from a healthy control and an epileptic patient. Altered connectivity patterns in the ripple and FR bands

were found in epileptic patients. Arrows point to the significantly altered regions between epileptic patients and healthy controls. Inhibitory connections and excitatory

connections are shown as blue lines and red lines, respectively. Adapted from Meng (2019).

the enhanced functional connectivity in HFOs in the affected
hemisphere compared to the non-affected hemisphere. However,
Nissen et al. (2016b) analyzed HFOs in virtual MEG electrodes
belonging to the sensor lever, which may include background
noise. Using the accumulated source imaging method, Meng
(2019) sourced HFO activities, reconstructed the brain network
modulated by HFOs, and revealed that the brain networks
of epileptic patients displayed altered patterns compared to
those of healthy controls, especially within the ripple and FR
bands (Figure 3). A recent study by Yin et al. (2020) indicated
that patients with insular epilepsy showed an altered effective
connectivity network in HFOs recorded from the resting-state
MEG in contrast to healthy subjects.

LOW-FREQUENCY SIGNALS

Brain rhythms (<80Hz) can be divided into five types: delta band
(0.1–4Hz), theta band (4–8Hz), alpha band (8–12Hz), beta band

(12–30Hz), and gamma band (30–80Hz), which are referred
to as “low-frequency signals” relative to HFOs (Xiang et al.,
2014; Meng, 2019). Each type represents a different meaning
in the neural system; for example, the delta band predominates
during slow, deep, dreamless sleep, or pathological states during
wakefulness. The theta and alpha bands are functions of arousal,
attention, working memory, and long-range interactions (Palva
and Palva, 2011). During the local stimulus or saliency process,
focal network activity will involve more beta and gamma bands
(von Stein and Sarnthein, 2000). Connectivity analysis based on
MEG signals at different frequency bands could reveal different
resting-state patterns (Brookes et al., 2011; Hillebrand et al.,
2012), which has the potential to provide additional information
for the preoperative evaluation of epilepsy and link specific
patterns to specific forms of epilepsy. For example, Hillebrand
et al. (2012) performed source-based analysis fromMEG data for
13 healthy participants using a PLI estimator. They revealed for
the first time the frequency-dependent functional connectivity
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within the resting-state networks across the cortex: Alpha-
band connectivity and beta band connectivity were confined
to posterior areas and sensorimotor areas, respectively, while
gamma band connectivity was in a more dispersed pattern.

Altered functional connectivity derived from the resting-
state MEG was observed in both focal epilepsy patients and
generalized epilepsy patients. Some studies have reported that
increased resting-state connectivity correlated with epilepsy.
Resting-state functional connectivity based on beta and gamma
frequency bands in focal cortical dysplasia (FCD) patients is
stronger than that of healthy controls (Jeong et al., 2014).
One study by Hsiao et al. (2015) indicated that the resting-
state functional connectivity within the default mode network
at the delta and theta bands was reinforced in temporal lobe
epilepsy. Li Hegner et al. (2018) compared MEG-based resting-
state functional connectivity among focal epilepsy, generalized
epilepsy, and healthy controls. Compared with healthy subjects,
they found that focal epilepsy showed an increased connectivity
within the theta, alpha, and beta1 bands over bilateral temporal,
parietal, insula, and frontal regions and that generalized epilepsy
showed an increased connectivity in the theta, alpha, beta1,
and gamma bands over widespread bilateral temporal, parietal,
insula, and medio-frontal regions. Moreover, beta2- and gamma-
band functional MEG connectivity in bilateral mesio-frontal and
motor regions was increased for generalized epilepsy patients
compared with focal epilepsy patients (Li Hegner et al., 2018).
In addition, an increased functional connectivity in the alpha
band correlated with an increased seizure frequency in regions
where lesions existed. In a recent study by Aydin et al. (2020), the
functional connectivity in the alpha band was stronger for non-
seizure-free patients than for seizure-free patients after surgery.

However, some studies have reported the decreased resting-
state connectivity in epilepsy patients. Using the metric of
the imaginary part of coherency to calculate the functional
connectivity, Englot et al. (2015) found that focal epilepsy showed
a decreased connectivity in delta, theta, alpha, and beta bands
compared to the healthy controls. The increased alpha-band
functional connectivity in the MEG resting-state network for
low-grade glioma patients after resective surgery was suggested
to be related to improved cognitive performance (van Dellen
et al., 2012a). A recent study by Leng et al. (2020) investigated the
functional connectivity of the default mode network in cingulate
gyrus epilepsy using the resting-state MEG signals, analyzed
multifrequency signals, and revealed that cingulate gyrus epilepsy
has enhanced functional connectivity in alpha, beta, and gamma
bands between the angular gyrus and the posterior cingulate
cortex (PCC) of the left hemisphere compared to healthy
controls. Moreover, the dominant functional connectivity in
the gamma band over that in the alpha and beta bands
indicates the significant contribution of the gamma band to
the default mode network in cingulate gyrus epilepsy. Since
the PCC is considered to be the only node in the default
mode network that directly interacts with almost all other
nodes (Fransson and Marrelec, 2008), the prominent functional
connectivity in the gamma band between the PCC and left
angular gyrus may be a potential biomarker for cingulate
gyrus epilepsy.

In addition, complex patterns of increased and decreased
connectivity were also reported in epilepsy. Juvenile myoclonic
epilepsy (JME) is one of the most common epilepsy syndromes
and is considered a brain network disorder with predominantly
frontal (Chowdhury et al., 2014) but also parieto-occipital
and subcortical involvement (Gotman et al., 2005). Routley
et al. (2020) investigated the differences in the resting-state
MEG functional connectivity using the AEC metric between
patients with JME and healthy controls and found an increased
connectivity in posterior theta and alpha bands and a decreased
beta-band connectivity in sensorimotor brain regions in JME
patients (Figure 4). The alterations in connectivity were similar
to previous reports from EEG recordings in JME patients with
an increased alpha-band connectivity and a decreased beta-
band connectivity (Clemens et al., 2011). Theta and alpha bands
have the function of attention and working memory, while
patients with JME show cognitive dysfunction in attention and
working memory (Pascalicchio et al., 2007). In addition, beta-
band oscillation is considered to be involved in sensorimotor
regulation (Engel and Fries, 2010). Routley et al. (2020) further
suggested that the altered resting-state MEG connectivity may be
the resting neurophysiological hallmark of JME.

In summary, the different changes reported here may
be attributed to clinical differences, types of epilepsy, and
methodology. Although the aim of linking specific-frequency
patterns to specific types of epilepsy based on the MEG
resting-state functional connectivity is a major challenge, it
represents a promising method in the future and provides
additional information. The metric and procedure used to
calculate the functional connectivity need a unified standard,
and more added information should be obtained by combining
multimodal approaches.

MULTIMODAL INTEGRATION OF MEG AND
IEEG

As previously described, the resting-state functional connectivity
in the multifrequency band can be investigated by multimodal
neuroimaging approaches. Integration of different technologies
may provide complementary information to more precisely
characterize epileptogenic networks. As a “gold standard,” iEEG,
including ECoG and sEEG, provides the opportunity to directly
detect activities of the deep regions of the brain but is limited
to only a portion of brain areas. Accumulating studies have
demonstrated that MEG provides a broad whole-head view
of brain activities that further guide implantation sites for
intracranial recordings (Knowlton et al., 2006; Grova et al., 2016).
Therefore, the integration of MEG and iEEG approaches with
the advantage of obtaining local and global activities of the
brain should be considered to study the resting-state functional
connectivity that supports clinical decision-making.

The correlation between MEG and iEEG performed on
separate recordings in presurgical evaluation has been reported
in previous studies (Oishi et al., 2002, 2006; Knowlton et al.,
2009; Bouet et al., 2012; Almubarak et al., 2014; Grova et al.,
2016; Murakami et al., 2016), and concordant evaluation
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FIGURE 4 | Comparison between juvenile myoclonic epilepsy (JME) patients and healthy controls for multifrequency bands with corrected t-tests. Compared with

healthy controls, JME showed an increased connectivity in the theta band (4–8Hz) (shown in red lines) and a decreased connectivity in the beta band (13–30Hz)

(shown in blue lines). However, connectivity in the frequency bands of delta (1–4Hz) and alpha (8–13Hz) did not show a significant difference with corrected t-test

between JME and controls. Adapted from Routley et al. (2020).

based on MEG and iEEG is associated with more favorable
surgical outcomes than inconsistent evaluation. A comparison
of networks based on oscillatory activities and spikes in MEG
and iEEG was made, indicating the presence of overlapping but
different networks for oscillations and spikes, which provide
complementary information for presurgical assessment (Jmail
et al., 2016).

In addition to considering the correlation between MEG and
iEEG data, another crucial method is to verify the technical
and clinical aspects applied to simultaneous MEG and iEEG
recordings (Santiuste et al., 2008; Dubarry et al., 2014; Gavaret
et al., 2016; Badier et al., 2017). Moreover, simultaneous MEG
and iEEG recordings increase the sensitivity for localizing the
epileptogenic region (Kakisaka et al., 2012; Vivekananda et al.,
2020). This approach offers unique opportunities for cognitive
neurophysiology research. For instance, Crespo-García et al.
(2016) demonstrated a negative correlation between slow-theta
activities in the hippocampus and spatial memory accuracy using
simultaneous MEG and iEEG methods. Therefore, it is expected
that the resting-state connectivity analysis will benefit from
multimodal simultaneous recordings of MEG and iEEG signals
at multiple spatial scales in the future.

MEG RESTING-STATE CONNECTIVITY:
POTENTIAL VALUE AS A PREDICTOR OF
SURGICAL OUTCOME

Seizure-free status is the evaluation criterion for the quality of life
of patients with epilepsy. Although advancements in localizing
the SOZ assist in clinical decision-making, approximately one-
third of patients continue to experience postoperative seizures
(Malmgren and Edelvik, 2017). Although the challenge is mainly
attributed to heterogeneous patients and the complexity of brain
network interactions, a correlation between the surgical outcome
and the resting-state functional connectivity has been reported,
as suggested mostly using fMRI (Tracy and Doucet, 2015; Englot

et al., 2016; He et al., 2017; Morgan et al., 2019; Pressl et al., 2019).
As a neuroimaging technology with the advantage of high spatial
and temporal resolution, will MEG resting-state connectivity be
a candidate predictor of surgical outcome in epilepsy?

The MEG resting-state connectivity reconstructed from the
low-frequency oscillations has been assumed to be associated
with surgical outcome. Using the metric of the imaginary part
of the coherence on the resting-state MEG signals, Englot et al.
(2015) demonstrated that patients with increased connectivity
in the alpha band within the resected region were more likely
to have favorable outcomes. However, inconsistent results have
reported a connectivity in the alpha band between the brain
regions where IEDs are generated and that the remainder of
the cortex was weaker for seizure-free patients but stronger for
non-seizure-free patients compared with the connectivity in the
alpha band between the corresponding contralateral homologous
region and the remainder of the cortex (Aydin et al., 2020). One
possible reason for this finding involves the different metrics
selected, i.e., imaginary part of the coherence and AECs, to
calculate the resting-state functional connectivity. Several MEG
studies have investigated the resting-state connectivity based on
HFO signals (Nissen et al., 2016b; Meng, 2019; Yin et al., 2020)
without investigating the correlation between HFO connectivity
and postoperative outcomes. However, an increased directed
connectivity in the ripple band was found in the resected
area of patients with good postoperative outcomes using ECoG
(Zweiphenning et al., 2019).

MEG network hubs, namely, regions with high network
connectivity, are associated with the surgical outcome. Nissen
et al. (2017) investigated whether MEG network hubs overlapped
more with the resection area in seizure-free patients and found
that hubs were localized within the area later resected in
nine of 14 seizure-free patients and in none of eight patients
who were not seizure-free. They subsequently investigated
whether this overlap is distinct between seizure-free patients and
non-seizure-free patients after surgery but found no significant
difference in the overlap between the two surgery outcomes
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(Nissen et al., 2018). Moreover, a recent study investigated MEG
network hubs and their removal in a cohort of 31 patients
with refractory focal epilepsy and reported that seizure-free
patients had more network hubs surgically removed than non-
seizure-free patients (Ramaraju et al., 2020), which suggests that
removing MEG network hubs may be a method for improving
surgical outcomes. As a result, MEG resting-state connectivity
should be considered a potential predictor of surgical outcome,
which would be added to the presurgical evaluation of epilepsy.

MEG RESTING-STATE CONNECTIVITY IN
EYES-CLOSED AND EYES-OPEN STATES

Considering that the subjects requested to keep their eyes closed
(EC) or eyes open (EO) during the resting-state MEG scan, it
is important to know whether the choice of keeping EC or EO
affects the resting-state functional connectivity. Previous studies
have demonstrated significant differences in the resting-state
connectivity patterns between EC conditions and EO conditions
using fMRI (Yan et al., 2009; van Dijk et al., 2010; Liu et al., 2013;
Patriat et al., 2013; Wei et al., 2018; Agcaoglu et al., 2019, 2020;
Weng et al., 2020). However, few studies have investigated the
potential difference in the resting-state functional connectivity in
the EC and EO states using MEG in the same manner as fMRI.
Horstmann et al. (2010) analyzed the resting-state functional
brain networks of epileptic patients and healthy controls from
EEG and MEG data recorded in EC and EO conditions and
indicated that functional networks in both groups are more
regular during the EC state compared with the EO state, which
is derived from the EEG recordings but hardly derived from the
MEG recordings. Liu et al. (2010) reported the distinct alpha-
band activities of MEG signals under EC and EO conditions. Jin
et al. (2014) further investigated the brain functional network
in the EC and EO conditions of the MEG resting state from 39
healthy subjects and found an enhanced functional connectivity
in the theta and alpha bands during the EO state relative to
the EC state. In a recent study, functional connectivity in the
theta band was significantly different between healthy subjects
in the EO state and focal epileptic patients in the EC state
(Pourmotabbed et al., 2020); however, the role of eye behavior
states was uncertain.

These significant differences in the resting-state functional
connectivity between the EO state and the EC state may
support the hypothesis of Marx et al. (2003) on mental states,
including the “interoceptive” network, which was characterized
by imagination and multisensory activity during EC, and the
“exteroceptive” network, which can be characterized by the
attention and ocular motor activity during the EO state. Both of
these states constitute intrinsic brain activity. The alpha activity

was assumed to be associated with eye states, and EEG and MEG
were simultaneously employed to analyze the “alpha” functional
network of the specific regions of the brain insusceptible to
the different eye conditions. The functional connectivity of
the distinct brain regions decreased over time (Anwar et al.,
2014). Considering that the resting state with EO or EC might
influence functional connectivity, performing an analysis using
data from both states would add further information to this area
of uncertainty.

CONCLUSION

Epilepsy has been widely considered an archetypical brain
network disorder that is commonly investigated using the
resting-state functional connectivity. With its advantages of
high temporal resolution and spatial resolution, MEG has been
increasingly used to investigate the resting-state functional
connectivity in epileptic presurgical evaluation. In this paper,
the different metrics of abnormal functional connectivity
are reviewed based on low-frequency signals and high-
frequency oscillations. The application of MEG combined with
iEEG approaches enhances the characterization of functional
connectivity in the resting-state network, which provides
complementary information for improving epilepsy surgery.
More importantly, the resting-state functional connectivity
based on MEG signals represents a potential predictor of
postsurgical seizure outcome. Considering the resting-state
connectivity differences between eyes-open conditions and eyes-
closed conditions, an approach performing analysis using data
from both states would be added to obtain more information
about this area of uncertainty. The findings reviewed here
provide grounds that the resting-state functional connectivity
derived from MEG signals provides a strong contribution to a
presurgical evaluation in epilepsy.
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