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Abstract: The monolayer character of two-dimensional materials predestines them for application as
active layers of sensors. However, their inherent high sensitivity is always accompanied by a low
selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising
way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization
with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high
selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan
binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate
that the protein quaternary structure remains intact after binding to the functionalized graphene,
and that the lectin can be liberated from the surface by the addition of a binding competitor. The
chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic
properties of the enzyme. The present approach thus paves the way towards graphene-based sensors
for carbohydrate–lectin binding.

Keywords: graphene; wheat germ agglutinin; carbohydrate; 2D materials; sensor

1. Introduction

Two-dimensional (2D) materials hold a great potential for application as the active
layers of sensors due to their strict monolayer character. Graphene, the epitomical example
of a 2D family of materials, can achieve sensitivity down to single atoms under particular
conditions [1]. However, the great sensitivity of graphene is compensated by its poor
selectivity, which hampers the straightforward transfer of the technology to practice. The
cornerstone of graphene-based sensor development is thus to achieve selective recognition
of a given analyte [2,3].

Lectins are a broad family of proteins [4,5], featuring a carbohydrate recognition
domain (CRD) that binds sugar moieties with a high specificity. Lectins play diverse roles
in biological systems; they participate in cellular signaling, are involved in biochemical
pathways leading to various pathologies (cancer [6], arthritis [7], etc.), and are essential in
cell–cell recognition in infectious diseases such as AIDS [8,9], tuberculosis [10], and even the
SARS-CoV-2 virus [11]. Lectins have been shown to form complex quaternary structures,
ranging from dimers to higher homo- or heterooligomers up to chimeric structures that can
gradually interchange [12,13]. This challenge is further complicated by the agglutinating
properties of lectins and the chemical resemblance of their carbohydrate ligands.
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Monolayer graphene functionalized with specific carbohydrate ligands can serve as
a suitable active sensing layer for detecting lectin activity [14]. When placed into ionic
solutions, it forms an electric double layer of ions on its surface [15–18]. Protein binding
changes the Stern layer composition, which can be used as a functional principle of a
sensor. In this way, highly specific graphene-based sensors of various lectin proteins can
be constructed and used in biochemical and biomedical research and clinical practice.
However, the major challenge of achieving the specific lectin–carbohydrate binding and
distinguishing it from a non-specific interaction remains [19–21].

In this work, we demonstrate the specific binding of wheat germ agglutinin (WGA)
to monolayer graphene covalently functionalized with N-acetylglucosamine (GlcNAc)
chitooligomers of varying lengths. WGA is a 34 kDa homodimeric lectin with a total
of eight carbohydrate binding sites [22], which features a high affinity to chitooligomers
composed of several subunits of GlcNAc. We used a series of techniques [23] to characterize
functionalization up to the reversible WGA binding in unprecedented detail. The data
unambiguously confirm the scheme of chemical transformations taking place on the 2D
monolayer. Ligand competition studies confirm the higher avidities of WGA for longer
chitooligomers [24] and, therefore, the specificity of interactions on the functionalized
surface, which is the crucial step in the development of graphene-based lectin sensors.

2. Materials and Methods
2.1. Synthesis of Functionalized Chitooligomers

For the preparation of 2-azidoethyl-functionalized chitooligosaccharides composed
of β(1→4)-bound GlcNAc units (Scheme 1), we used a one-step transglycosylation reaction
catalyzed by the Tyr470Asn mutant of the β-N-acetylhexosaminidase from
Talaromyces flavus, which we had developed previously [25]. In this reaction, 2-azidoethyl
2-acetamido-2-deoxy-β-D-glucopyranoside (GlcNAc-O-EtN3; mono-GlcNAc), prepared
chemically [24], was used as a glycosyl acceptor. 2-Azidoethyl 2-acetamido-2-deoxy-β-D-
glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (di-GlcNAc), 2-azidoet
hyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyran
osyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (tri-GlcNAc), 2-azidoethyl 2-acetam
ido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-
2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyrano
side (tetra-GlcNAc), and 2-azidoethyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-
acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranosyl-
(1→4)-2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucop
yranoside (penta-GlcNAc) were then prepared by transglycosylation reaction based on a
previously reported procedure [24]. The structural characterization data (NMR, HRMS) of
compounds mono- to penta-GlcNAc are fully in accordance with the literature [24].
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2.2. Graphene Synthesis and Functionalization

Graphene was synthesized by the chemical vapor deposition method on a cop-
per foil, transferred onto silicon chips with a 300 nm-thick SiO2 layer by the copper
etching/polymer-assisted method, and fluorinated as described earlier [26,27]. The ter-
minal alkyne was introduced by nucleophilic substitution of fluorine by propargyl amine
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deposited on the chip as a 50% solution in N,N-dimethylformamide at room temperature
for two hours and then washed with a large excess of methanol.

2.3. The Cu-Catalyzed Alkyne-Azide (CuAAC) Reaction

GlcNAc-O-EtN3 ligand (2 mg) was dissolved in CuSO4 solution (900 µL, 100 µM) and
mixed with sodium ascorbate solution (50 µL, 20 mM), and tris(3-hydroxypropyltriazol
ylmethyl)amine solution (50 µL, 6 mM)—all aqueous. This mixture was dropped onto
the propargylated graphene chip (ca 1 × 1 cm2, ca 100 µL per chip) and reacted at room
temperature. After 30 min, an additional 50 µL of 20 mM sodium ascorbate solution was
dropped onto each chip and reacted for an additional 90 min. All samples were then
thoroughly washed with deionized water and air dried.

2.4. Incubation with WGA and Competitor

Wheat germ agglutinin (WGA, from Triticum vulgaris, Sigma-Aldrich, St. Louis, MI,
USA) was dissolved in phosphate-buffered saline (PBS) at an approximate concentration
of 1 mg/mL, and 100 µL of this solution was dropped onto each chip (ca 1 × 1 cm2).
Incubation was performed at room temperature for 2 h, and the samples were then washed
with PBS buffer. Competitive unbinding of WGA was performed using GlcNAc solutions
of defined concentrations in PBS at room temperature for 2 h followed by washing with
PBS and deionized water.

3. Results and Discussion

Monolayer graphene is rather inert and aggressive reagents are required for its activa-
tion (Figure 1). We used the previously reported fluorination with XeF2 in the gas phase
at room temperature under reduced pressure [28,29]. The initial high fluorine content (ca
40 atomic % with respect to carbon) decreased within two days to an equilibrium value
of about 10 atomic % [29], which means that every C–F bond is surrounded by nine sp2

carbon atoms on average. This arrangement renders the fluorine atom relatively easily
exchangeable for suitable nucleophiles [28,30], such as the amino group of propargyl amine.
Thus, the monolayer graphene may efficiently be grafted with terminal alkynes. In the next
step, chitooligomers of different lengths carrying an azidoethyl substituent at the anomeric
carbon were attached to the graphene surface using the standard CuAAC click reaction
protocol in water [31]. Finally, specific binding between chitooligomer ligands and the
corresponding lectin (WGA) occurred in aqueous PBS. The multistep functionalization
scheme is shown in Figure 1.
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The process of graphene functionalization was monitored after each step by several
methods in order to unambiguously prove the successful grafting of the desired species
according to the designed scheme. Graphene on the Si/SiO2 substrate is slightly hy-
drophilic [32,33], with a water contact angle (CA, Figure 2) of 79.7 (±1.9)◦. Fluorination
and propargylation led to negligible changes in the contact angle, with values approaching
80.0 (±3.4)◦ and 82.3 (±1.4)◦, respectively. In contrast, a large difference in hydrophilicity
was observed after the click reaction with chitooligomers—a single GlcNAc unit (mono-
GlcNAc) decreased the contact angle to 70.5 (±3.8)◦, while a di-GlcNAc ligand decreased
it to 59.9 (±2.5)◦. For longer chitooligomers, the CA value did not change any further
and fell within a range of 60◦–65◦. Atomic force microscopy (AFM, Figure 2, see the Sup-
plementary Materials file) confirmed the expected changes by providing complementary
information on the layer thickness measured at the edge of the graphene sheet after each
step. The pristine transferred graphene thickness was 0.7 nm. It increased to 0.9 nm after
fluorination and to 1.7 nm after propargylation. Such an increase in thickness is in good
agreement with the particular bond lengths (C–F, C–N, and C–C) in the grafted species28.
After the reaction with chitooligomers, the layer thickness gradually increased along with
the number of GlcNAc units, reaching a plateau at around 2.5 nm for the tri-GlcNAc
ligand. Again, this value agrees with the CA values discussed above and the expected
folding of longer flexible oligosaccharide chains on the surface. Importantly, AFM analysis
of graphene decorated with the series of chitooligomers (from mono- to penta-GlcNAc)
after incubation with WGA in PBS showed a uniform layer thickness of 5–6 nm, which is
the estimated size of the 34 kDa globular WGA protein. These results thus support the
hypothesis that chitooligomer ligands on graphene bind to WGA binding sites and also
rule out the possibility of multiple-layer non-specific aggregation. The summary of CA
and AFM data is provided in Figure 2.
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Figure 2. Summary of the AFM and CA data for graphene functionalization. AFM shows a gradual
increase in the layer thickness with increasing size of the grafted species. Longer chitooligomers
tended to fold back; hence, the thickness reached a plateau for tri- to penta-GlcNAc species. Impor-
tantly, after incubation with WGA, all chitooligomers showed a constant thickness of about 5 nm.
Correspondingly, the CA decreased when hydrophilic carbohydrates were grafted onto the graphene
surface, and a plateau of between 60◦ and 65◦ was reached for tri-GlcNAc and longer chitooligomers.
See the Supplementary Materials for definitions of error bars.

The structural integrity of chitooligomers grafted to the surface was confirmed by
surface-enhanced Raman spectroscopy (SERS, Figure 3). Reference spectra of the chi-
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tooligomers were measured in the solid state, showing sharp peaks at expected positions
(partial assignment for mono-GlcNAc is given in the caption of Figure 3). With the increas-
ing number of units, the bands broadened due to minor differences in the surrounding
particular functional groups for longer chitooligomers, making the spectra non-informative
for tri-, tetra-, and penta-GlcNAc ligands (see Supplementary Figure S1). Graphene sam-
ples after the click reaction were covered by a 12.5 nm-thick evaporated silver film, and
Raman spectra were measured with a 633 nm excitation laser at intensities of 1–10 µW,
focused with a 100× objective at a spot of about 1 µm. The laser intensity was carefully
optimized because the thermal plasmon decay leads to overheating in the irradiated spot
and to the degradation of the sample. The obtained SERS spectra matched well with the
reference spectra, showing, for example, the characteristic amide I vibration at 1631 cm−1,
CH2 deformation at 1473 cm−1, C–H and C–OH deformation at 1128 cm−1, and anomeric
C–H deformation at 866 cm−1 (Figure 3, assignment according to the literature [34,35]). It
is important to note that the enhancement of particular bands in SERS strongly depends
on the orientation of the molecular vibration with respect to the plasmon field, as it has
been shown previously [36]. Therefore, relative band intensities between conventional and
surface-enhanced Raman spectra cannot be directly compared.
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Figure 3. Comparison of Raman and surface-enhanced Raman spectra of mono-GlcNAc neat (blue)
and grafted on graphene (red), respectively. Specific vibrations enhanced in the SERS mode are
indicated in the spectra, e.g., amide I at 1631 cm−1, CH2 deformation at 1473 cm−1, and C–H
and C–OH deformation at 1128 cm−1. The signal assignment was performed according to the
literature [34,35].

To determine the interaction of lectin with chitooligomers, WGA was incubated with
the GlcNAc-functionalized graphene for two hours at room temperature in PBS buffer.
The successful binding was evaluated by matrix-assisted laser desorption/ionization mass
spectrometry (MALDI) using sinapinic acid as the matrix. Functionalized graphene samples
after incubation with either WGA and the reference WGA stock solution, deposited on
silicon chips, both provided three dominant peaks at 8.5, 17.1, and 34.3 kDa (Figure 4a). The
highest value corresponds to the natural WGA dimeric form, the middle value corresponds
to the polypeptide monomer, and the lowest mass is the doubly charged monomer.

The MALDI results were further corroborated by fluorescence imaging. FITC-labeled
WGA was incubated with functionalized graphene samples deposited on glass coverslips,
excited using the 488 nm laser, and detected on a sensitive EM-CCD camera. Specific
binding of FITC-WGA to GlcNAc-functionalized graphene was clearly detectable at the
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graphene edge as an intense contrast line (Figure 4b). Finally, the binding was confirmed
by a chemoenzymatic assay. WGA conjugated with horseradish peroxidase (WGA-HRP,
along with non-conjugated WGA as a negative control) was immersed into the tetramethyl-
benzidine (TMB) substrate solution. Within seconds, the characteristic blue color of the
oxidized TMB developed in the sample with WGA-HRP but not in the negative control
(see Supplementary Figure S3).
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Figure 4. (a) MALDI spectra overlaying the reference spectrum of WGA (green), and the spectrum acquired on func-
tionalized graphene after incubation with WGA (blue). The dominant masses in both spectra are 8.5, 17.1, and 34.3 kDa.
(b) Fluorescence imaging of a graphene edge functionalized with GlcNAc after incubation with fluorescently labeled
(fluorescein isothiocyanate, FITC) WGA. A clear contrast is observed at the edge of functionalized graphene.

An important feature of carbohydrate binding to lectins is the previously shown
affinity increase [24] by approximately one order of magnitude when extending the chi-
tooligomer by a single GlcNAc unit. We thus performed a binding assay in which WGA
bound to GlcNAc-functionalized graphene was competitively released from the surface by
the addition of the monomeric ligand in the solution (see also Supplementary Figure S2).
Figure 5 summarizes the AFM measurement of the layer thickness of graphene decorated
with mono- or di-GlcNAc on the surface after competition with a gradually increasing
concentration of mono-GlcNAc in solution. At low concentrations of the mono-GlcNAc
competitor, the layer thickness showed constant values of 5.5–6 nm, indicating the presence
of WGA bound to the surface. At a mono-GlcNAc concentration of about 10−8 M, the
layer thickness suddenly dropped to values corresponding to the functionalized graphene
without WGA. The physical nature of AFM measurement did not allow us to obtain
experimental points in the descending slope of the sigmoidal curve. The experimental
data were fitted with the Hill function with a fixed Hill coefficient of 1.75 (positive co-
operative binding) based on previous studies37 and provided dissociation constants of
7.3 × 10−9 and 3.4 × 10−8 M for mono- and di-GlcNAc-functionalized graphene, respec-
tively. For tri-GlcNAc and longer chitooligomers grafted on graphene, the competition
with mono-GlcNAc did not proceed even at high competitor concentrations (10−3 M
GlcNAc), indicating that mono-GlcNAc is not an efficient competitor for tri- and longer
chitooligomers immobilized on the graphene surface.
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Figure 5. Comparison of the WGA binding curves obtained by AFM for mono- and di-GlcNAc-
grafted graphene when in competition with free mono-GlcNAc ligand in solution. The curves
were fitted with the Hill function with a fixed Hill coefficient of 1.75, as given in the literature [37].
The height drop for di-GlcNAc-grafted graphene occurred at about a five times higher competitor
concentration than for the mono-GlcNAc-grafted graphene. The dependence of the dissociation
constant on the chitooligomer length confirms the specificity of carbohydrate–lectin binding.

4. Conclusions

Monolayer graphene was functionalized with β(1-4)-linked N-acetylglucosamine chi-
tooligomers of varying lengths. Chitooligomers feature a high affinity for wheat germ
agglutinin, a homodimeric lectin with eight carbohydrate binding sites. The successful
functionalization of the graphene surface was confirmed by a set of complementary tech-
niques including Raman, AFM, CA, SERS, fluorescence microscopy, and mass spectrometry.
The critical issue of the binding specificity between lectin and chitooligomer ligands ex-
posed on the graphene surface was investigated in a competitive binding assay using
AFM as the monitoring technique. The extensive characterization consistently proved
the mechanism of graphene functionalization and the specific binding of WGA to the
carbohydrates grafted on the functionalized graphene. This study thus paves the way
towards specific sensors for the quantitative determination of lectins, in diverse solutes,
produced by industry or the natural environment.
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